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Abstract 

Introduction Identifying new biomarkers for predicting immune checkpoint inhibitors (ICIs) response in non-small 
cell lung cancer (NSCLC) is crucial. We aimed to assess the variant allele frequency (VAF)-related profile as a novel 
biomarker for NSCLC personalized therapy.

Methods We utilized genomic data of 915 NSCLC patients via cBioPortal and a local cohort of 23 patients for model 
construction and mutational analysis. Genomic, transcriptomic data from 952 TCGA NSCLC patients, and immunofluo-
rescence (IF) assessment with the local cohort supported mechanism analysis.

Results Utilizing the random forest algorithm, a 15-gene VAF-related model was established, differentiating 
patients with durable clinical benefit (DCB) from no durable benefit (NDB). The model demonstrated robust per-
formance, with ROC-AUC values of 0.905, 0.737, and 0.711 across training (n = 313), internal validation (n = 133), 
and external validation (n = 157) cohorts. Stratification by the model into high- and low-score groups correlated 
significantly with both progression-free survival (PFS) (training: P < 0.0001, internal validation: P < 0.0001, external 
validation: P = 0.0066) and overall survival (OS) (n = 341) (P < 0.0001). Notably, the stratification system was independ-
ent of PD-L1 (P < 0.0001) and TMB (P < 0.0001). High-score patients exhibited an increased DCB ratio and longer PFS 
across both PD-L1 and TMB subgroups. Additionally, the high-score group appeared influenced by tobacco exposure, 
with activated DNA damage response pathways. Whereas, immune/inflammation-related pathways were enriched 
in the low-score group. Tumor immune microenvironment analyses revealed higher proportions of exhausted/effec-
tor memory CD8 + T cells in the high-score group.

Conclusions The mutational VAF profile is a promising biomarker for ICI therapy in NSCLC, with enhanced therapeu-
tic stratification and management as a supplement to PD-L1 or TMB.
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Introduction
Immune checkpoint inhibitors (ICIs) have demonstrated 
unprecedented clinical success in treating non-small 
cell lung cancer (NSCLC), particularly in patients with 
advanced disease [1, 2]. The therapeutic landscape of 
NSCLC has been transformed by ICIs targeting the pro-
grammed death 1 (PD-1)/programmed death-ligand 1 
(PD-L1) or cytotoxic T-lymphocyte antigen 4 (CTLA-4) 
[3]. Despite these advances, some patients who initially 
respond to ICIs do not maintain long-lasting benefits [4, 
5]. Consequently, identifying predictive biomarkers for 
durable responses to ICIs is a critical challenge in con-
temporary clinical practice.

Although several effective biomarkers, such as PD-L1 
expression [1, 2, 6], microsatellite instability (MSI)/
mismatch-repair deficiency (dMMR) [7], and tumor 
mutation burden (TMB) [8], have been proposed, these 
markers have deficiencies. NSCLC exhibits a low preva-
lence of MSI and dMMR (< 5%) [9]. Accurate TMB analy-
sis relies on expensive genomic platforms, which restricts 
its feasibility of widespread application. PD-L1 detected 
by immunohistochemistry (IHC) is unstable due to the 
anti-PD-L1 antibodies applied in the experiment and the 
criteria used to determine its positivity. Moreover, PD-L1 
expression is characterized by intratumoral [10] and 
intertumoral heterogeneity, particularly between primary 
and metastatic biopsies [11, 12], complicating its reliabil-
ity as a biomarker. Thus, it is still of great value to identify 
reliable and precise biomarkers with acceptable technical 
feasibility.

The interaction between oncogenic driver gene altera-
tions and the tumor immune microenvironment influ-
ences ICI therapy response [13]. Studies have reported 
that EGFR, ERBB2 (HER2), STK11 mutations, and ALK, 
ROS1 and RET  fusions are associated with reduced ICI 
response efficacy [12–16]. In contrast, TP53, KRAS, 
BRAF V600E, NOTCH4, ZFHX3, EPHA7, SETD2, POLE, 
and POLD mutations are related to superior efficacy [12, 
17–20]. In addition, co-occurring genomic alterations 
contribute to the heterogeneity of the NSCLC microen-
vironment and make it more complicated to predict ICI 
response [16, 21]. The concept of variant allele frequency 
(VAF), defined as the percentage of variant reads divided 
by the total reads at that locus, has emerged as a note-
worthy biomarker [22–24]. In lung adenocarcinoma, low 
TP53 VAF is a significant indicator of better anti-PD-(L)1 
monotherapy outcomes [25]. However, the potential of a 
composite mutational VAF profile as a predictive tool in 
NSCLC ICI therapy warrants further investigation.

In this study, we employed genomic data of 915 
NSCLC patients from the database, along with 23 
patients from a local dataset, to construct a compre-
hensive mutational VAF profile that integrates various 

genetic alterations for personalized treatment strate-
gies. Additionally, we conducted an in-depth analy-
sis of genomic and transcriptomic data of 952 NSCLC 
patients to explore the underlying mechanism of 
response to immunotherapy.

