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Abstract
Background  Over the last two decades, tumor-derived RNA expression signatures have been developed for 
the two most commonly diagnosed tumors worldwide, namely prostate and breast tumors, in order to improve 
both outcome prediction and treatment decision-making. In this context, molecular signatures gained by main 
components of the tumor microenvironment, such as cancer-associated fibroblasts (CAFs), have been explored as 
prognostic and therapeutic tools. Nevertheless, a deeper understanding of the significance of CAFs-related gene 
signatures in breast and prostate cancers still remains to be disclosed.

Methods  RNA sequencing technology (RNA-seq) was employed to profile and compare the transcriptome of CAFs 
isolated from patients affected by breast and prostate tumors. The differentially expressed genes (DEGs) characterizing 
breast and prostate CAFs were intersected with data from public datasets derived from bulk RNA-seq profiles of breast 
and prostate tumor patients. Pathway enrichment analyses allowed us to appreciate the biological significance of 
the DEGs. K-means clustering was applied to construct CAFs-related gene signatures specific for breast and prostate 
cancer and to stratify independent cohorts of patients into high and low gene expression clusters. Kaplan-Meier 
survival curves and log-rank tests were employed to predict differences in the outcome parameters of the clusters 
of patients. Decision-tree analysis was used to validate the clustering results and boosting calculations were then 
employed to improve the results obtained by the decision-tree algorithm.

Results  Data obtained in breast CAFs allowed us to assess a signature that includes 8 genes (ITGA11, THBS1, 
FN1, EMP1, ITGA2, FYN, SPP1, and EMP2) belonging to pro-metastatic signaling routes, such as the focal adhesion 
pathway. Survival analyses indicated that the cluster of breast cancer patients showing a high expression of the 
aforementioned genes displays worse clinical outcomes. Next, we identified a prostate CAFs-related signature that 
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Introduction
Hormone-dependent cancers, including breast, endome-
trium, ovary, prostate, testis, thyroid, and osteosarcoma, 
share the hormone-driven stimulation of cell prolifera-
tion and subsequent somatic mutations as a main mech-
anism of carcinogenesis [1]. In particular, breast and 
prostate tumors rank as the most commonly diagnosed 
malignancies among women and men, respectively, 
worldwide [2]. Although improvements in understanding 
the molecular mechanisms implicated in the progression 
of breast and prostate cancers have contributed to their 
better management over the last decade, they remain 
the second leading cause of cancer death for females and 
males, respectively [2, 3].

Epidemiological and experimental data suggested a 
main role for estrogen and estrogen-like molecules in 
the pathogenesis of breast cancer [4]. The pivotal role 
of estrogen in the progression of this malignancy is 
underscored by data showing that approximately 70% 
of all breast tumors express the nuclear estrogen recep-
tor (ER), particularly the isoform α (ERα). By acting as a 
ligand-activated transcription factor, ERα mediates the 
proliferation and invasion of ER-expressing breast tumor 
cells [5, 6]. Moreover, it has been reported that estrogen 
may trigger stimulatory signals in breast cancer through 
membrane receptors unrelated to the nuclear ERs [7, 8]. 
The classification of breast tumors is based on the status 
of ER and further prognostic biomarkers, including pro-
gesterone receptor (PR), human epidermal growth fac-
tor receptor (HER2), and the proliferation marker Ki-67 
[9]. The aforementioned factors play a mandatory role 
in dictating precision treatment [10]. Regardless of the 
advancement in the development of diagnostic methods 
and innovative therapeutics that increased the survival 
rates of women diagnosed with breast cancer, the occur-
rence and mortality rates of breast cancer patients are 
significantly increasing worldwide [11].

Prostate cancer is a complex and heterogeneous dis-
ease. The risk increases with age and is strongly associ-
ated with a family history of any cancer as well as the 
accumulation of somatic mutations in prostate cells over 
a patient’s lifetime [12]. One of the most investigated and 

therapeutically targeted oncogenes in prostate cancer is 
the androgen receptor (AR), which is frequently amplified 
and/or mutated in metastatic diseases whereby mediates 
the androgen-dependent transcription of growth-related 
genes toward prostate tumorigenesis [13, 14]. In addition 
to AR, prostate cancer is classified based on the stage and 
the grade (Gleason score) that, along with histopatholog-
ical and molecular features and patient characteristics, 
drive the appropriate clinical management of prostate 
cancer [15, 16]. In particular, taking advantage of the 
screening of the prostate-specific antigen, most prostate 
tumors are diagnosed early and managed successfully. 
Nevertheless, approximately 15% of men with localized 
disease exhibit a high risk of developing fatal disease 
recurrence [17].

The tumor microenvironment (TME) has a cru-
cial role in the development and progression of solid 
tumors, including breast and prostate cancer [18–20]. 
Beyond the extracellular matrix (ECM) components, 
TME includes a variety of interlinked cells, such as mes-
enchymal cells, endothelial cells, pericytes, and immune 
cells [21, 22]. In particular, cancer-associated fibroblasts 
(CAFs), which are the most abundant cell types within 
the breast and prostate TME, are recognized as active 
promoters of the progression of both malignancies 
[23–25]. Specifically, CAFs can endorse tumor occur-
rence, growth, metabolic reprogramming, angiogenesis, 
invasion, and metastasis by releasing chemokines, cyto-
kines, growth factors, and matrix-degrading enzymes 
[26]. The dynamic and bidirectional interactions that 
occur between CAFs and cancer cells are also engaged 
in the suppression of immune cells and the develop-
ment of tumor resistance to chemotherapy, radiother-
apy, and targeted therapy [26, 27]. According to this 
evidence, high-throughput RNA-sequencing (RNA-seq) 
studies have described the prognostic significance of 
CAFs and their biomarkers in diverse tumors, includ-
ing breast and prostate cancer [28–31]. Nevertheless, 
the high heterogeneity of CAFs concerning their origin, 
expression of biomarkers, and functions [32], makes 
hard the comprehensive evaluation of the prognostic 
impact of CAFs.

