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Abstract 

Background Fundamentally defined by an imbalance in energy consumption and energy expenditure, obesity 
is a significant risk factor of several musculoskeletal conditions including osteoarthritis (OA). High-fat diets and sed-
entary lifestyle leads to increased adiposity resulting in systemic inflammation due to the endocrine properties 
of adipose tissue producing inflammatory cytokines and adipokines. We previously showed serum levels of specific 
adipokines are associated with biomarkers of bone remodelling and cartilage volume loss in knee OA patients. Whilst 
more recently we find the metabolic consequence of obesity drives the enrichment of pro-inflammatory fibro-
blast subsets within joint synovial tissues in obese individuals compared to those of BMI defined ‘health weight’. As 
such this present study identifies obesity-associated genes in OA joint tissues which are conserved across species 
and conditions.

Methods The study utilised 6 publicly available bulk and single-cell transcriptomic datasets from human and mice 
studies downloaded from Gene Expression Omnibus (GEO). Machine learning models were employed to model 
and statistically test datasets for conserved gene expression profiles. Identified genes were validated in OA tissues 
from obese and healthy weight individuals using quantitative PCR method (N = 38). Obese and healthy-weight 
patients were categorised by BMI > 30 and BMI between 18 and 24.9 respectively. Informed consent was obtained 
from all study participants who were scheduled to undergo elective arthroplasty.

Results Principal component analysis (PCA) was used to investigate the variations between classes of mouse 
and human data which confirmed variation between obese and healthy populations. Differential gene expression 
analysis filtered on adjusted p-values of p < 0.05, identified differentially expressed genes (DEGs) in mouse and human 
datasets. DEGs were analysed further using area under curve (AUC) which identified 12 genes. Pathway enrichment 
analysis suggests these genes were involved in the biosynthesis and elongation of fatty acids and the transport, 
oxidation, and catabolic processing of lipids. qPCR validation found the majority of genes showed a tendency to be 
upregulated in joint tissues from obese participants. Three validated genes, IGFBP2 (p = 0.0363), DOK6 (0.0451) 
and CASP1 (0.0412) were found to be significantly different in obese joint tissues compared to lean-weight joint 
tissues.

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

†Animesh Acharjee and Susanne N. Wijesinghe Shared first author.

*Correspondence:
Animesh Acharjee
a.acharjee@bham.ac.uk
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2735-7010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-05414-1&domain=pdf


Page 2 of 12Acharjee et al. Journal of Translational Medicine          (2024) 22:592 

Introduction
The World Health Organisation (WHO) reports a sig-
nificant increase in global obesity rates, with prevalence 
having nearly quadrupled since 1975, and projected to 
further increase in the foreseeable future such that by 
2030, around 50% of adults in the United States will be 
afflicted with obesity, and 25% with severe obesity [1, 2]. 
The highest prevalence of obesity is reported in North 
America, Europe, and the Middle East, whereas East Asia 
demonstrates comparatively lower rates. The exponential 
rise in incidence of obesity over the past few decades has 
led WHO to officially acknowledge it as a global epidemic 
since 1997 [3]. Obesity is defined as a condition marked 
by an imbalance in the equilibrium between the amount 
of energy consumed and the amount of energy expended 
[4–6]. The escalation in the prevalence of obesity can be 
ascribed to a confluence of factors, namely heightened 
caloric consumption, and diminished levels of physical 
activity. High-fat diets [7–10] encourage the development 
of hypertension and glucose intolerance, as well as raised 
body adiposity and leptin levels. The resulting accumu-
lation of saturated or long-chain fatty acids can lead to 
increased build-up of body fat through resynthesis of 
new triglycerides and ectopic deposition in other tissues 
which in turn increases the production of inflammatory 
cytokines and adipokines [11–13]. Indeed, the secretion 
of hormones, cytokines, and growth factors by adipose 
tissue is integral to the regulation of energy balance, and 
impacts on distal tissues such as skeletal muscle, articular 
joint tissues, heart and the liver. Consequently, obesity is 
closely linked to the development of several serious ail-
ments, including type 2 diabetes, cardiovascular disease, 
cancer, inflammatory joint disorders, and liver disease.

