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Abstract
Background Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) generally has a poor 
prognosis for patients with limited treatment options. While incorporating immune checkpoint inhibitors (ICIs) has 
now become the standard of care, the efficacy is variable, with only a subset of patients responding. The complexity 
of the tumor microenvironment (TME) and the role of tertiary lymphoid structures (TLS) have emerged as critical 
determinants for immunotherapeutic response.

Methods In this study, we analyzed two independently collected R/M HNSCC patient tissue cohorts to better 
understand the role of TLS in response to ICIs. Utilizing a multi-omics approach, we first performed targeted 
proteomic profiling using the Nanostring GeoMx Digital Spatial Profiler to quantify immune-related protein 
expression with spatial resolution. This was further characterized by spatially resolved whole transcriptome profiling of 
TLSs and germinal centers (GCs). Deeper single-cell resolved proteomic profiling of the TLSs was performed using the 
Akoya Biosciences Phenocycler Fusion platform.

Results Our proteomic analysis revealed the presence of T lymphocyte markers, including CD3, CD45, and CD8, 
expressing cells and upregulation of immune checkpoint marker PD-L1 within tumor compartments of patients 
responsive to ICIs, indicative of ‘hot tumor’ phenotypes. We also observed the presence of antigen-presenting cells 
marked by expression of CD40, CD68, CD11c, and CD163 with upregulation of antigen-presentation marker HLA-DR, 
in patients responding to ICIs. Transcriptome analysis of TLS and GCs uncovered a marked elevation in the expression 
of genes related to immune modulation, diverse immune cell recruitment, and a potent interferon response within 
the TLS structure. Notably, the distribution of TLS-tumor distance was found to be significantly different across 
response groups (H = 9.28, p = 0.026). The proximity of TLSs to tumor cells was found to be a critical indicator of ICI 
response, implying that patients with TLSs located further from tumor cells have worse outcomes.

Conclusion The study underscores the multifaceted role of TLSs in modulating the immunogenic landscape of the 
TME in R/M HNSCC, likely influencing the efficacy of ICIs. Spatially resolved multi-omics approaches offer valuable 
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Introduction
Head and neck squamous cell carcinoma (HNSCC) 
originates from the nasal/oral cavity, paranasal sinuses, 
nasopharynx, larynx, and oropharynx, and patients with 
recurrent and/or metastatic (R/M) disease show poor 
prognosis [1–3]. Though tobacco use and alcohol are 
significant risk factors, oropharyngeal HNSCC tumors 
can be divided into two primary categories based on 
their human papillomavirus (HPV) infection status [4]. 
HPV-positive tumors generally have a better prognosis 
compared to HPV-negative tumors, which are associated 
with poorer outcomes [4]. Treatment may include surgi-
cal, radiotherapy and/or chemotherapy. Upon recurrence 
or de-novo metastatic disease, the prognosis is poor [5].

Immunotherapy, particularly immune checkpoint 
inhibitors (ICIs), such as the anti-PD-1 antibodies pem-
brolizumab and nivolumab, has shown promise in 
improving outcomes for patients with unresectable R/M 
HNSCC, however, only a fraction of patients benefit 
[6–9]. The Keynote-048 study reported that 17% (51 out 
of 301) of R/M HNSCC patients treated with pembroli-
zumab monotherapy had an objective response [9]. The 
immunohistochemistry (IHC)-based PD-L1 expression 
is used as a predictive biomarker of response to ICIs in 
HNSCC patients, and its positive score is generally asso-
ciated with a better response to immunotherapy [10]. 
Studies have reported that the predictive accuracy of 
PD-L1 expression improves when assessing the combined 
positive score (CPS), which evaluates PD-L1 on both 
tumor cells and infiltrating immune cells, rather than 
solely the tumor proportion score (TPS), which measures 
PD-L1 on tumor cells alone [11, 12]. However, evidence 
indicates that some PD-L1-negative patients still ben-
efit from ICIs, highlighting the limitations of PD-L1 as a 
solitary predictor for immunotherapy response [10–13]. 
The tumor microenvironment (TME), with its diverse 
cellular composition and interactions, which contrib-
ute to immunosuppression, tumor growth and therapy 
resistance, plays a key role in response to ICIs [14–16]. 
Studies have highlighted the critical role of TLSs within 
the TME across various tumor types, implying their sig-
nificance as primary sites for tumor antigen presenta-
tion [17, 18]. The presence of TLSs has been linked to 
enhanced ICI response and improved patient survival 
[19–21]. TLSs reinforce antitumor responses by support-
ing dendritic cell antigen presentation, B-cell-mediated 
immunity, and T-cell activation, maintenance and sur-
vival from persistent antigen stimulation [21]. By increas-
ing immune surveillance and promoting the recruitment 
of distinct immune cell types, the TLSs potentially 

increase the efficacy of immunotherapeutic agents [5, 
22, 23], positioning them as promising biomarkers for 
predicting treatment response in R/M HNSCC patients. 
However, research has shown that the presence of TLSs 
is not the only factor influencing patient responses. The 
cellular interactions and organizational patterns within 
TLSs, as well as their proximity to tumor cells, which 
improves the presentation of tumor-antigen to T cells, all 
have a significant impact on the efficacy of ICIs [24–26].