Materials and methods
Patient data collection and preparation
Clinical information and genomic data, including 781 
Memorial Sloan Kettering-Integrated Mutation Profiling 
of Actionable Cancer Targets (MSK-IMPACT) Sequenc-
ing [26] data and 134 whole-exome sequencing (WES) 
data, were collected from the cBioPortal for Cancer 
Genomics (https:// www. cbiop ortal. org). Clinical infor-
mation and tissue samples of the local cohort (n = 23) 
were collected from the National Cancer Center/National 
Clinical Research Center for Cancer/Cancer Hospi-
tal. MSK patients with progression-free survival (PFS) 
information were included in MSK cohort 1 (n = 446). 
And the remaining MSK data with overall survival (OS) 
information was included in MSK cohort 2 (n = 335). 
MSK cohort 1 was then randomly divided into a training 
cohort (70%, n = 313) and a test cohort 1 (30%, n = 133) 
in a ratio of 7:3. A total of 157 patients with WES data, 
including Rizvi’s cohort [8] (n = 34), Hellmann’s cohort 
[27] (n = 75), Miao’s cohort [28] (n = 25), and local cohort 
(n = 23) were used as test cohort 2. MSK cohort 2 served 
as test cohort 3. Clinical information, genomic data, and 
transcriptomic data of 952 NSCLC patients were col-
lected from The Cancer Genome Atlas (TCGA) database 
(https:// portal. gdc. cancer. gov/). Information on the data-
sets included in the study is shown in Table S1.

Clinical parameters such as age, sex, histological type, 
smoking status, therapy, and survival information were 
extracted. The clinical information of the local cohort 
was collected from electronic medical records. Accord-
ing to the Response Evaluation Criteria in Solid Tumors 
(RECIST) version 1.1 for NSCLC, clinical response was 
evaluated using complete response (CR), partial response 
(PR), stable disease (SD), and progressive disease (PD). 
To identify the patients with durable clinical benefit 
(DCB) (PFS > 6  months), we defined those with CR/
PR or SD lasting ≥ 6 months as DCB group. Those who 
experienced PD on or before 6 months were defined as 
no durable benefit (NDB) group. For the assessment of 
response, we further evaluated best overall response 
(BOR), which is an indicator of objective tumor shrink-
age and a clearer signal of immunotherapy activity. Spe-
cifically, BOR categories include CR/PR and SD/PD. This 
study was approved by the Medical Ethics Committee of 
the National Cancer Center/National Clinical Research 
Center for Cancer/Cancer Hospital.

https://www.cbioportal.org
https://portal.gdc.cancer.gov/
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Whole‑exome sequencing (WES)
After genomic DNA was extracted from the tissue, its 
quality was verified. Subsequently, qualified genomic 
DNA was used for library preparation. The DNA librar-
ies were sequenced on the Illumina platform, with raw 
data recorded in FASTQ format. After data quality con-
trol, the sequencing data were mapped to the reference 
genome (GRCh38). SAMtools mpileup and bcftools 
were used for variant calling and identifying single 
nucleotide polymorphisms (SNPs). Detailed steps are 
shown in the supplementary materials.

Identification of potential signatures
All the gene mutations included in this study were 
somatic. The genetic mutation profiles of the patients 
were extracted from the genomic data, and mutations 
with a frequency under 5% were eliminated. The Chi-
square test (Monte Carlo simulation) was then used to 
select differential mutational genes between DCB and 
NDB groups. An adjusted p-value < 0.05 was considered 
significant.

Construction and validation of the VAF‑related model
The VAF of mutational genes was defined as the per-
centage of variant reads divided by the total reads at 
that locus. If a patient had more than one mutational 
site in a certain gene, the VAF of the gene was calcu-
lated as the average of all mutational sites’ VAFs.

The random forest algorithm was applied to establish 
the prediction model using the selected genes, employ-
ing the R package “randomForestSRC” (https:// cran.r- 
proje ct. org/ web/ packa ges/ rando mFore stSRC/ index. 
html). The training cohort was used to construct the 
model. The model was then validated in the internal 
test cohort (test cohort 1) and the external test cohort 
(test cohort 2), respectively. Besides, test cohort 3 was 
used to verify the ability of the model in terms of OS.

To estimate the efficacy of the model score, we used R 
package “pROC” (https:// cran.r- proje ct. org/ web/ packa 
ges/ pROC/ index. html) to calculate the area under the 
receiver operating characteristic (ROC) curve (AUC). 
Based on the median of the training cohort, the NSCLC 
patients were divided into high- and low-score groups. 
The R package “survminer” (https:// cran.r- proje ct. 
org/ web/ packa ges/ survm iner/ index. html) was used to 
develop Kaplan–Meier (K-M) survival curve and cal-
culate p-values. Moreover, multivariate Cox regres-
sion analysis was performed to determine whether the 
model was independent of age, sex, histological type, 
therapy, TMB, and PD-L1 expression. The R pack-
age “survival” (https:// cran.r- proje ct. org/ web/ packa 
ges/ survi val/ index. html) was applied to calculate the 

hazard ratio (HR), 95% confidence interval (CI), and 
p-value.