Multiple studies have investigated the effect of sev-
eral factors which influence obesity, including diet [7], 
inflammation [8, 9], microbiome [10, 11] and lifestyle 
[12]. These have utilised mouse models (including trans-
genics) and human tissues to understand the pathobiol-
ogy and pathophysiology related to obesity. To this end, 
transcriptomic approaches such as bulk and single-cell 
RNA-sequencing (RNA-seq) [14] are proving to be highly 
valuable techniques for investigating gene expression pat-
terns across diverse species, tissues, and cell populations, 

yielding important insights into the genetic implications 
of the progression of obesity with the potential to iden-
tify novel druggable targets for combating obesity and 
obesity-associated co-morbidities. Wijesinghe et al. [15], 
investigated the effects of obesity in OA disease patho-
genesis utilising multi-omic approaches to phenotype 
synovial joint tissue in patients afflicted with OA, in 
joints which were either weight-bearing (e.g. hips, knees) 
or non-weight bearing (e.g. hand joints). This study 
determined that OA synovial fibroblasts can be charac-
terised by distinct molecular endotypes affected by obe-
sity, joint stress, and anatomical site, and are differentially 
distributed between OA patients who are either obese or 
of lean weight [15].

In another study, Rey et  al. [16], profiled obesity-
associated non-coding RNAs (lncRNAs) in subcutane-
ous adipose tissue by bulk RNA-seq analysis. The study 
identified a total of 171 differentially expressed genes, 
including 11 ncRNAs which pathway enrichment anal-
ysis correlated to underlying biological mechanisms 
involved in adipocyte differentiation, insulin response, 
immune cell activation and fatty acid metabolism. Corno 
et  al. [17], investigated the effects of body mass index 
(BMI) and polyunsaturated fatty acids on tumorigen-
esis by transcriptomic profiling of human visceral adi-
pocytes taken from patients with obesity and colorectal 
cancer. Gene ontology and pathway enrichment analysis 
identified DEGs involved in fibrosis, inflammation and 
metabolism of pyruvate, glucose and lipids. Nasias et al. 
[18] conducted a comprehensive analysis of gene expres-
sion changes in white adipose tissue during diet induced 
MetS in mice [18]. The results indicated a wide range 
of differentially expressed genes, highlighted key path-
ways related to metabolism and immunity, and pointed 
towards the involvement of cytokines in the development 
of MetS. [18]. Another RNA-seq mouse experiment per-
formed by Cao et al. 2018 found differential gene expres-
sion in brown adipose tissue of lean and obese mice after 
four weeks of high-fat diet, suggesting its potential role in 
obesity, insulin resistance, and inflammation [19].

This present study employed a number of public gene 
expression datasets from human and mice pertaining 
to obesity in an effort to ascertain genes that have the 

Conclusions The present study has employed machine learning models across several published obesity datasets 
to identify obesity-associated genes which are validated in joint tissues from OA. These results suggest obesity-asso-
ciated genes are conserved across conditions and may be fundamental in accelerating disease in obese individuals. 
Whilst further validations and additional conditions remain to be tested in this model, identifying obesity-associated 
genes in this way may serve as a global aid for patient stratification giving rise to the potential of targeted therapeutic 
interventions in such patient subpopulations.
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patient stratification and therapeutic potential. In addi-
tion to this, we have identified common obesity-asso-
ciated genes across species and tissue types, which are 
likely central mediators in obesity related diseases, and 
validated those genes by quantitative PCR method in 
human synovial joint tissues.

Methods
Study recruitment
UK National Research Ethics Committee (NRES 16/
SS/0172) granted ethical approval for post-operative col-
lection of joint tissue from consenting patients with OA. 
Study recruitment was coordinated by research nurses 
at the Royal Orthopaedic Hospital, Birmingham (United 
Kingdom) and Russell’s Hall Hospital, Dudley (United 
Kingdom).

Differential gene expression analysis
Genes are commonly assessed according to their fold 
change, which represents the extent of expression vari-
ations, and by their respective p-values, which meas-
ure the statistical significance of such variations. Genes 
with significant fold changes (fold changes ± 1.5) and low 
p-values (p < 0.05) are considered statistically significant 
differentially expressed. Multiple testing correction was 
performed to control for false positives that may arise 
due to testing multiple genes simultaneously, and multi-
ple testing correction methods (BH false discovery rate 
correction) were applied to adjust p-values (adj p < 0.05).