The introduction of high-plex spatial profiling and 
phenotyping technologies has revolutionized our under-
standing of the TME’s cellular and molecular dynamics 
[27]. These methodologies enable the detailed examina-
tion of immune cell distribution and the functional sta-
tus of TLSs with unprecedented resolution [28]. In this 
study, we utilized two advanced spatial profiling technol-
ogies, Nanostring Digital Spatial Profiler (DSP) and the 
Akoya Biosciences PhenoCycler-Fusion, to thoroughly 
investigate the cellular and molecular characteristic of 
the R/M HNSCC microenvironment with single-cell and 
spatial resolution (Fig. 1). Our study found that patients 
who went on to respond to ICIs had higher infiltrations 
of immune cell types, primarily those involved in anti-
gen-presentation, within the tumor compartments rela-
tive to non-responding patients. We found transcriptome 
signatures involved in immune modulation and a potent 
interferon response to be highly expressed in TLSs when 
compared to normal GCs.

Materials and methods
Patient cohort
In this study, we identified a cohort of 41 patients with 
R/M HNSCC from the Royal Brisbane & Women’s Hospi-
tal (RBWH) (Ethics Approval LNR/2020/QRBW/66,744), 
and an additional 28 patients from the Princess Alexan-
dra Hospital (PAH) (HREC/2022/QMS/89,452), all of 
whom were determined eligible for inclusion in our study. 
Among the patients from RBWH, tissue samples were 
unavailable for 20 individuals, leaving 21 tissue blocks 
accessible for analysis. We collected formalin-fixed par-
affin-embedded (FFPE) tissue specimens from these 21 
HNSCC patients prior to immunotherapy. Only 17 of 
these samples met the criteria for sufficient quality and 
tissue integrity to proceed with spatial analysis. Similarly, 
from the PAH cohort, 11 patients had insufficient tissue 
available, resulting in 17 tissue blocks that were viable for 
analysis. From these, 17 FFPE tissue samples were col-
lected and found to be suitable for our subsequent spatial 
analysis. Pathology Queensland undertook the prepara-
tion of serial sections and performed hematoxylin and 

insights into potential biomarkers for ICI response and highlight the importance of profiling the TME complexity when 
developing therapeutic strategies and patient stratification.
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eosin (H&E) staining. To ensure the exclusion of non-
neoplastic epithelial cells, expert pathologists demar-
cated tumor and stromal regions. ICI administered were 
pembrolizumab and nivolumab for the RBWH cohort 
and nivolumab for the PAH cohort. All patients were 
categorized based upon response to therapy according 
to Response Evaluation Criteria in Solid Tumors, ver-
sion 1.1, (RECIST 1.1), which includes complete response 
(CR), partial response (PR), stable disease (SD), and 

progressive disease (PD). Tumour PD-L1 scoring was not 
available at the time of this study as combined propor-
tion score (CPS) was not routinely tested at the time of 
patient treatment.

Nanostring GeoMx digital spatial profiler
The FFPE tissue sections from 34 patients were stained 
and processed for proteomics analysis using the 
Nanostring Digital Spatial Profiler (DSP) according to the 