includes 11 genes (IL13RA2, GDF7, IL33, CXCL1, TNFRSF19, CXCL6, LIFR, CXCL5, IL7, TSLP, and TNFSF15) associated with 
immune responses. A low expression of these genes was predictive of poor survival rates in prostate cancer patients. 
The results obtained were significantly validated through a two-step approach, based on unsupervised (clustering) 
and supervised (classification) learning techniques, showing a high prediction accuracy (≥ 90%) in independent RNA-
seq cohorts.

Conclusion  We identified a huge heterogeneity in the transcriptional profile of CAFs derived from breast and 
prostate tumors. Of note, the two novel CAFs-related gene signatures might be considered as reliable prognostic 
indicators and valuable biomarkers for a better management of breast and prostate cancer patients.

Keywords  Cancer-associated fibroblasts (CAFs), Gene signature, Breast cancer, Prostate cancer, K-means algorithm
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Here, we identified two CAFs-related gene signatures 
for breast and prostate cancer patients, respectively, 
by integrating RNA-seq data from both primary CAFs 
and cancer datasets. By providing valuable insights on 
the transcriptomic landscapes of breast and prostate 
CAFs and their associated prognostic values, our find-
ings might help to optimize risk stratification and pro-
vide new insights into individual treatments for these 
malignancies.

Methods
Cell cultures
Breast and prostate CAFs were isolated, cultured, and 
characterized as previously described [33], from 20 inva-
sive mammary ductal carcinomas and 20 prostate adeno-
carcinomas, respectively, and pooled for the subsequent 
studies. Briefly, specimens were cut into 1–2 mm diam-
eter pieces, placed in a solution containing 400 IU col-
lagenase, 100 IU hyaluronidase, 10% fetal bovine serum 
(FBS), antibiotics and antimycotics (Thermo Fisher Sci-
entific) and incubated overnight at 37  °C. After centrif-
ugation at 90 × g for 2 min, the supernatant containing 
fibroblasts was centrifuged at 485 × g for 8 min; the pel-
let obtained was suspended in DMEM/F-12 with phenol 
red (supplemented with 10% FBS and 100 µg/ml penicil-
lin/streptomycin). CAFs were then expanded into 10-cm 
Petri dishes and stored as cells passaged for three popu-
lation doublings within a total of 7 to 10 days after tis-
sue dissociation. We used CAFs passaged for up to 10 
population doublings for the experiments to minimize 
clonal selection and culture stress, which could occur 
during extended tissue culture. CAFs were maintained in 
DMEM/F-12 with phenol red (supplemented with 10% 
FBS and 100  µg/ml penicillin/streptomycin) and grown 
in a 37 °C incubator with 5% CO2.

Immunofluorescence studies
CAFs were characterized by immunofluorescence with 
human anti- fibroblast activation protein α (FAP) anti-
body (H-56), which was also used to assess fibroblast 
activation, and human anti-cytokeratin 14 (LL001) 
(Santa Cruz Biotechnology, DBA, Milan, Italy). Briefly, 
cells were grown on a cover slip, next were fixed in 4% 
paraformaldehyde in phosphate buffered saline (PBS), 
permeabilized with 0.2% Triton X-100, washed 3 times 
with PBS and incubated at 4  °C overnight with primary 
antibodies. After incubation, the slides were extensively 
washed with PBS, probed with Alexa Fluor 555 goat 
anti-rabbit IgG or Alexa Fluor 488 goat anti-mouse IgG 
(Thermo Fisher Scientific, 1:250) and 4′,6-diamidino-
2-phenylindole dihydrochloride (DAPI) (Merck Life Sci-
ence, 1:1000). Images were obtained using the Cytation 
3 Cell Imaging Multimode reader (BioTek, AHSI, Milan 
Italy).

RNA-seq pipeline
Total RNA was extracted using RNeasy mini kit accord-
ing to manufacturer’s instructions (Qiagen, Bioset s.r.l., 
Catanzaro, Italy). RNA integrity for library preparation 
was determined by analysis of extracted total RNA using 
a 2100 Bioanalyzer (Agilent Technologies) with RNA 
6000 NanoChip. RNA concentrations were measured 
using Qubit RNA Assay Kit. Libraries were prepared 
from total RNA according to manufacturer instructions 
with Illumina Stranded mRNA Prep kit. Libraries qual-
ity was evaluated by size analysis on 2100 Bioanlyzer 
(Chip DNA HS) and concentrations were determined 
using Qubit DNA HS assay kit (Thermo Fisher Scien-
tific). Sequencing was performed on Illumina Novaseq 
X plus in the 150PE format. Reads preprocessing was 
performed by using fastp v0.20.0 [34] applying specific 
parameters to remove residual adapter sequences and to 
keep only high-quality data (qualified_quality_phred = 20, 
unqualified_percent_limit = 30, average_qual = 25, low_
complexity_filter = True, complexity_threshold = 30). 
The percentage of uniquely mapped reads resulted high 
with the mean value of 89% (mean value for sample: 
unmapped reads 6%, quality base > q30 90%). Then, pass-
ing filter reads were mapped to the genome reference 
(Homo sapiens) using STAR v2.7.0 [35] with standard 
parameters, except for sjdbOverhang option set on read 
length. Genome and transcript annotations provided as 
input were downloaded from v105 of the Ensembl reposi-
tory. Alignments were then elaborated by RSEM v1.3.3 
[36], to estimate transcript and gene abundances. Subse-
quently, the sample-specific gene-level abundances were 
merged into a single raw expression matrix by applying a 
dedicated RSEM command (rsem-generate-data-matrix). 
Genes with at least 10 counts in N samples were then 
selected, where N corresponds to the sample number in 
the smallest experimental group. Differential expression 
was computed by edgeR [37] from raw counts in each 
comparison. Multiple testing controlling procedure was 
applied and genes with an FDR ≤ 0.1 and logFC > |0.5| 
were considered differentially expressed. Annotation 
of differentially expressed genes was performed using 
the bioMart package [38] into R 4.3, querying avail-
able Ensembl Gene IDs and retrieving Gene Names and 
Entrez gene IDs.