Datasets
All the datasets were obtained from Gene Expression 
Omnibus (GEO) on 29th October 2022. Those data sets 
are from both human and mouse samples. A detailed 
summary of each dataset can be found in Table 1.

Patients and tissue samples
Obese and lean-weight patients, categorised by BMI > 30 
and BMI between 18 and 24.9 respectively, were recruited 
for the study. These patients were scheduled to undergo 

elective arthroplasty for OA and synovium was collected 
from hip or knee joints (N = 38). Ethics approval was pro-
vided by the UK National Research Ethics Committee 
(approval no. 14/ES/1044), and informed consent was 
obtained from all patients. The characteristics of study 
participants are summarised in Table 2.

Quantitative real‑time PCR validations of identified genes
Total RNA was isolated from synovium using TRIzol 
(Life Technologies). Primers for individual transcripts 
of interest (see Supplementary Table 1) were either pre-
designed TaqMan™ Gene Expression Assay (FAM) from 
Life Technologies Ltd or designed using NCBI’s Primer-
BLAST tool and Easy Oligos were ordered from Merck 
Life Science UK Ltd. PCR was performed from total 
RNA in a one-step reaction using either iTaq Universal 
One-Step or iTaq™ Universal SYBR® Green One-Step Kit 
from BioRad. Relative expression was determined using 
the ΔΔCt method, followed by normalization of values to 
those of 18S and GAPDH.

Statistical and machine learning methods
Multiple statistical and machine learning models were 
used to identify genes differentiating between obesity and 
lean samples (DEG summary in Supplementary Table 1). 
Unsupervised Principal Component Analysis (PCA), a 

Table 1 List of the public data sets, organism and tissue sources used in this study

GEO data Organism Type of dataset Number of participants Tissue source

Lean Obese Total

GSE24883 Human Array 32 32 64 Subcutaneous and visceral adipose tissue

GSE59034 Human Array 16 16 32 Subcutaneous and visceral adipose tissue

GSE49195 Mouse Array 6 6 12 Lean and obese Liver

GSE39375 Mouse Array 5 5 10 Lean and obese Liver

GSE152815 Human Single Cell RNA sequencing 4 4 8 Hand, hip, knee, and foot Joints

GSE219027 Human Bulk RNA sequencing 24 24 48 Hand, hip, knee, and foot Joints

Table 2 Summary of participant characteristics. Data displayed 
as mean ± standard deviation

N Number of participants

Lean
N = 16

Obese
N = 22

P‑value

Age in years 69.1 ± 2.6 66.7 ± 1.8 0.4382

Gender (Number 
of female participats, 
(%))

12 (75%) 12 (55%) 0.2071

Hip: Knee Ratio (Num-
ber of hip joints, (%))

12 (75%) 12 (55%) 0.0717

BMI 22.8 ± 0.4 35.9 ± 1.3  < 0.0001

Waist: Hip Ratio 0.8 ± 0.02 0.9 ± 0.01 0.0007
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dimensionality reduction technique, was used in machine 
learning and data analysis. PCA seeks to preserve the 
underlying structure and relationships in the data while 
reducing its dimensionality, making it easier to visualize 
and analyse. Logistic regression was used to evaluate how 
well different classes could be distinguished. To estimate 
sample size, an inhouse developed tool known as Tools 
was used [20]. qPCR data was plotted using GraphPad 
PRISM with unpaired student’s t-test.

Pathway enrichment analysis
Pathway enrichment analysis was performed using 
the Enrichr tool to determine functional mechanisms 
informed by differentially expressed genes derived from 
the datasets analysed. This approach identifies biologi-
cal pathways that show enrichment in a gene list beyond 
what would be expected by random chance. We have 
used ShinyGO [21] and Enrichr [22] for this analysis. The 
analysis workflow is illustrated in Fig. 1. 

