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Abstract
Background  Circadian rhythm (CR) disturbance is intricately associated with Parkinson’s disease (PD). However, the 
involvement of CR-related mechanisms in the pathogenesis and progression of PD remains elusive.

Methods  A total of 141 PD patients and 113 healthy participants completed CR-related clinical examinations in this 
study. To further investigate the CR-related mechanisms in PD, we obtained datasets (GSE7621, GSE20141, GSE20292) 
from the Gene Expression Omnibus database to identify differentially expressed genes between PD patients and 
healthy controls and further selected CR-related genes (CRRGs). Subsequently, the least absolute shrinkage and 
selection operator (LASSO) followed by logistic algorithms were employed to identify the hub genes and construct 
a diagnostic model. The predictive performance was evaluated by area under the curve (AUC), calibration curve, and 
decision curve analyses in the training set and external validation sets. Finally, RT‒qPCR and Western blotting were 
conducted to verify the expression of these hub genes in blood samples. In addition, Pearson correlation analysis was 
utilized to validate the association between expression of hub genes and circadian rhythm function.

Results  Our clinical observational study revealed that even early-stage PD patients exhibited a higher likelihood 
of experiencing sleep disturbances, nocturnal hypertension, reverse-dipper blood pressure, and reduced heart rate 
variability compared to healthy controls. Furthermore, 4 CR-related hub genes (AGTR1, CALR, BRM14, and XPA) were 
identified and subsequently incorporated as candidate biomarkers to construct a diagnostic model. The model 
showed satisfactory diagnostic performance in the training set (AUC = 0.941), an external validation set GSE20295 
(AUC = 0.842), and our clinical centre set (AUC = 0.805). Additionally, the up-regulation of CALR, BRM14 and the down-
regulation of AGTR1, XPA were associated with circadian rhythm disruption.

Conclusion  CR disturbance seems to occur in the early stage of PD. The diagnostic model based on CR-related genes 
demonstrated robust diagnostic efficacy, offering novel insights for future clinical diagnosis of PD and providing a 
foundation for further exploration into the role of CR-related mechanisms in the progression of PD.
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Introduction
Parkinson’s disease (PD) is a prevalent neurodegenera-
tive disorder characterized by the degeneration of dopa-
minergic neurons in the substantia nigra pars compacta 
(SNpc) [1]. PD patients often have typical movement 
disorders, such as bradykinesia, static tremor and pos-
tural instability [2]. However, before this range of motor 
symptoms occurs, PD patients often experience nonmo-
tor symptoms such as sleep disturbances, hyposmia, and 
autonomic dysfunction [3]. Recent studies have revealed 
that the progression of nonmotor symptoms of PD is 
closely related to circadian rhythm (CR) disturbances 
[4–6].

The circadian rhythm, a 24-hour physiological and 
behavioural oscillation, is primarily regulated by the 
suprachiasmatic nucleus, exhibiting self-sustaining and 
synchronous electrical activity [7]. It is widely acknowl-
edged that the sleep–wake cycle is intricately linked to 
circadian rhythm function [8]. In PD patients, impaired 
circadian rhythm may exacerbate disturbances in sleep-
wake cycles through alterations in melatonin rhythmic-
ity amplitude, leading to increased daytime sleepiness 
[9, 10]. A circadian clock control gene known as Tef has 
been identified to be associated with slow-wave sleep and 
movement disorders, including restless leg syndrome 
in in PD patients [11]. Additionally, the manifestation 
of CR disturbance in PD patients encompasses not only 
sleep-wake cycle disruption but also other dysfunctions 
within the autonomic nervous system, such as altera-
tions in blood pressure and heart rate variability (HRV) 
[12–14]. Considering the close association between CR 
disturbance and early non-motor symptoms of PD, it is 
hypothesized that mechanisms related to CR disturbance 
may be activated during the early stages of PD. Therefore, 
investigating the mechanism underlying PD-related CR 
disturbance could unveil pathophysiological mechanisms 
associated with the initial phase of PD, which would hold 
significant implications for timely diagnosis and treat-
ment initiation.

In this study, we conducted a comparative analysis 
of our clinical center to investigate CR disturbances in 
early-stage PD patients (Hoehn-Yahr stage I-II), suggest-
ing potential involvement of CR-related mechanisms 
in the early progression of PD. To explore these mecha-
nisms further, we employed bioinformatics and machine 
learning techniques to identify differentially expressed 
genes associated with circadian rhythms (DE-CRRGs), 
developed a diagnostic model for PD, and validated its 
effectiveness using an external validation dataset. Subse-
quently, we conducted an assessment of the expression 
levels of pertinent hub genes in participants’ blood sam-
ples to validate the significance of these identified hub 
genes as potential candidates, thereby further elucidating 

the crucial implications of CR-related genes in clinical 
diagnosis of PD.

Materials and methods
Participants
In this study, a total of 156 PD patients were recruited 
from the neurology department in our hospital, between 
September 2020 and October 2022. Among them, 12 
patients did not cooperate with the completion of rel-
evant examinations, and 3 refused to participate in 
the follow-up, resulting in a final inclusion of 141 PD 
patients. These patients were diagnosed with idiopathic 
PD according to the UK PD Society Brain Bank crite-
ria. Additionally, we recruited a total of 113 matched 
healthy control participants from our hospital’s physical 
examination centre. All participants provided informed 
consent for their participation in this study which was 
approved by our hospital’s Ethics Committee.