Data source and differential expression analysis
In silico studies on breast cancer patients were per-
formed using The Cancer Genome Atlas (TCGA) Inva-
sive Breast Cancer Cohort [39], the Molecular Taxonomy 
of Breast Cancer International Consortium (METABRIC) 
dataset [40] and the AFFYMETRIX dataset [41], whereas 
the TCGA Prostate Adenocarcinoma Cohort [42] and the 
GSE54460 [43] and GSE70770 [44] datasets were used for 
prostate cancer investigations. mRNA expression data 
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(RNA Seq V2 RSEM) and associated clinical informa-
tion reported in the Invasive Breast Cancer Cohort of the 
TCGA project were retrieved from UCSC Xena (https://
xenabrowser.net/), samples (n. 1247) were filtered for 
missing values and by “sample type” to separate tumor 
tissues (n. 1104) from the adjacent normal tissues (n. 
113). The clinical information and the microarray gene 
expression data (Log2 transformed intensity values) of 
the METABRIC cohort (n. 2509) were downloaded from 
cBioPortal for Cancer Genomics (http://www.cbioportal.
org/). The gene expression levels and clinical information 
of the AFFYMETRIX cohort (n. 2999) were retrieved 
from 17 integrated Affymetrix gene expression datasets, 
as previously described [41]. In brief, the Raw.cel files 
from 17 AFFYMETRIX U133A/ plus two gene expres-
sion datasets of primary breast tumors were retrieved 
from NCBI Gene Expression Omnibus (GEO: GSE12276, 
GSE21653, GSE3744, GSE5460, GSE2109, GSE1561, 
GSE17907, GSE2990, GSE7390, GSE11121, GSE16716, 
GSE2034, GSE1456, GSE6532, GSE3494), summarized 
with Ensembl alternative CDF, and then normalized with 
RMA, before their integration using ComBat to elimi-
nate dataset-specific bias [41]. mRNA expression data 
(RNA Seq V2 RSEM) and associated clinical information 
reported in the Prostate Adenocarcinoma cohort of the 
TCGA project were retrieved from UCSC Xena (https://
xenabrowser.net/), samples (n. 550) were filtered for 
missing values and by “sample type” to separate tumor 
tissues (n. 498) from the adjacent normal tissues (n. 52). 
The GSE54460 and GSE70770 datasets were retrieved 
from NCBI GEO. In order to obtain the differentially 
expressed genes (DEGs) between breast and prostate 
carcinomas we used the Breast Invasive Carcinoma and 
Prostate Adenocarcinoma cohorts of the TCGA PanCan-
cer Atlas [45]. DEGs were calculated using the limma R 
package considering p < 0.05 and log2FC ≥ 1 or log2FC ≤ 
-1, as thresholds. Heatmaps were drawn with the pheat-
map package in R Studio.

Pathway enrichment analysis
To explore the biological significance of the DEGs 
obtained from the preceding analysis performed compar-
ing the transcriptome of breast and prostate carcinomas, 
the enrichKEGG() function of the clusterProfiler package 
[46] was employed in R to assess pathway enrichment 
analysis. The following parameters were used: organism 
= “human”, p-value cut-off = 0.05.

Clustering analysis
A clustering task was executed to partition the patients 
into several clusters, based on their gene characteris-
tics and similarities. More specifically, the goal is to find 
groups of patients as homogenous as possible, such that 
intra-cluster distances (i.e., distances among patients 

belonging to the same cluster) are minimized, and inter-
cluster distances (i.e., distances among patients belong-
ing to different clusters) are maximized. The clustering 
task has been performed by applying K-means, a classic 
partitional clustering algorithm that detects centroid-
based clusters, where clusters are formed by minimizing 
the sum of (squared) distances between the points and 
their respective cluster centroid. In our implementation, 
we exploited the kmeans() function available in the R 
Stats package. In addition, since the range of gene expres-
sion values in the patient samples could vary widely, a 
min-max normalization task has been performed to res-
cale the range of gene’s expression values in [0, 1]. Then, 
the number of clusters K has been chosen by adopting a 
parameter-sweeping methodology; more in detail, the K 
value maximizing the silhouette (i.e., a clustering quality 
measure) of the final clustering model has been selected. 
We exploited also the elbow heuristic, to evaluate the 
cut-off point of the sum of square error (SSE) curve. In 
our test, the best clustering quality has been achieved by 
fixing K = 2. The final result consists of a labeled patient 
dataset, where a label value (cluster 1 or 2) is associated 
to each patient.