Results
Mouse data analysis
Two mouse datasets were used GSE39375 and 
GSE49195 to identify differentially expressed influ-
enced by obesity (summarized in Table  1). PCA was 
used to investigate the variations across two classes 
of mice which showed clear variation and separation 
between lean and obese mice in datasets GSE39375 
and GSE49195, respectively (Fig. 2A and C). In dataset 
GSE39375, using an adjusted p value threshold of 0.2, 
twelve differentially expressed genes were identified 
where five genes were significantly upregulated, and 
seven genes were significantly downregulated in obese 
mice liver tissues compared to lean mice liver tissues 
(N = 6, 3 replicates per group) (Fig. 2B). Similar, differ-
ential gene expression analysis of GSE49195 identified 
13,581 significantly differentially expressed genes (p 
adjusted, p < 0.05) of which 5,996 genes were downreg-
ulated and 7,585 were upregulated (Fig. 2D).

Fig. 1 Overview of the gene target identification workflow using public and internal RNA sequencing data
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Human data analysis
Three human datasets, namely GSE24883, GSE59034 
and GSE219027 were analysed to identify potential tar-
gets which differentiate obese and lean populations. PCA 
analysis shows the variations across the dataset from 
GSE24883 and identified 24 genes of which two genes 
were downregulated and 22 genes were upregulated in 
obese subcutaneous and visceral adipose tissues com-
pared to lean tissues (Fig.  3A and B). In a similar data-
set, GSE59034, PCA analysis confirmed data separation 
although arguably considerably less than other datasets. 
In total, 7,127 differential expressed genes were identi-
fied, of which 3540 genes were upregulated and 3,587 
genes were downregulated in obese subcutaneous and 
visceral adipose tissues compared to lean tissues (Fig. 3C 
and D).

The in-house dataset previously published by Wijesin-
ghe et al. [15], GSE219027, PCA analysis showed a clear 
separation between obese and lean groups (Fig.  4A), 
Here, a total of 416 differentially expressed genes were 
identified, of which, 185 were upregulated and 231 were 
down regulated in obese synovial joint tissues compared 

to synovial joint tissues from lean populations (Fig. 4B). 
Differentially expressed genes were then used to identify 
a subset of key genes associated with obesity. Using itera-
tive t-test, area under curve (AUC) values were estimated 
on selected genes with p < 0.01. This resulted in a final 12 
genes used for logistic regression analysis yielding AUC 
of 0.98. This analysis was repeated in the other human 
datasets, GSE59034 and GSE24883 which resulted in 
AUC of 0.96 and 0.54, respectively. Similarly for mouse 
datasets, GSE39375 and GSE49195, AUC estimates were 
0.63 and 0.81, respectively (Supplementary Fig. 1).

Single cell RNA‑sequencing vs. bulk RNA‑sequence data
In the previously published study by Wijesinghe et  al. 
[15] scRNA-seq of synovial joint fibroblasts from OA 
patients with either lean or obese BMI identified 8 syno-
vial fibroblast clusters (GSE152815). Comprised of novel 
gene signatures, these 8 populations were identified to be 
differentially distributed where individuals with an obese 
BMI presented with molecular signatures reminiscent 
of pro-inflammatory fibroblasts known to drive disease 
pathogenesis. Gene lists and full data analysis pipelines 

Fig. 2 Differential gene expression analysis of mouse datasets GSE39375 and GSE49195. A PCA of GSE39375 data used to visualised lean vs. 
obese samples from mice. B Volcano plots used to visualise up and down regulated genes across lean and obese samples for GSE39375 dataset. 
C PCA of GSE49195 data used to visualise the lean vs. obese samples from mice. D Volcano plots used to visualise up and down regulated genes 
across lean and obese samples for GSE49195 dataset
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are reported in the original publication which includes 
gene lists. Here we utilised the published single-cell fibro-
blast gene signatures and compared these against those 

genes identified in synovial tissues of obese populations 
by bulk RNA-seq analysis described above (GSE219027). 
This analysis identified the most frequently overlapping 

Fig. 3 Differential gene expression analysis of public human datasets GSE24883 and GSE59034. A PCA for the GSE24883 used to visualise lean vs. 
obese patient adipose tissue samples B Volcano plots used to visualise up and down regulated genes across lean and obese samples for GSE24883 
dataset. C PCA for the GSE59034 used to visualise the lean vs. obese samples D Volcano plots used to visualise up and down regulated genes 
across lean and obese samples for GSE59034 dataset

Fig. 4 Differential gene expression analysis of internal human data set GSE219027. A PCA score plot showing the differences between obese 
and lean patient joint tissue samples. Red and green ellipse indicates confidence interval of the patient cohorts B Volcano plots used to visualise 
up and down regulated genes across lean and obese patient joint tissue samples



Page 7 of 12Acharjee et al. Journal of Translational Medicine          (2024) 22:592  

genes between scRNA-seq clusters and bulk RNA-seq 
datasets were PTN, UBE2S, NMB, PALM, SLC7A8, 
BTG2, MET, PAMR1, PTGS2, FABP3, PPIB and CDKN3 
(Supplementary Fig. 2).