Clinical data collection and evaluation
Participants’ sleep-related clinical indicators were 
recorded using polysomnography (PSG). In this study, 
sleep fragmentation was defined as the occurrence of fre-
quent microarousals lasting more than 3 s but less than 
10 s [15]. Sleep-disordered breathing (SDB) was defined 
as the presence of five or more apnoeic or hypopnoeic 
events per hour [15]. The Disease Sleep Scale (PDSS), 
a standardized Chinese version consisting of 15 spe-
cific items, was used to assess the total sleep quality of 
PD patients [9]. Blood pressure (BP)-related indicators 
were monitored by measuring 24  h ambulatory blood 
pressures. In this study, (1) nocturnal hypertension was 
considered a mean nighttime blood pressure ≥ 120/70 
mmHg; (2) awakening hypotension was considered a sys-
tolic blood pressure that had decreased by ≥ 20 mmHg 
within 60 min after getting up in the morning compared 
with the average systolic blood pressure (SBP) measured 
the last three times before getting up; (3) reverse dipping 
hypertension was considered a decrease in BP at night of 
less than 10% [the calculation formula is as follows: the 
decrease in BP at night = (average SBP during the day-
average SBP at night)/average SBP during the day *100%]; 
and (4) weighted blood pressure variability (wBPV) was 
used as the evaluation index of blood pressure variability. 
The calculation formula was as follows: sum of standard 
deviations of daytime and nighttime systolic blood pres-
sure after time correction [(daytime blood pressure vari-
ability*15 + nighttime blood pressure variability) *9/24]. 
HRV-related indicators were obtained by conducting 
24-hour Holter electrocardiograms, while participants 
were instructed to engage in their routine daily activities, 
excluding any strenuous physical exertion. The root mean 
square of successive RR interval differences (RMSS) and 
the standard deviation of all NN intervals (SDNN) were 



Page 3 of 20Wang et al. Journal of Translational Medicine          (2024) 22:635 

measured as parameters for assessing HRV [13]. Cogni-
tive assessments were performed by two neurologists 
who remained blinded to the groupings.

Identification and analysis of DE-CRRGs
The Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/) was utilized to obtain 
three expression profiles, namely, GSE7621, GSE20141, 
GSE20292. Following batch effect removal using the 
“sva” software package, these datasets were merged to 
create a total of 72 samples consisting of 37 PD patients 
and 35 healthy controls. The differentially expressed 
genes (DEGs) were identified by the thresholds of log 
fold change > 0 and p < 0.05 after correction. In addition, 
weighted gene coexpression network analysis (WGCNA) 
was used to identify the PD-related DEGs. The 
“goodSamplesGenes” function from the WGCNA pack-
age was utilized to filter out genes and samples that did 
not meet the quality criteria. The dynamic tree cutting 
method was employed to identify modules exhibiting the 
strongest correlation with clinical features. Additionally, 
CR-related genes (CRRGs) were obtained from the Gen-
eCards database (https://www.genecards.org/), excluding 
those with correlation scores lower than 0.4 (as shown 
in Table S1). Finally, DE-CRRGs were determined as the 
intersection between DEGs, WGCNA and CRRGs.

The distribution pattern of genes was analysed by gene 
set enrichment analysis (GSEA). By employing GSEA, 
distinct differences in pathway enrichment between 
PD patients and healthy controls were identified. Gene 
Ontology (GO) functional analysis was employed to 
annotate the gene characteristics. To gain insights 
into the pathways, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis was conducted on these DE-
CRRGs. The disease enrichment analysis was conducted 
by DisGeNET (https://www.disgenet.org/). The protein‒
protein interaction (PPI) network was established by uti-
lizing the STRING database.

Identification of hub genes from DE-CRRGs
In order to further select the most disease-relevant char-
acteristic variables from DE-CRRGs, we opted to employ 
regularization techniques for variable reduction in order 
to mitigate issues of overfitting and multicollinearity. 
LASSO, a commonly utilized regularization technique, 
simplifies the model by shrinking coefficients of less cor-
related variables towards zero. The resultant relevant 
characteristic variables selected through this approach 
were subsequently fine-tuned using 10-fold cross-val-
idation [16]. Logistic regression allows for interpretable 
coefficients that demonstrate the correlation between 
each characteristic variable and the outcome [17]; hence, 
we utilized logistic regression to evaluate the impact of 
LASSO’s selected variables on outcomes, identifying hub 

genes with p < 0.05 as having significant correlations with 
disease, which were subsequently used for constructing 
predictive models.

Construction and validation of the model
A nomogram was constructed by multiplying the expres-
sion level of each hub gene (expi) with the risk coefficient 
(coefi) to obtain a risk score, which was then combined 
with the patient’s clinical information (age, sex). The 
effectiveness of the nomogram was verified using the 
“pROC” package to calculate the area under the receiver 
operating characteristic curve (AUC). Calibration curves 
were constructed by the “Hmisc” package to assess con-
sistency between predicted probability and actual prob-
ability. Furthermore, a decision curve analysis (DCA) 
was performed by the “rmda” package to show the net 
benefit of intervention based on the diagnostic model for 
PD diagnosis (net benefit was defined as the treatment 
benefit for PD patients diagnosed by the model minus 
the harm for non-PD patients diagnosed by the model). 
Additionally, external independent datasets (GSE20295) 
and blood samples from our clinical centre were used to 
validate the robustness and reliability of this model.

Single-gene gene set variation analysis (GSVA) enrichment
The GSVA method is widely recognized for its height-
ened sensitivity in detecting subtle variations in pathway 
activation levels within a sample population [18]. We 
compared the differences in GSVA scores between high- 
and low-expression samples of hub genes to observe dif-
ferences in pathway enrichment. In the group exhibiting 
high expression of target genes, a positive t value (> 0) 
signified the activation of associated pathways. Con-
versely, in the group displaying low expression of the tar-
get gene, a negative t value (< 0) indicated activation of 
the relevant pathway.