Fig. 1 Study scheme. (1) Formalin-fixed paraffin-embedded (FFPE) tissue samples were collected prior to therapy from two independent R/M patient co-
horts at the Princess Alexandra Hospital (PAH) and Royal Brisbane & Women’s Hospital (RBWH). In each clinical site, 17 samples were determined to be suit-
able for subsequent spatial analysis. (2) Tumor tissue serial sections and hematoxylin & eosin (H&E) staining were provided by the Pathology Queensland. 
(3) Using the Nanostring GeoMx DSP targeted spatial proteomics and transcriptomics were performed across the cohorts. (5) Spatial phenotyping of a 
sub-cohort was performed using the Akoya Biosciences PhenoCycler-Fusion. (4, 6) Data analysis consisted of probe quality control (QC), principal com-
ponent analysis (PCA), differential expression (DE) and gene set enrichment analysis (GSEA) were conducted and followed by spatial analyses, including 
cell phenotyping and mapping
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manufacturer’s instructions at the Translational Research 
Institute (TRI) and Queensland University of Technol-
ogy (QUT), Brisbane, Australia. Using the Nanostring 
immuno-oncology (IO) panel, which comrises 71 oligo-
nucleotide-conjugated antibodies for immune cell pro-
filing core, immune cell typing and activation modules, 
cell death, IO drug target, PI3k/AKT signaling, and pan-
tumor pathways, the tissue sections were analyzed to 
investigate the protein expression of immune and tumor 
biomarkers (Supplementary Table 1). Additionally, to 
perform the whole transcriptome analysis, the FFPE tis-
sue section was collected from one R/M HNSCC patient. 
The Nanostring Whole Transcriptome Atlas (WTA) 
panel, comprising over 18,000 genes, was utilized and 
the tissue section was processed and analyzed based on 
the manufacturer’s instructions. Morphology markers 
for both proteomics and transcriptomics assays included 
pan-cytokeratin (PanCk), CD45, and SYTO-13 to dis-
tinctly identify tumor cells, immune cells, and nuclei, 
respectively. Subsequently, the demarcation of tumor 
and stromal compartments was accomplished by gating 
PanCk positive and negative regions. Quantification of 
antibody barcodes and the sequencing of target oligonu-
cleotides were performed using the Nanostring nCounter 
technology and the Illumina’s NovaSeq 6000, respec-
tively, following the manufacturers’ guidelines. The final 
stage of the process involved the utilization of the DSP 
analysis suite, where External RNA Controls Consortium 
(ERCC) normalization and quality control (QC) proce-
dures were executed. These steps were critical in refining 
the data output, thereby rendering it suitable for subse-
quent bioinformatic analyses.

Nanostring GeoMx DSP data analysis
The GeoMx DSP proteomics data consists of 468 ROI 
samples from 34 patients across 2 cohorts. Each sample 
ROI was quantified for 71 protein markers, 3 house-
keeper proteins (Histone H3, GAPDH, S6) and 3 back-
ground IgG controls (Rb IgG, Ms IgG2a, Ms IgG1). The 
data analysis was performed using probeQC counts from 
Nanostring DSP analysis suite. Quality control and data 
processing were conducted based on the Bioconduc-
tor R package standR (v1.6) [29] workflow to perform 
quality control, data normalization and batch correc-
tion. Initially, filtering was conducted to exclude regions 
of interest (ROIs) with low surface area and low nuclei 
count, and to exclude genes that were not expressed or 
had low expression in more than 90% of ROIs.

For data analysis, the log2-transformed count per mil-
lion (logCPM) value was used to account for variation 
from library size. The scaled count data was subjected 
to the relative log expression (RLE) and principal com-
ponent analysis (PCA) to investigate overall distribution, 
underlying factors from the experimental design and the 

unwanted batch effects. Subsequently, to remove batch 
effect between the experiments of two cohorts in the pro-
tein data, 30 negative control markers between batches 
were first selected using the findNCGs function, followed 
by using the RUV4 batch correction method [30] within 
the geomxBatchCorrection function (Supplementary 
Fig.  1). Subsequently, the efficacy of the correction was 
assessed through a reapplication of RLE and PCA analy-
ses (Supplementary Fig. 2).

To perform differential expression (DE) analysis, 
R packages edgeR (v3.34.0) and limma (3.48.0) were 
applied to the count data following the standR work-
flow [29]. duplicateCorrelation from the limma pack-
age was first used to calculate the consensus correlation 
across patients to account for patient variation as a ran-
dom effect. DE was then performed using linear models, 
which incorporated experimental factors as predictors. 
The combination of universal dispersion, affecting all 
genes, and marker-specific dispersion was used for the 
variations in marker expressions. Using an empirical 
Bayes approach, the variation for each marker was esti-
mated by combining data from all other markers to cal-
culate both universal and marker-specific variations. 
The factors of interest in this study includes responses to 
treatment (i.e., CR, PR, SD, PD) with the following com-
parisons made: (A) CR vs. PD and (B) Disease control rate 
i.e., CR + PR + SD vs. PD.

The GeoMx DSP transcriptomics data was generated 
using the Nanostring GeoMx WTA panel on the GeoMx 
DSP. The data consisted of RNA abundance measure-
ments of over 18,000 genes with measurements made 
on regions of interest across 3 patients’ tissue sections, 
however, one sample was eligible for our TLS analysis. In 
total, 9 ROIs were analyzed from four GCs and one TLS. 
The RNA data was processed using the standR work-
flow: Sample filtering to exclude ROIs with low detection 
count < 350,000, low nuclei count < 250 and those with 
high percentage of low expressing genes (> 3%) did not 
remove any ROI. No genes were removed from gene fil-
tering to exclude low expression genes. logCPM counts 
was assessed using RLE plots and PCA to investigate fac-
tors contributing to the variation in the data and to iden-
tify batch effects, resulting in the removal of 2 ROIs from 
a GC as outliers. The filtered data were normalized using 
the trimmed mean of M-values (TMM) method using 
all genes in the panel. DE analysis was conducted using 
the R package edgeR based on the voom-limma pipeline 
with sample weights. The factor of interest in this analy-
sis is the category (TLSs or GC). The edgeR::voomLmFit 
function was used to fit a linear model with “category” as 
a covariate and with the comparison of interest investi-
gated as TLS vs. GC.