Biological significance of the identified genes
The significant differentially expressed genes from mouse 
datasets, GSE49195 and GSE39375, were used to perform 
a pathway-based enrichment analysis which identified 
several metabolism-related pathways, including fatty acid 
elongation, biosynthesis of unsaturated fatty acid, AMPK 
signalling pathways (p < 0.05). Similarly, a pathway-based 
enrichment analysis using the significant differentially 
expressed genes from human datasets, GSE24883 and 
GSE59034, identified pathways such as lipid transport, 
lipid oxidation, lipid localization, long chain fatty acid 
transport, and lipid catabolic process (p < 0.05) (Supple-
mentary Fig. 3).

Design and power study of the identified genes
For each dataset, we selected relevant genes based on dif-
ferential expression and biological significance. We have 
estimated the number of the genes required for future 
study and validation using PowerTools. Here, genes with 
similar expression were combined using Pearson based 
correlation and hence effect size was estimated (Fig. 5).

qPCR validation
From the genes identified from both the PowerTools 
analysis and overlap analysis, 20 genes in total were 

selected for validation using qPCR. Here, three of the 
identified genes (CASP1, IGFBP2 and DOK6) were sta-
tistically significantly upregulated (p < 0.05) in obese 
synovial tissues, compared to tissues from lean patients 
(Fig. 6A, B, C). Other genes showed a tendency towards 
upregulation in the obese samples where overall, four 
genes (SLC7A8, CDKN3, FABP3, PPIB) were downregu-
lated in the obese samples and the remaining 16 genes 
were upregulated, compared to lean samples (Fig. 6D and 
Supplementary Fig. 4).

Discussion
Obesity is highly heterogeneous and variable across spe-
cies and tissue types influenced by a variety of factors 
including gender, race, ethnicity, age of onset, and genet-
ics. As the prevalence of obesity rapidly increases there 
is a pressing need to identified obesity-associated targets 
which may have central roles in mediating obesity related 
diseases. In this study, human and mouse datasets were 
employed in a comprehensive transcriptomics endeavour 
to identify obesity-associated transcriptional signatures 
which were subsequently validated experimentally.

Our bioinformatics findings identified several obe-
sity-associated genes across tissues, species, and patient 
cohorts. Throughout there are differences between the 
overall number of DEGs identified across mouse and 
human data as well as within species. This may be due to 
experimental design of the independent datasets includ-
ing sample collection, handing and experimental pro-
cedure. There were also particular discrepancies in the 

Fig. 5 The two groups of correlated features identified by the power function are represented by the group member with the largest observed 
effect size. The effect size of each assessed variable is shown along the y-axis and a series of sample sizes along the x-axis. Power values determined 
for each effect/sample size combination using a simulated dataset with the same correlation structure as input data and displayed using variably 
sized/coloured rhombi



Page 8 of 12Acharjee et al. Journal of Translational Medicine          (2024) 22:592 

number of samples used across studies, which no doubt 
contributed to variation. Additionally, these results may 
be impacted by different tissues used in each study, which 
have different functional relevance related to obesity ver-
sus disease. This likely holds true for LCP1 and VNN1m 
which were identified in published human datasets as 
downregulated in obese adipose tissues but upregulated 

in obese OA tissues. Investigating the AUC values in 
these datasets revealed that the model performance is 
low which is expected based on the analysis.