Classification analysis
Given the labeled data resulted from the clustering pro-
cess, a classification task was executed to discover a 
knowledge model from such data. The goal is to discover 
a data-driven classifier to be exploited both as descriptive 
model (i.e., which genes and/or gene value ranges affect 
class values) and predictive model (i.e., assign a class 
value to a new previously unseen patient, as accurately 
as possible). The classification task has been performed 
by learning decision tree models, which are some of the 
most important and representative classification mod-
els adopted in the field of machine learning. In our faced 
scenario, the hierarchical tree-based model is built, node 
by node (from the root to the leaves), by selecting the 
best gene that splits the patients into the two predefined 
categories. In particular, at each node, it is chosen the 
splitting gene providing the highest information gain (or 
the highest reduction in entropy) in the data. The result-
ing tree can be also represented in a set of decision rules, 
which can be used to understand which gene affects the 
patient partitions, and/or to make predictions or clas-
sify new patients. To perform the decision tree learning 
and its validation, the original patient dataset was split 
in two partitions: the training set and the test set, in the 
ratio of 70% and 30%, respectively. The classification trees 
are learned from the training set, then the trained mod-
els are exploited to make predictions on the test set, to 
assess the predictive effectiveness of the approach. Fur-
thermore, to have a statistically robust estimation of 
classification model performances, we run our tests by 

https://xenabrowser.net/
https://xenabrowser.net/
http://www.cbioportal.org/
http://www.cbioportal.org/
https://xenabrowser.net/
https://xenabrowser.net/
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implementing the k-fold cross-validation methodology 
(k = 25, in our case), which is a resampling method exe-
cuting k train-test iterations on different portions of the 
data. Classification performance has been assessed both 
by computing accuracy, precision, and recall measures, 
and by building the classification matrix for each specific 
test set.

Survival analysis
The survival analyses on breast cancer patients were per-
formed using the TCGA, METABRIC, and AFFYME-
TRIX gene expression data along with the overall survival 
information. Patients of the METABRIC cohort classified 
as “died of other causes” were excluded from the analy-
sis. Survival analyses on prostate cancer patients were 
performed using the TCGA gene expression data and 
the disease-free interval and progression-free interval; 
cumulative gene expression information of the GSE54460 
[43] and GSE70770 [44] datasets were employed to pre-
dict the biochemical recurrence. The Kaplan-Meier sur-
vival curves were generated using the survival and the 
survminer R packages. A log-rank test was used to deter-
mine differences between the survival curves. p < 0.05 
was considered statistically significant.

Results
Transcriptional landscape of breast and prostate CAFs
Considering that CAFs are a highly heterogeneous cel-
lular population within the TME characterized by a 

context-dependent influence on cancer progression [27, 
47], in the present study we aimed to assess the tran-
scriptional profile of both breast and prostate CAFs. 
First, CAFs isolated from surgically resected breast and 
prostate carcinomas (Fig.  1A-B) and characterized by 
immunofluorescent staining, revealed the expression of 
FAP and the absence of the epithelial marker cytokeratin 
14 (Fig.  1C-D). Then, RNA-seq analysis was performed 
to comprehensively delineate the gene expression pat-
terns of CAFs derived from breast and prostate tumors. 
Of note, 810 genes were found up-regulated (log2FC ≥ 1, 
p ≤ 0.01) and 1181 genes were found down-regulated 
(log2FC ≤ -1, p ≤ 0.01) in breast with respect to prostate 
CAFs (Fig. 2A, C). Subsequently, in order to strengthen 
the results obtained from our in vitro models, we took 
advantage of the breast invasive carcinoma and pros-
tate adenocarcinoma cohorts of the TCGA PanCancer 
Atlas [45]. By calculating the DEGs in the breast with 
respect to prostate cancer patients, we found 2291 up-
regulated genes (log2FC ≥ 1, p ≤ 0.01) and 2227 down-
regulated genes (log2FC ≤ -1, p ≤ 0.01) in breast with 
respect to prostate cancer patients (Fig. 2B, D). It should 
be pointed out that the genes up-regulated in breast vs. 
prostate CAFs or in cancer patients are here indicated 
as down-regulated in prostate vs. breast CAFs or in can-
cer patients, while the genes down-regulated in breast 
vs. prostate CAFs or cancer patients are here indicated 
as up-regulated in prostate vs. breast CAFs or cancer 
patients.

Fig. 1  Characterization of breast and prostate CAFs. Morphological appearance of breast (A) and prostate (B) CAFs observed by phase-contrast micros-
copy; scale bar: 650 μm. Enlarged details are shown in the side boxes. FAP (red signal) and Cytokeratin 14 (green signal) immunofluorescence staining in 
breast (C) and prostate (D) CAFs. Nuclei were stained by DAPI (blue signal). Scale bar: 100 μm. The images shown represent 10 random fields from three 
independent experiments
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Clustering analysis reveals a CAFs-derived gene signature 
associated with poor prognosis in breast cancer patients
We focused our attention on the genes up-regulated 
either in breast CAFs or in breast cancer patients to 
bridge in vitro findings to clinical implications. In this 
regard, by intersecting the 810 up-regulated genes in 
breast CAFs with the 2291 up-regulated genes in breast 
cancer patients of the TCGA dataset, we found 206 com-
mon genes (Fig. 3A). In order to investigate the biologi-
cal significance of these genes, we performed KEGG (The 
Kyoto Encyclopedia of Genes and Genomes) pathway 
analysis. The aforementioned genes were enriched in sev-
eral pathways, as schematically shown in Fig.  3B-C. We 
focused our attention on the “Focal adhesion” pathway 
since it comprises the highest number of genes (ITGA11, 
THBS1, FN1, EMP1, ITGA2, FYN, SPP1, EMP2, and 
PAK1) and correlates with aggressive cancer features [48]. 
To uncover whether these genes may be implicated in the 
stratification of breast cancer patients, we performed an 
unsupervised clustering analysis using k-means followed 
by classification using a decision tree algorithm (Fig. 4).