For both the RNA and protein analyses conducted in 
this study, the linear modelling uses a robust empirical 
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Bayes moderated t-statistic and the Benjamini–Hochberg 
procedure was applied for multiple testing adjustments 
(adjusted p-value, FDR of < 0.05).

Akoya Biosciences PhenoCycler–Fusion staining and cell 
segmentation
PhenoCycler-Fusion (Akoya Biosciences, USA) staining 
and whole-slide imaging of 16 FFPE samples was per-
formed according to the manufacturer’s instructions as 
described previously [31]. Samples were profiled in col-
laboration with Akoya Biosciences’ Technology Access 
Program and the Queensland Spatial Biology Centre 
(QSBC, Wesley Research Institute). Antibody targets, 
conjugated barcodes, and corresponding fluorophores 
are listed in Supplementary Table 2. Following image 
acquisition, the resulting qptiff file was opened in QuPath 
(v0.5.0) [32] where each marker was qualitatively assessed 
for reliable and robust staining. Cell segmentation was 
then performed by applying the StarDist (v0.8.5) [33, 34] 
model dsb2018_heavy_augment to the DAPI image. Each 
cell’s spatial coordinates and median intensity of each 
marker were then exported from QuPath.

PhenoCycler-Fusion data analysis
Cell typing
The Qupath output is converted into the Anndata [35] 
format to conduct additional spatial analysis. The low 
median DAPI signal cut-off is used to eliminate artificial 
nuclei; tiny and large nuclei are eliminated by taking into 
account a tolerance of 1% on either side of the size dis-
tribution. Then, the expression matrices are transformed 
with arcsinh (cofactor 150), scaling within markers, and 
scaling across cells. After performing PCA and batch cor-
rection, phenograph clustering was conducted using six-
teen markers—CD11c, CD20, CD21, CD31, CD34, CD3e, 
CD4, CD45, CD45RO, CD68, CD8, HLA-A, HLA-DR, 
Ki67, Pan-Cytokeratin, and Podoplanin.

Tertiary lymphoid structure (TLS) quantification
To assess and quantify TLSs, our methodology began 
with the precise demarcation of peritumoral areas, 
defined as regions extending up to 1000  μm from the 
tumor nest boundary [20, 22]. This specific boundary 
selection is based on existing literature that emphasizes 
the exclusive formation of TLSs within these defined 
perimeters and distance from the tumour [18, 20]. We 
identified TLSs either within the tumoral or peritumoral 
areas [18]. Employing PhenoCycler-Fusion technology, 
we then identified and characterized dense lymphoid 
aggregates of CD20+ B cells within the intratumor or per-
itumoral zones as TLSs. This method enabled the detec-
tion of TLSs in 10 out of the 16 analyzed whole tissue 
samples [5].

TLS distance analysis
The distance between TLSs and the closest tumor cells 
was measured using the distance measurement between 
the TLS and the Tumor annotations in QuPath (v0.5.0) 
[32], and then the mean value of distance in each 
response group was taken into account. The Kruskal-
Wallis test was used to compare the distributions of 
TLS to tumor distances in different response groups. A 
p-value of 0.05 was used to determine statistical signifi-
cance between the distance distributions of the groups. 
Next, Dunn’s test was employed to conduct pairwise 
comparisons while considering a Bonferroni correction 
for multiple comparisons [24, 35].

Results
R/M HNSCC patient characteristics
This study examined two independently collected 
cohorts of 69 patients with R/M HNSCC from July 2015 
to December 2021, contributing 34 whole-slide speci-
mens suitable for spatial analysis. Among those patients, 
26 (76%) were male and 8 (24%) were female. The patients 
were categorized into four groups based on their thera-
peutic responses, as defined by the RECIST 1.1 criteria, 
which included n = 3 (9%) complete response (CR), n = 7 
(21%) partial response (PR), n = 5 (15%) stable disease, 
and n = 19 (55%) progressive disease. In terms of HPV 
status, the distribution was as follows: n = 9 (26%) patients 
were HPV-positive, n = 9 (26%) patients were HPV-nega-
tive, and the remaining n = 16 (48%) patients were classi-
fied as either not applicable or unknown. The association 
of cohort characteristics with best response was shown in 
Supplementary Fig. 3. The clinicopathological character-
istics of the patient cohorts are shown in Table 1.