In mice datasets, we identified CD36, an obesity 
influenced gene that codes for a receptor of fatty acids 
[23], which was also detected in human datasets and 
in tissue validation although not significant. Another 

Fig. 6 Validation of identified genes of interest in human tissue. Up and down regulated genes from computational analysis were validated 
using qPCR experiment A CASP1 B IGFBP2 C DOK6 are plotted, where each dot represents an individual patient, error bars represent standard 
error of the mean and p-value was calculated using unpaired student’s t-test. D Heatmap summarising average expression of the selected genes 
across lean (NW) and obese (OB) human synovial tissue samples. Red indicated high expression values and blue indicated lower expression. 
Individual plots can be found in Supplementary Fig. 3
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obesity-associated gene upregulated in mice data was 
IGFBP2, which was also confirmed in published human 
datasets. This was further validated by qPCR validation 
where we report for the first time that IGFBP2 is signifi-
cantly upregulated in obese synovial tissues from OA 
patients. Interestingly, IGFBP2 is highly abundant in both 
OA and RA synovial fluid [24, 25]. IGFBPs are specifi-
cally elevated in sites of degenerated cartilage where they 
modulate the activity and bioavailability of IGF which 
is important for anabolic regulation in chondrocytes 
[26]. Our results here suggest that in obese individuals, 
IGFBP2 is produced at higher levels in synovium tissue, 
where it is known to maintain joint synovial fluid, and as 
such may facilitate cartilage anabolism in the damaged 
joint. Interestingly, IGFBP2-overexpressing transgenic 
mice are protected from both high-fat diet induced obe-
sity and age-induced insulin resistance with improved 
glucose tolerance [27]. Further to this, elevated IGFBP2 
in patients following bariatric procedures is associated 
with insulin sensitisation and in a rodent model IGFBP2 
deficiency impairs the loss in adiposity and insulin sensi-
tivity usually induced by such surgery [28]. This is likely 
due to IGFBP2 being under the regulation of leptin, a 
hormone linked to appetite suppression and maintenance 
of healthy body weight [29]. However, IGFBP2 is also a 
ligand for several targets capable of regulating inflam-
mation associated signalling pathways in OA including 
PI3K/Akt/ MAPK/ PKC pathways [30, 31] whilst low 
IGFBP2 serum levels are associated with risk of meta-
bolic syndromes [28] and implicated in glucose and lipid 
metabolism [31]. Additionally, studies report IGFBP2, 
through the STAT3 pathway, induces lung fibrosis and 
inflammation in rats with severe pneumonia [32]. In 
keeping with this, we have previously reported OA syno-
vial fibroblasts from obese patients are highly inflamma-
tory, proliferative, and metabolically dysregulated [33]. 
Coupled with our findings here, IGFBP2 upregulation in 
obese synovial tissue may explain the pro-inflammatory 
metabolic dysfunction in obese synovial fibroblasts which 
accelerates joint damage in obese patients [33], Whilst 
elevated IGFBP2 may be beneficial in certain models, it’s 
increase in the synovial micro-environment potentially 
drives disease pathogenesis. Further investigation will 
be necessary to determine the role of IGFBP2 in disease 
pathogenesis within joint synovium and its potential to 
resolve metabolic inflammation.

Several genes identified in our internal bulk and sin-
gle RNA-seq data was also detected in the published 
human datasets analysed including CASP1, DOK6, PTN, 
SLC7A8, BTG2, PTGS2, CDKN3, FABP3 and PPIB. 
Whilst experimental validation in tissues showed a simi-
lar trend of gene expression as observed in published 
datasets, CASP1 and DOK6 were the only genes found 

to be significantly upregulated in the synovial joint tis-
sues of obese individuals which we report here for the 
first time. CASP1 encodes the evolutionary conserved 
inflammatory mediator Caspase-1. Through the assem-
bly of the inflammasome complex [34], caspase-1 acti-
vates pro-inflammatory cytokines IL1β and IL18 which 
are known to induce joint damage in OA through induc-
tion of inflammatory signalling pathways NF-κB and p38 
MAPK kinase [35–38]. Additionally, pyroptosis, a cas-
pase-1-dependent programmed cell death, is thought to 
be triggered by OA-related risk factors such as obesity-
associated cholesterol thus promoting joint degradation 
which is likely accelerated in individuals with obesity. 
Pyroptotic synovial macrophages and synovial fibro-
blasts also contribute to synovitis and fibrosis, which 
further drive OA disease progression [36]. Interestingly, 
Caspase-1 is linked to adipocyte function and metabolic 
regulation including lipid metabolism and glucose home-
ostasis [38]. Inflammation-associated lipid metabolism is 
associated with metabolic disorders suggesting an asso-
ciation between Caspase-1 regulated lipid metabolism 
and obesity-associated inflammation [38, 39]. Indeed, 
caspase-1 deficient mice are protected from high-fat diet 
induced accumulation of circulating triglycerides, hepatic 
steatosis and inflammation [40, 41]. However, caspase-1 
deficient mice have increased susceptibility to high-fat-
diet-induced adiposity, with increased subcutaneous and 
total body adipose tissue volumes, promoting inflamma-
tory macrophage infiltration in adipose tissues which in 
turn accelerates obesity-associated inflammation [42].