In particular, on the basis of the expression levels 
of the genes belonging to the “Focal adhesion” path-
way, TCGA breast cancer patients were assigned to two 

different clusters according to the optimal number of 
clusters, which was calculated by the within-cluster sums 
of squares and average silhouette methods (Fig.  5A-C). 
Worthy, the patients belonging to cluster 1 (n. 643) dis-
played a higher expression of 8 out of 9 genes enriched 
in the “Focal adhesion” pathway (PAK1 was excluded 
in the first analysis as it was not differentially expressed 
between the 2 clusters, thus resulting as a gene not intro-
ducing relevant differences between patients belonging 
to different classes) respect to the patients of cluster 2 (n. 
459) (Fig. 5D). Aiming to uncover a clinical relevance of 
the two clusters of patients, we performed survival analy-
sis showing that breast cancer patients characterized by 
high levels of ITGA11, THBS1, FN1, EMP1, ITGA2, FYN, 
SPP1, and EMP2 (cluster 1) display a worse overall sur-
vival compared to the patients showing low expression 
of the aforementioned genes (cluster 2) (Fig.  5E). Based 
on these data suggesting that the 8 genes identified may 
predict aggressive features of breast tumors, we aimed 
to corroborate our findings by using further cohorts of 
breast cancer patients. In this regard, the same workflow 
was applied to breast cancer patients of the METABRIC 
and AFFYMETRIX datasets. In accordance with the 
within-cluster sums of squares and average silhouette 

Fig. 2  Identification of the DEGs in breast and prostate CAFs and primary tumors. Venn diagram (A), and heat map (C) showing the DEGs in breast and 
prostate CAFs, as ascertained by RNA-sequencing analysis (log2FC ≥ 1 or log2FC ≤ -1; p ≤ 0.01). Venn diagram (B), and heat map (D) showing the DEGs in 
breast and prostate cancer patients of the TCGA dataset (log2FC ≥ 1 or log2FC ≤ -1; p ≤ 0.01). In the volcano plots, significantly down-regulated genes are 
shown in blue, significantly up-regulated genes are shown in pink, non-significant genes are shown in grey (p > 0.01)
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methods, the patients of the METABRIC cohort were 
clustered into 2 groups (Fig.  6A-C). Patients belonging 
to cluster 1 (n. 659) displayed higher expression levels 
of 6 out of 8 genes with respect to patients of cluster 2 
(n. 824) (Fig.  6D). FYN and EMP2 were not differen-
tially expressed between the two METABRIC clusters. 
Importantly, survival analysis revealed that breast can-
cer patients of the METABRIC cohort belonging to 

cluster 1 exhibit a significantly worse overall survival 
when compared to patients of cluster 2 (Fig. 6E), consis-
tent with the findings obtained on TCGA breast cancer 
patients. Remarkably, this approach unveiled 2 distinct 
clusters within the AFFYMETRIX cohort of breast 
cancer patients. In particular, we found 2 clusters of 
patients based on the expression of the identified genes 
(with the exception of ITGA11 which is not annotated 

Fig. 4  Workflow providing a graphic overview of the clustering and classification analyses. In step 1, a clustering task is executed to partition the patients 
into two groups (or clusters), based on the gene expression similarities of the patients. The result of this step consists of a labeled patient dataset, where 
a label value (cluster 1 or 2) is associated with each patient. In step 2, given the labeled data resulted from the clustering process, a classification task was 
executed to discover a decision tree classifier from such data. The detected classifier can be exploited as either a descriptive model (i.e., understanding 
which genes and/or gene value ranges affect class values) or a predictive model (i.e., assigning a class value to a new previously unseen patient)

 

Fig. 3  Pathway enrichment analysis of the genes up-regulated in breast CAFs and cancer patients. (A) Venn diagram showing the intersection of the 
genes up-regulated in breast CAFs and cancer patients of the TCGA cohort. (B) KEGG pathway analysis of the 206 genes commonly up-regulated in breast 
CAFs and breast cancer samples of the TCGA dataset. The number of genes in the identified pathways is displayed along the X-axis, while the different 
KEGG terms are shown along the Y-axis (p < 0.05). (C) Connection plot showing the interrelation among the KEGG pathways and genes
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Fig. 5 (See legend on next page.)
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in the AFFYMETRIX dataset) (Fig. 7A-C). In particular, 
patients of cluster 1 (n. 1752) showed higher expression 
levels of THBS1, FN1, EMP1, ITGA2, SPP1, and EMP2 
compared to patients of cluster 2 (n. 1247). Notably, 
patients characterized by a high expression of the afore-
mentioned genes (cluster 1) display worse overall survival 
with respect to patients showing low gene levels (cluster 
2), as indicated in Fig. 7E.