Differentially expressed protein biomarkers identified 
using Nanostring GeoMx DSP
Using the Nanostring GeoMx DSP, we investigated the 
protein expression profiles within tissue samples from 
34 patients with R/M HNSCC tumors, prior to ICI treat-
ment (Fig.  2A). We segmented the tumor and stromal 
compartments by applying masks to PanCk-positive and 
-negative regions, respectively (Fig.  2B). Subsequently, 
we assessed the differentially expressed (DE) proteins 
within these compartments among patients with differ-
ent response groups based on the RECIST 1.1 criteria.

Initially, our focus was on the DE proteins across differ-
ent response groups, including patients with CR (n = 3), 
PR (n = 7), SD (n = 5), and PD (n = 19). Our findings indi-
cated a significantly (p < 0.05) higher expression of pro-
tein biomarkers associated with the presence and activity 
of immune cells, including CD45, CD3, CD68, CD163, 
CD11c, CD8, HLA-DR, CD40, PD-L1, and IDO1, in the 
tumor compartments of patients with CR compared to 
those with PD (Fig. 2C). Moreover, we found a decreased 
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expression of protein biomarkers involved in the survival 
and proliferation of tumor cells in the tumor compart-
ments of CR patients relative to those with PD (Fig. 2C). 
We then classified those 34 patients into two groups 
based on their disease control status. Patients with CR, 
PR, and SD were grouped as responders (n = 15), while 
those with PD were categorized as non-responders 
(n = 19). In this classification, the DE proteins mirrored 
our earlier analyses, indicating similar differential expres-
sion of the aforementioned protein biomarkers (Fig. 2D). 
However, it should be noted that data generation was 
limited because these protein biomarkers were only col-
lected and profiled from user-defined regions of interest 
(ROIs). This approach contributes to a potential oversight 
in capturing the full spectrum of tumor and TME biol-
ogy. Specifically, B-cell characteristics and the presence 

of TLSs might be missed if these specific areas are not 
included in the ROIs profiled.

Whole transcriptome analysis using Nanostring GeoMx 
DSP
Following the identification of upregulated protein bio-
markers, which were largely associated with immune 
activity and antigen presentation, we conducted a whole 
transcriptome analysis on TLS and GC structures to 
identify any significant differential pathways between 
these entities. First, we measured gene expression from 
9 selected ROIs from one TLS and three GCs (Fig. 3A), 
then performed a DE analysis (Fig.  3B). This analysis 
revealed 30 genes differentially expressed between the 
TLS and GCs, with 28 upregulated and 2 downregulated 
(Fig. 3B). Subsequently, we applied Gene Set Enrichment 
Analysis (GSEA) to the DE genes (Fig. 3C-J). When com-
paring TLS and GCs, the gene set similarity network was 
represented as a network (Supplementary Fig.  4A, B). 
The visualization of upregulated gene sets in the compar-
ison between TLS and GCs uncovered three significant 
clusters, representing immune-modulating activities, 
the presence of a variety of immune cell types, and a 
potent interferon response indicative of an antiviral-like 
immune reaction (Fig.  3E-G). Cluster 1 highlighted an 
elevated activity of the adenosine A2A receptor (A2AR), 
indicating an immunomodulatory function within the 
TLS (Fig.  3E, H). Cluster 4 revealed the presence of 
diverse immune cell types in the TLS as compared to 
GCs (Fig. 3F, I), and Cluster 6 underscored an increased 
level of interferon signaling-related genes, fostering a 
robust antiviral-like immune response within the TLS 
(Fig.  3G, J). In contrast, the visualization of downregu-
lated gene sets in the TLS versus GCs identified a dimin-
ished lipid metabolism pathway in Cluster 2 (Fig.  3C, 
D), as evidenced by genes such as APOE, LPL, APOC3, 
APOA1, and APOB (Fig. 3D).