DOK6 is a novel marker reported here for the first 
time in OA synovium tissue which is elevated in joints 
of patients who are obese. Mouse studies have largely 
found DOK6 to be expressed within the central nervous 
system and involved in neurite outgrowth through posi-
tive regulation of the MAPK pathway [44, 45]. In humans 
DOK6 is reportedly expressed in immune cells, particu-
larly induced in activated CD8 + T-cells, which are also in 
OA synovial tissues [46, 47]. Whilst little is known about 
the functional relevance of DOK6 in obesity, other mem-
bers of the DOK family are cited as susceptibility genes 
for obesity and diabetes in North Indian population [48] 
and have been linked to adipocyte hypertrophy in high-
fat diet fed mice [49] [50], which may be of relevance 
in OA where pain severity increases with obesity [51]. 
Indeed DOK6, will be an interesting marker to follow up 
in future OA studies with relevance of obesity-associated 
joint damage and inflammation. Of the genes identified 
in our internal bulk and single RNA-seq data only PTN, 
SLC7A8 and CDKN3 were also identified in mice data-
sets to be similarly expressed. PTN is a cytokine which 
when knocked out in high-fat diet fed mice, protects 
against insulin resistance, obesity and neuroinflammation 
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[52]. Similarly, deletion of SLC7A8 in mice offers sig-
nificant protection against diet-induced obesity and 
enhances glucose metabolism. The deficiency in SLC7A8 
mitigates the enlargement of adipocytes in both white 
and brown adipose tissues and decreases lipid build-up 
in various organs [53]. CDKN3 gene expression has been 
found to be increased in obese individuals, which may 
be linked to modifications in cellular functions related to 
metabolism and adipogenesis. Genetic variations within 
CDKN3 have been identified as potential elements that 
can impact on the risk of developing obesity. Other genes 
such as BTG2, involved in suppressing the JAK2–Stat3 
signalling pathway [54], PTGS2, expressed within adi-
pose tissue [55], and FABP3 involved in the metabolism 
of fatty gene [56] are also candidate targets for follow up 
studies, with reported functions involved in lipid metab-
olism, persistent inflammation and irregular fat storage, 
respectively. These findings highlight the importance of 
understanding the role of these genes in the development 
of obesity and their potential impact on metabolism and 
adipogenesis.

The observations presented in this study should be con-
sidered in view of experimental limitations. First, greater 
sample numbers would have improved the statistical 
power of the study and reduced the risk to accumulate 
false positives. However, it is important to note that this 
is a caveat for many human tissue studies, particularly 
those where surgery is required for tissue collection. Sec-
ond, the fold change cut off used in the differential gene 
expression analysis is based on previous studies. Further, 
it’s important to note that genes that share expression 
patterns might not always perform comparable tasks in 
the pathways. And finally, post-transcriptional and other 
levels of control may not coordinate transcription pat-
terns for genes with comparable functions. Nevertheless, 
the validated genes reveal significant potential for further 
targeted experiments and follow up clinical studies.

To conclude, the present study has identified obesity-
associated genes, which we have validated and reported 
in obese arthritic joint tissues for the first time. Our 
findings suggest obesity-associated genes are conserved 
across conditions and may therefore be fundamental in 
accelerating disease in obese individuals. In particular, 
genes such as IGFBP2 and CASP1, with functions related 
to obesity and metabolism, may explain some of our pre-
vious findings of metabolically dysregulated fibroblasts in 
OA synovial tissue from obese patients [33]. Whilst fur-
ther validations and additional conditions remain to be 
tested in this model, identifying obesity-associated genes 
using the approach we outline here may serve not only 
as a global aid for patient stratification but also give rise 
to the potential of targeted therapeutic interventions in 
specific patient subpopulations.
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