Prediction of hub gene-related interactive genes, ceRNA 
networks and targeted drugs
The GeneMANIA database was employed to predict the 
gene interactions. A combination of MIRDB, TargetScan, 
and miRanda databases was used to construct the ceRNA 
network. The DSigDB database was utilized to identify 
potential target drugs, aiding in the search for potential 
therapeutic targets related to PD.

Immunoinfiltration analysis
The “CIBERSORT” package was utilized for quantitative 
analysis to compare and contrast the relative proportions 
of diverse invasive immune cells across different samples. 
Subsequently, correlation analysis was conducted to fur-
ther investigate the associations between these immune 
cells as well as between these hub genes and the afore-
mentioned immune cells.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://www.disgenet.org/
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Real-time quantitative PCR (RT-qPCR)
For mRNA detection, total RNA was extracted and tran-
scribed into cDNA according to the manufacturer’s pro-
tocol (Invitrogen, CA, USA). The mRNA levels of the 
hub genes were analysed using the 2−ΔΔCt method. The 
sequences of the primers used are provided in Table S2.

Western blotting
We collected blood samples from 74 patients in the PD 
group and 62 patients in the healthy control group. These 
blood samples were centrifuged at a speed of 3000 rpm 
for 10  min to obtain serum, which was then frozen at 
− 80  °C for subsequent analysis. The expression of these 
proteins was verified by Western blotting. The following 
primary antibodies were used for Western blotting: anti-
AGTR1 (1:1000, Proteintech, 25343-1-AP), anti-CALR 
(1:1000, Abcam, ab92516) 10292-1-AP), anti-RBM14 
(1:1000, Proteintech, 10196-1-AP) and anti-XPA (1:1000, 
Proteintech, 16462-1-AP). Finally, ImageJ software was 
used to quantitatively analyse the relative density of the 
bands.

Data analysis
In this study, the unpaired T test and Mann‒Whitney U 
test were used to compare means and medians between 
groups, respectively. The chi-square test was employed to 
compare classified data across groups. Statistical analysis 
was conducted using SPSS 26 software and R software 
(version 4.3.1). Statistical significance was determined at 
a two-tailed p < 0.05.

Results
Circadian rhythm disturbance occurs in patients with early-
stage PD
As shown in Table  1, there were no significant differ-
ences in baseline clinical characteristics between the two 

groups. After adjusting for covariates including age, sex, 
and dopamine equivalent dose (LED), both early-stage 
(Hoehn–Yahr stages I-II) and late-stage (Hoehn–Yahr 
stages III-V) PD patients with sleep disorders exhibited 
notable reductions in total sleep score (PDSS) compared 
to healthy controls (P < 0.05) (Table  2). In addition, PD 
patients exhibited a significant increase in sleep fragmen-
tation (P < 0.05) compared to healthy controls, accom-
panied by an elevated ratio of periodic limb movement 
(PLM) (P < 0.05). However, no significant difference was 
observed in SDB between early-stage PD patients and 
healthy controls, whereas late-stage PD patients had 
a higher likelihood of experiencing SDB than healthy 
controls (P = 0.047). Through the utilization of ambula-
tory blood pressure monitoring over a period of 24  h, 
it was found that both early- and late-stage PD patients 
were more susceptible to nocturnal hypertension and 
reverse dipping hypertension blood pressure patterns 
than healthy controls (P < 0.05). Awakening hypoten-
sion also served as an indicator of autonomic nervous 
system disturbance; however, it was found that morning 
hypotension occurred more frequently only among late-
stage PD patients (P = 0.037), while no significant differ-
ence was observed between early-stage PD patients and 
healthy controls. Moreover, there was no significant dis-
parity observed in the wBPV between the PD group and 
the healthy controls. Additionally, 24-hour Holter elec-
trocardiogram monitoring revealed significantly dimin-
ished nocturnal SDNN in both early- and late-stage PD 
patients compared to healthy controls (P < 0.05), indicat-
ing partial impairment of autonomic nervous function 
in PD patients. With regard to cognitive assessment, no 
notable distinction was found between patients with 
early PD and healthy controls; however, patients with 
late-stage PD exhibited varying degrees of cognitive 
impairment compared to healthy controls (P < 0.001).

Table 1  Clinical and demographic information about PD patients and non-PD controls
Variables PD patients Non-PD controls P*

Hoehn-Yahr Stage All
I II III IV/V

Participants, n 35 32 41 33 141 113
Age, years 69.3 ± 7.1 69.1 ± 8.6 70.5 ± 6.6 72.4 ± 7.4 70.3 ± 7.3 69.9 ± 9.2 0.57
Gender, male, n (%) 18/35 14/32 25/41 19/33 76(53.9) 57(50.4) 0.61
Education, years 6.5 ± 1.6 6.7 ± 1.4 6.4 ± 1.7 6.4 ± 1.8 6.4 ± 1.7 6.5 ± 1.8 0.65
Smoking, n (%) 2 4 3 3 12(8.5) 8(7.1) 0.81
Drinking, n (%) 5 5 6 3 19(13.5) 12(10.6) 0.57
Hypertension, n (%) 20 19 25 22 86(61.0) 66(58.4) 0.7
Diabetes mellitus, n (%) 4 4 5 5 18(12.8) 12(10.6) 0.69
BMI, kg/m2 24.6 ± 3.1 24.5 ± 3.9 24.6 ± 3.5 24.4 ± 4.0 24.5 ± 3.8 24.6 ± 4.1 0.75
PD duration, median, month 29 (12, 48) 44 (22, 69) 71(39, 114) 114(65, 176) 55(31, 108)
LED, mg 176.3 ± 146.8 416.3 ± 273.1 594.5 ± 316.7 749.2 ± 514.2 486.5 ± 296.7
a P value was obtained by comparing all PD patients and non-PD controls