Spatial analysis of TLSs
Based upon our proteomics and transcriptomics find-
ings which revealed increased immune infiltration and 
activity in TLS structures, we next aimed to character-
ize the TLS and GC architecture. The above-mentioned 
transcriptomics and proteomics findings were based on 
regions of interest within the tissue, thus, to have a more 
comprehensive understanding of the cellular organiza-
tion and interactions of the TLS and GC cell popula-
tions, the whole-slide phenotyping of the tissue samples 
was performed using the PhenoCycler-Fusion platform at 
single-cell resolution (Fig. 4A, B). This included the iden-
tification of cell types and their interactions. By using a 
16-plex antibody panel and applying unsupervised spatial 
clustering of immune cell markers (Fig.  4E), we pheno-
typed cell types within the TLS (Fig. 4C) and GC (Fig. 4F) 

Table 1 R/M HNSCC cohort characteristics
Patients’ characteristics
Characteristics All patients

(N = 34)
Age, median (range) 66 (29–83)
Status
 Alive 6 (18%)
 Deceased 28 (82%)
Gender
 Male 26 (76%)
 Female 8 (24%)
Smoking status
 Current/former smokers 26 (76%)
 Non-smokers 7 (21%)
 Unknown 1 (3%)
ECOG performance status
 0 6 (18%)
 1 27 (79%)
 2 1 (3%)
Tumor location
 Oropharynx 19 (55%)
 Oral cavity 11 (33%)
 Larynx 3 (9%)
 Hypopharynx 1 (3%)
Immunotherapy
 Pembrolizumab monotherapy 3 (9%)
 Pembrolizumab + chemotherapy 1 (3%)
 Pembrolizumab + IDO1 inhibitor 1 (3%)
 Nivolumab monotherapy 29 (85%)
Best response
 Complete response (CR) 3 (9%)
 Partial response (PR) 7 (21%)
 Stable disease (SD) 5 (15%)
 Progressive disease (PD) 19 (55%)
Oropharynx p16 status
 Positive 9 (26%)
 Negative 9 (26%)
 Unknown (not tested) 16 (48%)
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in 10 out of 16 analyzed whole tissue samples. Clusters 
were annotated and merged into 7 cell types (Fig. 4D).

We further investigated functional cell-cell relation-
ships to assess the distance between each TLS and the 
closest tumor cell among different response groups. This 
aimed to uncover any relationship between the spatial 
proximity of TLSs to tumor cells and response to ICIs 
(Fig.  5A). The test found a significant difference in the 
distributions of TLS-tumor distance across the groups 
(H = 9.28, p = 0.026). Subsequently, pairwise comparisons 
using Dunn’s test showed significant difference between 
responders versus non-responders (p < 0.05) (Fig.  5B). 
Our findings revealed that a greater distance between 
TLSs and tumor cells correlated with a lower response to 
ICI (Fig. 5B). These data suggest that the spatial position-
ing of a TLS structure relative to tumor cells may play a 
crucial role in determining the outcome of ICIs, empha-
sizing the importance of considering tumor microen-
vironment architecture when developing treatment 
strategies. Additionally, we showed that the number 

of B cells within 100  μm outside of the TLS structures 
are higher in patient responders than non-responders 
(Fig. 5C).

Discussion
The prognosis for patients with head and neck squamous 
cell carcinoma (HNSCC) in the recurrent and/or meta-
static (R/M) setting is generally poor [5–8]. ICIs have 
emerged as promising interventions for R/M HNSCC 
patients, demonstrating efficacy as both monotherapy 
and in combination with chemotherapy [8, 9], however, 
only a subset of patients benefit from this therapy [5, 9]. 
The complex interactions of tumor cells within the tumor 
microenvironment (TME), alongside immune cells, have 
been identified as critical determinants of response to 
ICIs [14, 15, 36]. A deeper understanding, therefore, of 
the cellular interactions within the TME, influence these 
interactions, may improve patient stratification, poten-
tially identifying individuals more likely to respond to 
ICIs [2, 14]. One such key interaction within the TME 

Fig. 2 Differential protein expression in patients with different response groups. (A) Spatial proteomics profiling was conducted on tissue samples from 
R/M HNSCC tumor tissues. Demarcation of tissues was achieved through masking PanCk + and PanCk- regions to delineate tumor and stromal compart-
ments, respectively. The morphology markers included PanCk (green), CD45 (red), and SYTO 13 (blue) for the tumor cells, immune cells, and nucleus, 
respectively. Segmentation of tumors focused on regions of interest (ROIs) to distinctly identify the Tumor mask in green and the Stromal mask in yellow. 
(B) Utilizing the PanCk+/- feature, masks were generated to liberate barcodes for digital counting via the Nanostring nCounter platform. (C) MA plots of 
Mean Expression (AveExpr) vs. fold change (logFC) visualize the expression of protein biomarkers within tumor compartments in patients with complete 
response (CR) versus patients with progressive disease (PD). (D) MA plots of Mean Expression (AveExpr) vs. fold change (logFC) visualize the expression 
of protein biomarkers within tumor compartments in patients with disease control status (CR/PR/SD) versus patients with PD. Color coding represents 
markers that are not differentially expressed (gray), significantly upregulated (red), and downregulated (blue), based on a false discovery rate (FDR) of 
< 0.05 following multiple testing adjustments
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that determines response to therapy is the presence of 
mature tertiary lymphoid structures (TLSs), defined by 
the presence of B cell follicles, follicular dendritic cells 
and a mixture of CD4+ and CD8+ T cells within the intra- 
or peritumoral regions [37]. TLSs function as a major 
source of antigen presentation, contributing to the main-
tenance and survival of a self-renewing stem-like mem-
ory CD8+ T cells that undergo proliferative burst upon 
immune checkpoint inhibitors, and show more robust 
cytotoxicity antitumor function [19–21, 38]. This study 
delves into the intricate dynamics of TLSs within the 
TME of R/M HNSCC patients in order to unravel their 
impacts on immunotherapeutic outcomes.