Aiming to strengthen the results obtained by the clus-
tering process, we trained a decision tree where the 
breast CAFs-derived gene signature has been consid-
ered as a descriptive feature, and the labels achieved by 
clustering as class values. The samples of the TCGA, 
METABRIC, and AFFYMETRIX datasets were split into 
training and testing sets, and the performance evaluation 
was carried out by computing accuracy, precision, and 
recall, as described in the Methods section. Finally, the 
confusion matrix for each dataset has been built (Fig. 8A-
C). Of note, the breast CAFs-related gene signature 
yielded 0.967 accuracy, 0.984 precision, and 0.958 recall 
in the TCGA dataset, 0.959 accuracy, 0.954 precision, 
and 0.954 recall in the METABRIC dataset, 0.965 accu-
racy, 0.959 precision, and 0.978 recall in the AFFYME-
TRIX dataset (Fig.  8D). The attribute usage calculated 
by the voting of the boosted algorithm on the training 
set is shown in Fig.  8E, showing that ITGA11, THBS1, 
FN1, EMP1, and SPP1 result the most appropriate genes 
discriminating between the two categories. Together, 
these results indicate that poor survival rates character-
ize breast cancer patients showing high expression of the 
identified gene signature, which may be therefore useful 
to predict the outcome of breast tumor patients.

Identification of a CAFs-derived gene signature with 
prognostic value in prostate cancer patients
Aiming to ascertain whether the CAFs-derived genes 
resulting from our RNA-seq analysis may have a clini-
cal implication, we intersected the 1181 up-regulated 
genes in prostate CAFs with the 2227 up-regulated 
genes in prostate cancer patients. We obtained 217 joint 
genes (Fig.  9A), which were found enriched in a num-
ber of pathways, as revealed by KEGG pathway analysis 
(Fig.  9B-C). Notably, the “Cytokine-cytokine receptor 
interaction” pathway appeared to comprise the high-
est number of genes (IL13RA2, GDF7, IL33, CXCL1, 
TNFRSF19, CXCL6, LIFR, CXCL5, IL7, TSLP, TNFSF15, 
GDF11, TNFSF14, and GDF15). In order to uncover 

whether these genes may have a clinical significance, we 
performed k-means clustering analysis on the prostate 
cancer patients of the TCGA cohort. The patients were 
assigned to two different clusters following the optimal 
number of clusters, which was calculated by the within-
cluster sums of squares and average silhouette methods 
(Fig. 10A-C). Patients belonging to cluster 2 (n. 245) dis-
played a higher expression of 11 out of 14 genes from the 
“Cytokine-cytokine receptor interaction” pathway with 
respect to patients of cluster 1 (n. 253) (Fig. 10D). GDF11, 
TNFSF14, and GDF15 were excluded from the analysis 
since they were not differentially expressed between the 2 
clusters. Interestingly, by performing survival analysis we 
found that patients belonging to cluster 1 display a poor 
outcome with respect to patients of cluster 2 in terms of 
both disease-free interval (Fig. 10E) and progression-free 
interval (Fig. 10F).

As a further step, we conducted a classification analy-
sis to enhance the explainability of the clustering results 
achieved on the TCGA cohort of prostate cancer 
patients. We trained a decision tree model, and we tested 
it on a test set. Then, we assessed the model performance 
by computing accuracy, precision, and recall, and we 
built the corresponding confusion matrix (Fig. 11A). Of 
note, the prostate CAFs-derived gene signature gener-
ated 0.966 accuracy, 0.948 precision, and 0.986 recall 
(Fig. 11B). Figure 11C shows the attribute usage, demon-
strating that the patient’s cluster membership is mainly 
represented by all the evaluated genes except for LIFR.

Thereafter, we evaluated the prognostic role of the 
11 genes using two further datasets of prostate can-
cer patients, namely GSE54460 and GSE70770 [43, 44]. 
In accordance with the results obtained on the TCGA 
cohort, survival analysis revealed that prostate cancer 
patients showing a low cumulative expression of the 11 
genes display a poor prognosis (Fig.  12A-B). Overall, 
these data suggest that the identified CAFs-derived genes 
may be considered prognostic indicators of positive sur-
vival rates in prostate carcinomas.

Discussion
It is widely accepted that the molecular and biological 
complexity of a tumor relies on the liaison between can-
cer cells and the surrounding TME, which is a dynamic 
ecosystem comprising diverse cell types [49, 50]. Among 
these stromal cellular components, CAFs are recognized 
as the most prevalent in the majority of solid tumors, 

(See figure on previous page.)
Fig. 5  Survival analysis of TCGA breast cancer patients clustered based on the levels of the focal adhesion pathway’s genes. The optimal number of k-
means clusters was determined and visualized using within-cluster sums of squares (A) and average silhouette (B) methods. (C) Visualization of k-means 
partitioning method; observations (breast cancer patients of the TCGA dataset) are represented by points in the plot, using principal components. Each 
data point in the reduced-dimensional space is color-coded based on its assigned cluster, the number of patients belonging to each cluster is shown. (D) 
Multiple boxplots showing the differential expression of the 8 genes in the two clusters. (E) Overall survival of breast cancer patients belonging to cluster 
1 and cluster 2. (***) indicates p < 0.001; (****) indicates p < 0.0001
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including breast and prostate cancers [23, 24]. Accumu-
lating evidence underscored the heterogeneity of CAFs 
populations [27, 47, 51]. In particular, CAFs may play a 
pivotal role in fostering several pro-tumorigenic pro-
cesses, such as cancer cell migration and invasion, can-
cer stem-cell renewal, development of chemoresistance, 
and evasion of immune responses [18, 49]. Nevertheless, 
in certain tumor contexts, CAFs may exert a suppressive 
function within the TME [52]. In this intricate scenario, 
marker genes that allow to differentiate tumor-promot-
ing from suppressive CAFs in diverse types of tumors, 
remain to be discovered.