Abbreviations: PD, Parkinson’s disease; BMI, Body Mass Index; LED, levodopa equivalent dose
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Identification and analysis of PD-related DE-CRRGs
The flowchart is shown in Fig.  1. A total of 277 PD-
related DEGs were screened from three datasets, namely, 
(GSE7621, GSE20141, GSE20292), comprising 72 samples 
(Fig. 2A, B). With a soft threshold β set at 4, the WGCNA 
method successfully identified the module genes of 
utmost importance. Through hierarchical clustering and 
dynamic tree function analysis, it was observed that the 
turquoise module exhibited a robust negative correlation 
with PD (r = − 0.51, p = 0.001), while the magenta mod-
ule displayed a significant positive correlation with PD 
(r = 0.35, p = 0.006) (Fig. 2C-F). By intersecting with 2056 
CR-related genes from GeneCards, 39 DE-CRRGs were 
further identified (Fig. 2G). The GSEA indicated that the 
different pathways in the two sample groups were primar-
ily enriched in PD, Alzheimer’s disease, and Huntington’s 
disease (Fig.  2H, I). Subsequently, enrichment analyses 
were performed separately on these DE-CRRGs (Fig. 3A-
C). The results of GO analysis revealed significant enrich-
ment of DE-CRRGs in the Biological Process module 
associated with circadian rhythm and neurotransmit-
ter transport. In terms of cellular component module 

analysis, these genes exhibited enrichment in neuronal 
cell bodies and synaptic vesicles (Fig.  3A-C). Further-
more, KEGG pathway enrichment analysis demonstrated 
that these genes predominantly participated in PD pro-
gression as well as neurotrophic factor signalling path-
ways and dopamine synapses, among others (Fig. 3D, E). 
These findings suggest that not only are these DE-CRRGs 
involved in the progression of PD, but they may also 
be closely associated with circadian rhythm function. 
Additionally, protein interaction relationships between 
DE-CRRGs were visualized using Cytoscape to present 
subnetworks exhibiting high correlation (Fig.  3F-I). The 
disease enrichment analysis also revealed that these DE-
CRRGs were tightly associated with Parkinsonian disor-
ders, DOPA-responsive distonia and nerve degeneration 
(Fig. 3J).

Construction and validation of a diagnostic model
We employed the machine learning LASSO algorithm 
in conjunction with logistic regression to further iden-
tify the hub genes most strongly associated with PD. 
By applying a penalty coefficient, LASSO selected 14 

Table 2  Circadian rhythm related characteristics between Non-PD controls and PD patients
Variables Non-PD controls PD patients

Hoehn-Yahr Stage Pa Hoehn-Yahr Stage Pb

Early (I and II) Late (III, IV, and V)
Participants, n 113 67 74
Sleep disturbances
Sleep fragmentation, n (%) 38(33.6) 33(46.5) 0.041* 41(55.4) 0.004**

SDB, n (%) 39(34.5) 24(35.8) 0.873 36(48.6) 0.047*

PLM, n (%) 5(4.4) 9(13.4) 0.042* 13(17.6) 0.004**

PDSS 126.5 ± 7.9 111.6 ± 12.6 < 0.001*** 85.4 ± 15.7 < 0.001***

Blood pressure
Nocturnal hypertension, n (%) 29(25.7) 30(44.8) 0.013* 31(41.9) 0.025*

Awakening hypotension 12(10.6) 12(17.9) 0.179 17(23.0) 0.037*

Reverse-dipper BP, n (%) 22(19.5) 23(34.3) 0.033* 33(44.6) < 0.001***

WBPV 14.29 ± 6.93 15.39 ± 6.32 0.286 16.24 ± 6.67 0.067
Heart rate variability
RMSS D, ms 23.5 ± 7.7 22.4 ± 8.3 0.372 21.6 ± 7.9 0.124
RMSS N, ms 31.7 ± 10.3 30.5 ± 11.1 0.435 29.3 ± 11.7 0.186
SDNN D, ms 99.2 ± 34.6 98.6 ± 36.2 0.832 94.7 ± 41.6 0.186
SDNN N, ms 113.9 ± 37.1 103.2 ± 38.7 0.048* 99.5 ± 42.9 0.031*

Cognitive function
MMSE 27.6 ± 1.3 27.2 ± 1.5 0.117 26.5 ± 1.8 < 0.001***

MoCA 26.8 ± 2.1 26.3 ± 1.9 0.083 24.4 ± 2.6 < 0.001***

a P value was obtained by comparing early-stage PD patients and non-PD controls, b P value was obtained by comparing late-stage PD patients and non-PD controls

Table 3  Information for microarray datasets from GEO database
GSE accession Samples Platform Country Contributor Attribute

PD (n) Control (n)
GSE7621 16 9 GPL570 USA Ffrench-Mullen JM Training set
GSE20141 10 8 GPL570 USA Middleton FA et al. Training set
GSE20292 11 18 GPL96 USA Middleton FA et al. Training set
GSE20295 40 53 GPL96 USA Zhang Y et al. Validation set
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characteristic variables, which were subsequently sub-
jected to logistic regression analysis to eliminate vari-
ables with P < 0.05 (Fig.  4A, B). Subsequently, the 
logistic regression algorithm further identified four hub 
genes, namely, RNA binding motif protein 14 (RBM14), 

calreticulin (CALR), angiotensin II receptor type 1 
(AGTR1), and xeroderma pigmentosum group A-com-
plementing protein (XPA), with a significance threshold 
of p < 0.05. A diagnostic model was constructed using a 
nomogram model in the training dataset based on these 