In the present study, we found an increased infiltra-
tion of immune cell types, primarily antigen-presenting 
cells, within the tumor compartments of patients who 
went on to respond to ICI compared to non-responders. 
This underscores the importance of a distinct immune 
presence in determining the efficacy of treatment inter-
ventions. The significant upregulation of immune cell 
markers CD3, CD45, CD8, and PD-L1 in the tumor 
compartments of patients responsive to ICIs highlights 
the vital role of T cell-mediated immunity, suggesting 
the presence of a ‘hot tumor’ phenotype. These findings 
are consistent with the literature, which suggests that 

Fig. 3 Visualization of significantly enriched gene sets different comparisons. (A) Spatial transcriptomics profiling was conducted on an R/M HNSCC 
tissue sample. Demarcation of the tissue was achieved through masking PanCk + and PanCk- regions to delineate tumor and stromal compartments, 
respectively. The morphology markers included PanCk (green), CD45 (red), and SYTO 13 (blue) for the tumor cells, immune cells, and nucleus, respectively. 
Utilizing the CD45+/- feature, masks were generated to liberate barcodes for sequencing via the Illumina’s NovaSeq 6000 platform. (B) The differential 
gene expression in TLS regions against GCs visualised as mean transcript expression (AveExpr, in log2) versus fold change (logFC, in log2). Color represents 
markers that are not differentially expressed (gray), significantly upregulated (red), or downregulated (blue), based on a false discovery rate (FDR) of < 0.05 
following multiple testing adjustments. (C, E, F, and G) Gene-set clusters identifying dominant biological themes (E-G) upregulated or (C) downregulated 
in the comparison TLS vs. GCs with gene-set names depicted as representative wordclouds. Clusters 1,2,4, and 6 representing distinct biological themes 
were identified in each comparative analysis. (D, H, I, and J) The corresponding gene statistics (i.e. fold change in log2) within the gene sets clusters are 
plotted against the number of gene sets in the cluster to which the gene is differentially expressed
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elevated T-lymphocyte infiltration could be a biomarker 
for ICI response in R/M HNSCC patients [39, 40].

Furthermore, the spatial proteomics analysis of tumor 
compartments between patients with disease control 
status (CR/PR/SD) and patients with progression (PD) 
revealed that the former group had higher expressions of 
immune markers such as CD20 (though not statistically 
significant), CD40, CD68, HLA-DR, CD11c, and CD163. 

These markers, characteristic of antigen-presenting 
cells, imply a potent mechanism of antigen presentation 
within the TME of patient responders. These findings 
are supported by existing studies that highlight the sig-
nificant role of TLS structures in orchestrating immune 
responses, especially by presenting tumor-specific anti-
gens to T cells [21, 41, 42]. By providing antigenic stimu-
lation, TLSs maintain the survival of stem-like memory 

Fig. 4 Cell types. (A, B) Multiplex immunofluorescence imaging of key immune cell markers within TLS at single-cell resolution. The morphology markers 
included CD31 (yellow) and CD34 (green) for blood vessels, CD45RO (cyan) for memory T cells, Ki67 (red) for cell proliferation, HLA-DR (cyan) for antigen 
presentation, PanCk (green) for tumor cells, CD20 (brown) and CD21 (red) for B cells, CD4 (blue) for CD4+ T cells, CD8 (cyan) for CD8+ T cells, CD68 (purple) 
for macrophages, and CD11c (grey) for dendritic cells. (C) Representative image of cell types in the TLS structure. (D) Annotated clusters were merged 
into 7 cell types. (E) Heatmap indicating clustering of cell types based on markers. (F) Representative image of cell types in the GC structure. (G, H, I, and 
J) Representative images of cell proportions within the tumor and the stromal compartments of patients with different response group, including, CR, 
PR, SD, and PD, respectively

 



Page 10 of 13Sadeghirad et al. Journal of Translational Medicine          (2024) 22:677 

CD8+ T cells, contributing to a more robust antitumor 
response [38, 43].