In the present study, we have isolated and characterized 
CAFs from breast and prostate cancer patients. The com-
parison between their transcriptomic profile by RNA-seq 
analysis revealed tumor-specific molecular features. The 
intersection between the DEGs derived from CAFs and 
those obtained from cancer patients allowed us to iden-
tify two tumor context-specific gene signatures. Using 
large cohorts of breast and prostate cancer patients and 
machine learning techniques, we have further addressed 
the valuable predictive utility of the two CAFs-related 
gene signatures and provided insights into the potential 
of CAFs to drive diverse signaling and biological events 
in distinct cancer types.

First, we have developed and validated a breast CAFs-
derived gene signature based on the transcriptomic pro-
files of breast cancer patients from 3 datasets. Worthy, 
the signature demonstrated to predict poor outcomes in 
breast cancer patients exhibiting high transcriptional lev-
els of ITGA11, THBS1, FN1, EMP1, ITGA2, FYN, SPP1, 
and EMP2.

In accordance with our data, the pro-tumorigenic role 
and the poor prognostic value of the “Focal adhesion” 
pathway, which comprises the genes belonging to the 
breast CAFs-derived signature, have been largely rec-
ognized [48]. Accumulated evidence indicates that the 
focal adhesion signaling functions as a signaling hub in 
ECM-tumor interactions as well as breast cancer cell 
adhesion, survival, proliferation, migration, and invasion 
[53, 54]. The core component of the focal adhesion axis 
is the focal adhesion kinase (FAK) [55]. Upon activation 
by integrins, FAK can establish complexes with diverse 
intracellular molecules to allow the bidirectional trans-
mission of mechanical and biochemical signals across 
the plasma membrane, therefore regulating a variety of 
stimulatory responses in cancer cells [55, 56]. In addition, 

the pro-tumorigenic role of FAK is further supported by 
its ability to regulate the transcription of pro-inflamma-
tory molecules that suppress destructive host immunity, 
thus promoting a favorable TME [57]. Moreover, FAK 
signaling has been shown to support pro-metastatic 
TME remodeling by regulating angiogenesis, vascu-
lar permeability, and ECM production [57]. Among the 
genes belonging to the FAK signaling, integrins are cell 
adhesion receptors for ECM molecules influencing the 
potential of cancer cells to grow as well as escape from 
the primary tumor, invade, survive in the blood circula-
tion, and metastasize to distant sites [58, 59]. In addition, 
integrins may serve as main mediators of the crosstalk 
between cancer cells and TME components like CAFs 
[60, 61]. In this scenario and according to our findings, 
α11 integrin (ITGA11) is significantly overexpressed in 
the breast stromal compartment and linked to aggres-
sive tumor features, such as high histologic grade and 
proliferative rate [62]. Known ligands for certain integrin 
receptors are the fibronectin 1 (FN1) and the secreted 
phosphoprotein 1 (SPP1, also known as osteopontin). The 
glycoprotein fibronectin 1 serves as a hallmark of CAFs 
and has been indicated as a facilitator of breast tumor 
stroma remodeling, for instance by promoting CAFs-
mediated migration and invasion of tumor cells [63, 
64]. As it concerns osteopontin, its secretion by CAFs 
enhances breast tumor growth [65, 66], while cancer-
derived osteopontin plays a role in reprograming normal 
fibroblasts into tumor-promoting CAFs [67]. Thrombo-
spondin-1 (THBS1) is a matricellular ECM protein that 
can promote breast tumor migration and invasiveness 
via the activation of diverse signaling pathways including 
FAK signaling [68]. Worthy, in CAFs the expression levels 
of thrombospondin-1 along with other ECM components 
are correlated with an increased odd ratio for lymph 
node metastasis [69]. In addition, evidence indicates the 
association of further cell surface proteins named epi-
thelial membrane proteins (EMPs) with cancer progres-
sion and metastasis, even though the precise function of 
each family member remains to be fully clarified [70]. For 
instance, the epithelial membrane protein 1 (EMP1) is 
highly expressed in patients with invasive lobular breast 
tumors, which show a lower survival rate than ductal 
[71, 72]. However, reduced protein levels of the epithe-
lial membrane protein 1 have been correlated with poor 
prognosis, and its overexpression in breast cancer cells 
inhibits their proliferative, and invasive behavior [70]. 

(See figure on previous page.)
Fig. 6  Survival analysis of METABRIC breast cancer patients clustered based on the levels of the focal adhesion pathway’s genes. The optimal number of 
k-means clusters was determined and visualized using within-cluster sums of squares (A) and average silhouette (B) methods. (C) Visualization of k-means 
partitioning method; observations (breast cancer patients of the METABRIC dataset) are represented by points in the plot, using principal components. 
Each data point in the reduced-dimensional space is color-coded based on its assigned cluster, the number of patients belonging to each cluster is 
shown. (D) Multiple boxplots showing the differential expression of the 8 genes in the two clusters. (E) Overall survival of breast cancer patients belonging 
to cluster 1 and cluster 2.; ns indicates non-significant; (*) indicates p < 0.05; (****) indicates p < 0.0001



Page 12 of 19Talia et al. Journal of Translational Medicine          (2024) 22:597 

Fig. 7 (See legend on next page.)