Fig. 1  Flowchart of the screening and analysis strategy
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four hub genes (Fig. 4C). The nomogram allows for pro-
jecting each indicator’s amount onto the top scale to 
obtain its corresponding score. The scores obtained from 
each index were then added together and projected onto 
the bottom scale to determine the probability of PD in 
the subject. Through ROC analysis, we found that each 
gene had an AUC greater than 0.7 in the training set, 
resulting in an overall AUC of 0.941 for the nomogram 
in the training set (Fig.  4D). Furthermore, the external 
independent validation dataset (GSE20295) also showed 
an overall AUC of 0.842, indicating the satisfactory 

applicability and reliability of this nomogram (Fig.  4G, 
J). Moreover, calibration curves demonstrated high con-
sistency between actual measurements and predictions 
(Fig. 4E, H). DCA also revealed satisfactory clinical bene-
fits associated with this nomogram in training and exter-
nal validation datasets (Fig. 4F, I). Finally, the model also 
demonstrated a satisfactory applicability (AUC = 0.805), 
robust consistency, and acceptable clinically net benefit 
in our clinical blood sample validation dataset obtained 
from our clinical centre (Fig. J, K, L).

Fig. 2  Screening process of DE-CRRGs and GSEA. (A) Volcano graph displaying the DEGs associated with Parkinson’s disease (PD). (B) Heatmap of 
the DEGs. (C) Dendrogram of the PD gene cluster. (D, E) Scaleless index and mean connectivity of soft thresholds. (F) Heatmap of correlations between 
modules and clinical traits. (G) Venn diagram showing the intersecting genes as DE-CRRGs. (H, I) GSEA of DEG sets in the PD and control groups
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Fig. 3  Analysis of DE-CRRGs. (A) Bubble plot of the Gene Ontology (GO) enrichment analysis. (B) Circos plot presenting the correlations between the 
top 8 GO functions and DE-CRRGs. (C) Circos plot presenting the GO functions (largest circle), the number of genes involved in each pathway (middle 
circle), and the percentage of DEGs in each function (inner circle). (D) Bubble plot of KEGG signalling pathways. (E) Circos plot presenting the correlations 
between the top 8 pathways and DE-CRRGs. (F) PPI network of CR-related DEGs. (G) PPI network of upregulated and downregulated proteins. Red dots 
represent upregulated proteins, and blue dots represent downregulated proteins. (H) Key clusters calculated by MCODE. (I) Top 10 genes chosen by 
cytoHubba. (J) Disease enrichment analysis of DE-CRRGs
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Fig. 4  Identification of hub genes and construction of the nomogram. (A, B) LASSO algorithm. Fourteen characteristic genes were screened out by 
the LASSO algorithm. (C) Nomogram incorporating age, sex, and four hub genes (AGTR1, RBM14, XPA, CALR). (D, G, J) Receiver operating characteristic 
(ROC) curves of the nomogram in the training datasets (GSE7621, GSE20141, GSE20292), the validation dataset (GSE20295) and our external clinical 
dataset. (E, H, K) Calibration plots of the nomogram in the training datasets (GSE7621, GSE20141, GSE20292), the validation dataset (GSE20295) and our 
external clinical dataset. (F, I, L) Decision curve analysis (DCA) curves of the nomogram in the training datasets (GSE7621, GSE20141, GSE20292), the vali-
dation dataset (GSE20295) and our external clinical dataset
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The cluster heatmap shown in Fig.  5A visually repre-
sents the differential expression patterns of these hub 
genes between the PD and control groups. The GO 
enrichment analyses revealed significant associations 
of these hub genes with CoA-transferase activity and 
the regulation of dendritic cell chemotaxis (Fig.  5B). 
The KEGG analysis indicated a significant enrichment 
of these genes in the renin-angiotensin system pathway 
(Fig.  5C). The expression of hub genes was represented 
by violin plots in the training set and the external valida-
tion set GSE20295 (Fig. 5D-K).

Hub genes associated with PD-related pathways
Single-gene GSVA pathway enrichment analysis was 
performed to reveal the activated pathways between 
the groups with high and low expression of each hub 
gene (Fig. 6). The high expression of AGTR1 was found 
to be closely associated with active pathways, namely, 

glycosphingolipid biosynthesis and proteasome activ-
ity. Similar to AGTR1, it is also highly correlated with 
the proteasome in the high expression of RBM14. The 
low expression of RBM14 was associated with circa-
dian rhythm mammals and sulfur metabolism. The high 
expression of CALR was related to taurine and hypo tau-
rine metabolism and steroid biosynthesis, while the low 
expression of CALR was related to glycine, serine and 
threonine metabolism. In addition, the high expression of 
XPA may activate the linoleic acid metabolism pathway, 
while the low expression of XPA was closely related to 
proteasome, pantothenate and CoA biosynthesis.