To better understand this, we performed a comprehen-
sive whole transcriptome analysis with a focus on TLS 
and germinal centre (GC) structures. We identified a 
significantly elevated expression of specific immune sig-
natures in the TLS, indicating immune modulation, the 
involvement of various immune cell types, and an inter-
feron-stimulated antiviral-like immunity, in contrast to 
GC. These findings are critical as they validate that TLSs 
actively participate in increasing the immunogenicity of 
the TME [21, 44]. A study by Di Caro et al., showed that 
the presence of TLS in the colorectal cancer (CRC) was 
associated with T lymphocyte infiltration and recruit-
ment [44]. The upregulation of these pathways suggests 

that TLSs function as a hub for immune cell recruitment 
and activation, allowing for a broad and potent antitu-
mor immune response [17]. The presence of TLSs in 
tumor tissues of cancer patients is associated with ICI 
response, and their presence prior to treatment could 
serve as a predictor biomarker of response [17, 45–47]. 
Additionally, the active interferon response within the 
TLS structures highlights the ability of TLSs to engage in 
antiviral-like immune reactions [48]. These characteris-
tics are crucial in the context of viral-associated HNSCC, 
especially those driven by HPV [48]. Our findings also 
demonstrated a downregulation of gene signatures 
related to lipid metabolism in the TLS compared to GCs, 
suggesting metabolic reprogramming within the TME of 
HNSCC tumors [49–51].

Fig. 5 Cellular interaction and distance analysis. (A) Representative field of view of enriched TLS: tumor interactions. Morphology markers included CD20 
(orange) for B cells and PanCk (green) for tumor cells. (B) Violin plot representing the mean distance of TLS to the closest tumor cell in each response 
group. (C) Combined strip and point plots visualizing the number of cell types per response group. Responder group representing patients with CR/PR/
SD, and Non-responder representing a patient with PD
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Our proteomics and transcriptomics findings under-
score the pivotal function of TLSs in supporting an envi-
ronment that promotes antitumor immunity. Following 
these results, our spatial analysis provides an important 
perspective on the functional dynamics of TLSs within 
the TME, particularly in terms of their spatial arrange-
ment and interaction with tumor cells.

A key finding from our study was that, measuring the 
distance between TLSs and tumor cells provided criti-
cal insights into how the spatial organization of the TME 
influences ICI outcomes. In this study, we found that 
patients with a less favorable response to ICIs had TLSs 
located further away from the tumor cells. These findings 
indicate that TLSs are not randomly distributed but are 
purposely positioned in proximity to tumor cells. Simi-
larly, Pfannstiel et al. found that a close distance between 
TLSs and tumor invasive front was significantly associ-
ated with an inflamed immune phenotype and improved 
patient survival in muscle-invasive bladder cancer [26]. 
This spatial correlation demonstrates a synergistic rela-
tionship between immune activation molecular signa-
tures and their spatial presentation within the TME, 
implying that cancer treatment success is dependent on 
both the presence of TLSs and their spatial localization.

Study limitations
Our study has a number of limitations, which include 
the use of a region of interest (ROI)-based assay (GeoMx 
DSP) and limited size of the patient cohort. Due to the 
paucity of TLS structures in the tissues able to be col-
lected, our transcriptomic analysis was limited to a sin-
gle sample where we compared defined germinal centre 
biology to that of TLS. Additional samples would have 
allowed these measurements to be made across a greater 
diversity of TLS maturity for association with therapy 
outcome. The absence of a standardized approach for 
TLS quantification presents a methodological challenge. 
TLS identification and quantification methods differ 
across studies [25], making comparisons difficult and 
potentially preventing the development of a compre-
hensive understanding of TLS function in cancer immu-
notherapy. Additionally, the markers used in multiplex 
imaging were limited to basic cell linages and did not 
provide insights into how their functional characteristics 
may associate with TLS biology. Addressing these limita-
tions in future research will be critical to improving our 
understanding of TLS dynamics and their implications 
for better therapeutic outcomes in patients with R/M 
HNSCC.

Conclusion
This study revealed a complex interaction within the 
TME, where the molecular and cellular composi-
tions of TLSs are fundamentally linked to their spatial 

arrangement relative to tumor cells. This intricate inter-
play is critical for understanding the mechanisms behind 
the variable responses to ICI in R/M HNSCC patients. 
The application of sophisticated spatial profiling and 
phenotyping technologies has been instrumental in 
gaining these insights, allowing us to precisely map the 
localization of TLSs and delineate their cellular architec-
ture. These methodologies have provided the essential 
framework for connecting our molecular insights with 
the physical structure of the TME. This emphasizes the 
significance of spatial arrangements and detailed cellular 
composition of TLSs in converting biological cues into 
potent antitumor immune responses.
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