 



Page 13 of 19Talia et al. Journal of Translational Medicine          (2024) 22:597 

On the contrary, the pro-metastatic role of the epithe-
lial membrane protein 2 (EMP2) in breast cancer is well 
recognized. It is overexpressed in invasive breast tumors, 
particularly in the triple-negative molecular subtype, and 
in lymph node metastases [73].

Next, by taking advantage of the analysis of transcrip-
tome data of both CAFs and TCGA cohorts of prostate 
cancer patients, we defined a CAFs-derived signature 
with an unfavorable prognostic value in prostate tumor 
patients. Functional pathways enrichment analysis 
revealed that these CAFs-related genes (IL13RA2, GDF7, 
IL33, CXCL1, TNFRSF19, CXCL6, LIFR, CXCL5, IL7, 
TSLP, and TNFSF15) are significantly enriched within 
the “Cytokine-cytokine receptor interaction” pathway. 
Even though several reports have indicated that many 

cytokines, their receptors, and cytokine signaling effec-
tors are engaged in the metastatic process [74], our find-
ings revealed that prostate cancer patients, which were 
specifically clustered for a low cumulative expression of 
IL13RA2, GDF7, IL33, CXCL1, TNFRSF19, CXCL6, LIFR, 
CXCL5, IL7, TSLP, and TNFSF15, display poor survival 
rates respect to patients showing high levels of the afore-
mentioned genes. This controversial scenario should be 
framed in the intricate multi-directional interplay among 
tumor cells and the diverse components of the TME. 
Moreover, studies focusing on the prognostic value of 
single genes in one cell type, rather than looking at the 
transcriptomic landscape of diverse cellular entities of 
a tumor mass, might not reflect the complexity existing 
within the TME.

(See figure on previous page.)
Fig. 7  Survival analysis of AFFYMETRIX breast cancer patients clustered based on the levels of the focal adhesion pathway’s genes. The optimal number 
of k-means clusters was determined and visualized using within-cluster sums of squares (A) and average silhouette (B) methods. (C) Visualization of 
k-means partitioning method; observations (breast cancer patients of the AFFYMETRIX dataset) are represented by points in the plot, using principal 
components. Each data point in the reduced-dimensional space is color-coded based on its assigned cluster, the number of patients belonging to each 
cluster is shown. (D) Multiple boxplots showing the differential expression of the 8 genes in the two clusters. (E) Overall survival of breast cancer patients 
belonging to cluster 1 and cluster 2. (****) indicates p < 0.0001

Fig. 8  Validation of k-means clustering of breast cancer patients through decision tree classification analysis. Confusion matrixes provide quantitative 
evaluations of the model’s performance on the TCGA (A), METABRIC (B), and AFFYMETRIX (C) datasets; matrix rows correspond to the actual classes, col-
umns represent predicted classes, each squared box contains the count of instances falling into a specific category. (D) Histogram showing accuracy, re-
call, and precision of the classification models on the TCGA, METABRIC, and AFFYMETRIX datasets. (E) Attribute usage percentage of the 8 genes through 
the boosting algorithm on the training dataset (25 trials)
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Conclusions
Overall, our findings indicate that inter-tumor hetero-
geneity in the gene expression profile of the breast and 
prostate microenvironment can be correlated with 
patient outcomes. The CAFs-related gene signatures 

here developed and validated might serve respectively as 
predictors of poor survival in breast and prostate tumor 
patients. Taken together, these data may potentially drive 
the management of the patients toward the establishment 
of tailored therapeutic strategies.

Fig. 9  Pathway enrichment analysis of the genes up-regulated in prostate CAFs and cancer patients. (A) Venn diagram showing the intersection of the 
genes up-regulated in prostate CAFs and patients of the TCGA cohort. (B) KEGG pathway analysis of the 217 genes commonly up-regulated in prostate 
CAFs and prostate cancer samples of the TCGA dataset. The number of genes in the identified pathways is displayed along the X-axis, while the different 
KEGG terms are shown along the Y-axis (p < 0.05). (C) Connection plot showing the interrelation among the KEGG pathways and genes
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Fig. 10 (See legend on next page.)
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(See figure on previous page.)
Fig. 10  Survival analysis of TCGA prostate cancer patients clustered based on the levels of the genes belonging to the cytokine-cytokine receptor inter-
action pathway. The optimal number of k-means clusters was determined and visualized using within-cluster sums of squares (A) and average silhouette 
(B) methods. (C) Visualization of k-means partitioning method; observations (prostate cancer patients of the TCGA dataset) are represented by points 
in the plot, using principal components. Each data point in the reduced-dimensional space is color-coded based on its assigned cluster, the number of 
patients belonging to each cluster is shown. (D) Multiple boxplots showing the differential expression of the 11 genes in the two clusters. Disease-free 
interval (E) and progression-free interval (F) of prostate cancer patients belonging to cluster 1 and cluster 2. (****) indicates p < 0.0001

Fig. 11  Validation of k-means clustering of prostate cancer patients through decision tree classification analysis. (A) The confusion matrix provides a 
quantitative evaluation of the model’s performance on the TCGA dataset; matrix rows correspond to the actual classes, columns represent predicted 
classes, each squared box contains the count of instances falling into a specific category. (B) Histogram showing accuracy, recall, and precision of the 
classification model. (C) Attribute usage percentage of the 11 genes through the boosting algorithm on the training dataset (25 trials)
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