Relationships between hub genes and immune cells
The CIBERSORT algorithm is commonly employed for 
the analysis and comparison of immune cell infiltration 
in PD and healthy control groups [19]. We observed dis-
parities in the infiltrating components of immune cells 

Fig. 5  Enrichment analysis of four hub genes. (A) Heatmap of the four hub genes. (B) Circos plot presenting the correlations between the hub genes 
and GO functions. (C) Circos plot presenting the correlations between the hub genes and KEGG pathways. (D-G) Violin plots presenting the differential 
expression of hub genes in the training set. (H-K) Violin plots presenting the differential expression of hub genes in the external validation set
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between these two groups (Fig. 7A, B). Compared to the 
control group, the PD group had higher proportions of 
infiltrating plasma cells, CD8 T cells, T follicular helper 
cells, M0 macrophages, and eosinophils. Conversely, 
there were decreases in the proportions of infiltrating 
Tregs, T gamma delta cells, activated mast cells and neu-
trophils when compared with the control group. Sub-
sequently, Pearson correlation analysis was performed 
to investigate the correlations between hub genes and 
immune cell types (Fig. 7C). Correlation analyses among 
various immune cell types were also performed (Fig. 7D). 
As shown in the lollipop diagrams (Fig.  8A-D), AGTR1 
demonstrated close relationships with M0 macrophages 
(p = 0.037), monocytes (p = 0.045) and M2 macrophages 
(p = 0.002). CALR showed strong positive correlations 
with plasma cells (p = 0.016), naive B cells (p = 0.002), and 
active and resting NK cells (p < 0.01). RBM14 exhibited 

significant positive correlations with dendritic cells 
(p = 0.014) and eosinophils (p = 0.019). However, no sig-
nificant associations were observed between XPA and 
any immune cell type in the correlation analysis. Scatter 
plots (Fig.  8E-L) were then employed to visually depict 
the significant correlations between each hub gene and 
immune cells.

Prediction of hub gene-related interacting genes, ceRNA 
networks and targeted drugs
To explore other genes that had potential interactions 
with the 4 hub genes, we obtained 20 potential genes 
that interacted with the hub genes from GeneMANIA 
(Fig.  9A). In addition, we used the MIRDB, TargetScan 
and miRanda databases to jointly screen potential miR-
NAs interacting with the hub genes and then constructed 
the ceRNA network using the SpongeScan database 

Fig. 6  Gene set variation analysis (GSVA) of each hub gene. Red signalling pathways are enriched with high expression of the hub genes, while the 
green signalling pathways are enriched with low expression of the hub genes. (A) AGTR1. (B) XPA. (C) RBM14. (D) CALR
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Fig. 7  Immunoinfiltration analysis. (A) Discrepancy in the 22 types of immune cell infiltration between the control and PD groups. (B) Stacked histo-
gram presenting the proportions of immune cells among the control and PD groups. (C) Correlation analysis of each hub genes and the different types 
of immune cells. (D) Correlation analysis among the different types of immune cells. *p < 0.05, **p < 0.01, *** p < 0.001
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Fig. 8  Correlation analysis of hub genes and immune cells. (A-D) Lollipop graphs presenting the correlations between each hub gene and immune 
cells. (E-F) Scatter plots presenting significant correlations between each hub gene and immune cells
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(Fig.  9B). Upon screening for potential drugs targeting 
the hub genes, we found 43 potential drugs targeting 
AGTR1 and 2 potential drugs targeting CALR through 
the DGIdb database (Fig. 9C). Unfortunately, we failed to 
identify targeted drugs for the remaining two hub genes, 
RBM14 and XPA, in the database.

Verification of hub gene expression and association with 
sleep disorders in PD patients
We further verified the expression levels of relevant hub 
genes in blood samples obtained from 74 PD patients 
and 62 healthy control participants at our clinical centre. 
Through Western blotting and RT‒qPCR detection, we 
found that compared with those in the healthy control 

group, the expression levels of RBM14 and CALR in the 
PD group were increased, while AGTR1 and XPA were 
significantly downregulated (Fig.  10). Table  2 reveals 
the occurrence of significant sleep disorders in early-
stage PD patients, which prompted us to conduct Pear-
son correlation analysis between hub gene expression 
and PDSS score. Our findings indicated positive cor-
relations between AGTR1 (R = 0.27, p = 0.021) and XPA 
(R = 0.24, p = 0.041) and PDSS scores, while CALR (R=-
0.25, p = 0.033) and RBM14 (R=-0.23, p = 0.046) exhibited 
negative correlations with PDSS scores, suggesting their 
potential role in circadian rhythm disturbance among PD 
patients (Fig. 10G-J).

Fig. 9  Prediction of interactive genes, ceRNA networks, and target drugs. (A) Prediction of hub gene-related interactive genes. (B) Prediction of hub 
gene-related ceRNA networks. (C) Prediction of hub gene-targeted drugs
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Fig. 10 (See legend on next page.)
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Discussion
As a neurodegenerative disorder, PD diagnosis currently 
mainly relies on clinical symptoms; however, by the 
time typical motor symptoms manifest, significant dis-
ease progression may have already occurred, leading to 
delayed treatment initiation [20]. Our clinical observa-
tional study revealed that circadian rhythm disturbance 
exists in the early stage of PD. The identification of these 
potential DE-CRRGs through our study holds significant 
implications for elucidating the mechanisms underlying 
the early-stage pathogenesis of PD. To the best of our 
knowledge, this is the first study to identify genes related 
to the circadian rhythm in PD through bioinformatics 
followed by machine learning techniques. The LASSO 
algorithm followed by logistic regression enabled us to 
identify 4 hub genes, which were subsequently utilized 
for developing a diagnostic model for PD. Additionally, 
we confirmed the protein expression of these hub genes 
in blood samples.

In this study, we found that sleep disorders exist in 
early-stage PD patients, which is consistent with previ-
ous research findings [10, 21]. Notably, the incidence of 
sleep fragmentation was found to be as high as 52.48% 
among PD patients, with a higher prevalence observed 
in late-stage PD individuals than in early-stage PD indi-
viduals. Sleep periodic limb movement, characterized by 
repetitive episodes of rigid flexion movements primar-
ily affecting the lower limbs during the first half of the 
night, represents another significant indicator of sleep 
disturbance [22]. Previous studies have reported a higher 
occurrence of PLM in PD patients, either alone or cooc-
curring with restless legs syndrome (RLS) [23]. Covas-
sin et al. demonstrated a positive correlation between 
PLM severity and Unified Parkinson’s Disease Rating 
Scale (UPDRS) III scores [24]. Similarly, severe PLM also 
tended to be associated with more pronounced motor 
symptoms in PD patients according to questionnaire 
assessments [25]. These findings further support an inti-
mate relationship between PLM and disease progression 
within the context of PD pathology. Consistent with prior 
studies, our study revealed a higher prevalence of PLM 
among late-stage PD patients than among early-stage PD 
patients.

Furthermore, a higher prevalence of SDB was observed 
in PD patients at a late stage, potentially attributed to 
pharyngeal muscle tissue dysfunction resulting in upper 
airway obstruction. A previous study reported that the 
likelihood of obstructive sleep apnoea (OSA) is more 
than three times higher in individuals with laryngeal 

motor dysfunction than in those without [26], indicat-
ing that laryngeal motor dysfunction may be associated 
with the development of SDB. Interestingly, no signifi-
cant increase in SDB incidence was observed among 
early-stage PD patients compared to healthy controls. 
We hypothesize that PD is a chronic neurodegenerative 
disorder characterized by α-synuclein accumulation, 
mitochondrial dysfunction, neuronal degeneration, and 
subsequent muscle motor impairment—a gradual pro-
cess [27]. In turn, hypoxia during sleep can also elevate 
α-synuclein levels in individuals with respiratory sleep 
disorders [28, 29]; thus, SDB may also exacerbate or 
accelerate the progression of PD. Consequently, there 
exists an intricate interplay between PD and sleep apnoea 
disorders that might exhibit cumulative effects, particu-
larly during later stages of the disease.

In terms of HRV, our findings indicated that patients 
with both early and late stages of PD exhibited signifi-
cantly reduced SDNN only during nighttime, suggest-
ing impaired autonomic function compared to healthy 
controls. However, no differences in HRV were observed 
during the day in this study. We speculate that increased 
vagus nerve excitability at night may contribute to the 
detectable differences in HRV at night among PD patients 
and healthy controls. A recent study also revealed sig-
nificant reductions in HRV indicators, including SDNN, 
low-frequency, and high-frequency, among tremor-dom-
inant PD patients in the early stage compared to healthy 
controls [30]. Tomomichi et al. found a close relationship 
between HRV and the degree of striatal dopamine con-
sumption in PD patients, indirectly indicating an asso-
ciation between HRV and disease progression in PD [31]. 
Overall, our findings revealed circadian rhythm distur-
bance characterized by sleep disorders, changes in blood 
pressure rhythm, and reduced HRV emerging in early-
stage PD patients, suggesting the potential involvement 
of circadian rhythm-related mechanisms in the early 
stage of PD.

AGTR1 belongs to the angiotensin group of G-protein-
coupled receptors and serves as a potent primary regu-
lator of vasopressor hormone and aldosterone secretion 
[32]. A previous study based on postmortem in vitro 
autoradiography on brains from late-stage PD patients 
revealed reduced angiotensin receptor content in the 
SNpc and striatum of PD patients [33]. Kamath et al. 
also identified that the SOC6_AGTR1 subgroup of neu-
rons exhibited the most significant loss in PD patients 
through the mononuclear RNA test area of human SNpc 
dopaminergic neurons, suggesting a potential association 

(See figure on previous page.)
Fig. 10  Verification of hub gene expression and associations with circadian rhythm function (sleep disorders). (A) Expression of mRNA was 
detected by RT‒qPCR. (B) Protein expression was detected by Western blotting. (C-F) Relative protein expression was calculated as the integrated den-
sity value relative to that of transferrin as a reference. (G-J) Pearson correlations between AGTR1, XPA, CALR, and RBM14 protein levels and PDSS scores. 
*p < 0.05, **p < 0.01, ***p < 0.001
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between AGTR1 expression and susceptibility to neuro-
degeneration [34]. Consistent with previous research, we 
also observed a significant downregulation of AGTR1 
expression in PD patients compared to healthy controls. 
Activation of AGTR1 by the brain renin–angiotensin 
system (RAS) is believed to promote oxidative stress and 
inflammatory responses, thereby accelerating the degen-
eration of dopaminergic neurons [35–37]. Angiotensin 
was also found to enhance the toxic effect of 6-OHDA 
in rat models treated with 6-OHDA-induced PD [38]. 
The AGTR1 antagonist ZD 7155 effectively attenuated 
6-OHDA-induced lipid peroxidation and protein oxida-
tion while concurrently mitigating the degeneration of 
dopaminergic neurons [39]. Moreover, AGTR1 activation 
was found to be closely associated with the upregulation 
of NLRP3, pro-IL-18, and other components implicated 
in inflammasome activation [40]. Recent clinical stud-
ies have focused on investigating the potential thera-
peutic and protective effects of angiotensin antagonists 
in patients with PD [41–43]. It has been observed that 
treatment with AGTR1 antagonists significantly reduces 
the total UPDRS score after one year in PD patients 
with hypertension, whereas this effect is not observed 
in patients receiving angiotensin-converting enzyme 
(ACE) inhibitor treatment [41]. These findings suggest a 
potential neuroprotective role of AGTR1 antagonists in 
PD. Simultaneously, renin angiotensin receptors exhibit 
a close association with circadian rhythm function, par-
ticularly in relation to blood pressure rhythm [44]. There-
fore, conducting further investigations into the intricate 
mechanism linking renin angiotensin and the circadian 
rhythm of blood pressure during the early stage of PD 
holds immense significance in unravelling the underlying 
mechanisms behind its initial pathogenesis.

In addition, we observed a significant downregulation 
of XPA in PD patients compared to healthy controls. 
XPA is a gene that encodes a zinc finger protein and plays 
a crucial role in nucleotide excision repair, which ensures 
genomic stability for healthy ageing and cognitive main-
tenance [45]. Mutations in genes encoding crucial DNA 
repair proteins can lead to diseases characterized by 
accelerated ageing phenotypes [46]. XPA-deficient cells 
exhibit deficiencies in mitochondrial autophagy, exces-
sive division of PTEN-induced putative kinase 1 (PINK1), 
increased mitochondrial membrane potential, and 
depletion of cellular nicotinamide adenine dinucleotide 
(NAD+), resulting in impaired mitochondrial autophagy, 
disturbances in energy supply, and ultimately neuronal 
degeneration [46, 47]. Low expression of XPA may con-
tribute to defects in DNA repair mechanisms, leading to 
mitochondrial dysfunction and subsequent degeneration 
within dopaminergic neurons. Consistent with previ-
ous findings, our study also revealed decreased expres-
sion levels of XPA in PD patients. Moreover, it has been 

discovered that the circadian oscillation characteristics 
exhibited by the XPA protein are vital for repairing cispl-
atin-induced damage through nucleotide excision repair 
pathways [48]. Therefore, investigating whether these 
circadian oscillation features are associated with clinical 
symptoms related to circadian disturbance observed in 
PD warrants further exploration.

In PD patients, we also identified two upregulated pro-
teins, CALR and RBM14, which are associated with cir-
cadian rhythm regulation. CALR is a highly conserved 
chaperone protein predominantly localized in the endo-
plasmic reticulum (ER) and is involved in various cel-
lular processes, including protein folding and calcium 
homeostasis [49]. The ER stress response often serves as 
a defence mechanism against the accumulation of mis-
folded proteins in the ER and is closely associated with 
neurodegenerative disorders such as PD [50, 51]. Dukes 
et al., through dopamine-induced ER stress response, 
revealed that activation of chaperones in the ER, includ-
ing CALR, may accelerate PD progression via allosteric 
protein response [52]. Lee et al. treated mouse dopami-
nergic neurons with 6-hydroxydopamine hydrobromide 
(6-OHDA) and observed a time-dependent increase in 
CALR expression, suggesting its association with cell 
stress tolerance and cell death signalling in PD [53]. 
A study revealed an increased number of cholinergic 
interneurons expressing CALR in the striatum of cyno-
molgus monkey models of PD, implying that secondary 
changes induced by PD pathology might influence altera-
tions in CALR expression [54]. In addition, it has been 
discovered that melatonin, a key regulator of circadian 
rhythm function, could exert its influence by interact-
ing with membrane melatonin 1 and melatonin 2 recep-
tors and modulating intracellular proteins such as CALR 
[55]. Therefore, considering the potential involvement of 
CALR in circadian rhythm regulation and the pathogen-
esis of PD, investigating CALR-related mechanisms may 
contribute to a deeper understanding of the underlying 
mechanisms behind circadian rhythm disruption in PD.

RBM14, which encodes a ribonucleoprotein that 
serves as a general nuclear coactivator and regulator of 
RNA splicing, is recruited to DNA double-strand breaks 
in a poly(ADP-ribose)-dependent manner [56]. DNA-
dependent poly(ADP-ribose) polymerase 1 (PARP1), 
which plays a pivotal role in the DNA damage response 
network, is closely associated with the progression of 
neurological diseases, particularly neurodegenerative 
disorders such as amyotrophic lateral sclerosis and fron-
totemporal lobe degeneration. In PD, alongside mito-
chondrial dysfunction, oxidative stress levels increase, 
and DNA damage worsens [57]. Therefore, the activation 
of RBM14 may occur in response to the corresponding 
DNA repair process to maintain homeostasis. We also 
observed the upregulation of RBM14 expression in PD 
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patients. However, limited research has been conducted 
on RBM14 within the field of PD; thus, further investiga-
tions are warranted to elucidate its potential function in 
PD.

We developed a diagnostic model based on DE-
CRRGs and constructed a nomogram. Nomograms have 
gained significant popularity in the medical field due 
to their exceptional predictive value, serving as simple 
and convenient tools for prognosis assessments [58]. A 
nomogram represents a logistic regression model that 
calculates the probability of clinical events by assign-
ing scores to known variables. Our constructed model 
exhibited robust diagnostic efficacy in both the training 
and external validation datasets, thereby offering valuable 
insights into early clinical PD diagnosis and a compre-
hensive understanding of CR-related mechanisms.

There are some limitations in our study. First, the sam-
ple size is relatively small, which may have impacted the 
extrapolation and reliability of this diagnostic model. 
Second, we focused solely on exploring DE-CRRGs with-
out considering other PD biomarkers, potentially affect-
ing the accuracy of our model to some extent. In future 
studies, it will be necessary to validate our model using 
larger datasets. Additionally, further fundamental inves-
tigations are imperative to elucidate the potential mech-
anisms underlying the involvement of these genes in 
circadian rhythm disturbance associated with PD.

Conclusion
We observed circadian rhythm disturbance in early-stage 
PD patients. Four CR-related hub genes were identi-
fied by bioinformatic methods integrated with machine 
learning techniques. Based on these 4 hub genes, we 
developed a nomogram for diagnosing PD, which was 
preliminarily validated in training and validation sets. 
These findings provide novel insights into the clinical 
diagnosis of PD and shed light on potential CR-related 
mechanisms in PD.
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