Genomics analyses
The R package “maftools” [29] (https:// www. bioco nduct 
or. org/ packa ges/ relea se/ bioc/ html/ mafto ols. html) was 
used for mutational analyses and visualization, includ-
ing oncoplot, transition and transversions (TiTv) analy-
sis, somatic interactions analysis, VAF visualization, and 
oncogenic pathways enrichment. According to the six 
types of single nucleotide variant (SNV) and the base 
types variation upstream and downstream of the SNV 
position, there are 96 SNV types. In single-base substi-
tution (SBS) analysis, the optimal cluster number was 
defined according to cophenetic metric of non-neg-
ative matrix factorization (NMF) clustering analysis. 
After comparing the extracted SNV signatures with the 
Catalogue of Somatic Mutations in Cancer (COSMIC) 
(https:// cancer. sanger. ac. uk/ signa tures/ signa tures v2/) 
[30] database and calculating the cosine similarity, the 
SNV signatures were assigned to the most probable SBS 
signatures. SBS analysis was performed using the R pack-
ages “maftools”, “pheatmap”, and “NMF” [31].

Transcriptomic data preparation and differential analysis
A cohort of 952 NSCLC patients with both genomic and 
transcriptomic data was identified from the TCGA data-
base. These patients were scored with the constructed 
VAF-related model and stratified into high- and low-
score groups. Gene counts were normalized to fragments 
per kilobase of transcript per million mapped reads 
(FPKM). Subsequently, the R package “limma (3.58.1)” 
(https:// www. bioco nduct or. org/ packa ges/ relea se/ bioc/ 
html/ limma. html) was utilized to eliminate batch effects 
when combining datasets. The Wilcoxon rank sum test 
was utilized for differential analysis between high- and 
low-score groups and to calculate fold change (FC) values 
for further mechanism analysis.

Pathway enrichment analysis
The Weighted Gene Co-expression Network Analy-
sis (WGCNA) employed the R package “WGCNA” [32] 
(https:// cran.r- proje ct. org/ web/ packa ges/ WGCNA/ 
index. html) to construct the weighted gene co-expres-
sion network and select related modules. The top 5,000 
genes with the most variation based on median absolute 
deviation (MAD) were involved in the analysis. The soft 
threshold parameters were determined when the scale-
free topology model fit reached 0.9. An adjacency matrix 
and a topological overlap matrix (TOM) were then 
constructed. The minimum number of genes in a mod-
ule was set to 50. Using the corresponding dissimilar-
ity (1-TOM), hierarchical clustering was performed and 

https://cran.r-project.org/web/packages/randomForestSRC/index.html
https://cran.r-project.org/web/packages/randomForestSRC/index.html
https://cran.r-project.org/web/packages/randomForestSRC/index.html
https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/survminer/index.html
https://cran.r-project.org/web/packages/survminer/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://www.bioconductor.org/packages/release/bioc/html/maftools.html
https://www.bioconductor.org/packages/release/bioc/html/maftools.html
https://cancer.sanger.ac.uk/signatures/signaturesv2/
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
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modules with a high degree of topological overlap were 
selected. Pearson’s correlation method was used to find 
modules relevant to traits, and those strongly correlated 
with the VAF-related model were selected.

The R package “clusterProfiler” [33] (https:// www. 
bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ clust erPro 
filer. html) was used for Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) functional 
enrichment analysis. The adjusted p-value was calculated 
using the Benjamini and Hochberg false discovery rate 
(FDR) method. Both the p-value and FDR < 0.05 were 
considered significant.

The R package “clusterProfiler” (V3.4.6) was employed 
for Gene Set Enrichment Analysis (GSEA) with gene 
sets (c2.cp.kegg.v7.0.symbols.gmt, c5.go.bp.v2023.1.Hs.
entrez.gmt) as the background. The normalized enrich-
ment score (NES), nominal p-value, and FDR were cal-
culated to indicate the enrichment and significance of the 
associated pathways with 1,000 gene set permutations. 
The FDR-value for significant enrichment pathways was 
set as 0.05.

Tumor immune microenvironment (TME) analysis
The estimation of the total immune infiltrate and 
immune cell subsets in each sample was conducted using 
CIBERSORTx (https:// ciber sortx. stanf ord. edu/) with the 
LM22 gene set. Additionally, EcoTyper (https:// ecoty per. 
stanf ord. edu/) was utilized to identify the fundamental 
cell states and cellular ecosystems constituting NSCLC 
from bulk transcriptome data [34].

Immunofluorescence (IF)
The Tyramide Signal Amplification (TSA) technique was 
used for chromogenic immunostaining. Paraffin sec-
tions were backed in a 60 ℃ incubator for 120 min. After 
dewaxing, hydration, and antigen retrieval, the tissue 
sections were incubated in blocking buffer to block non-
specific binding proteins and endogenous peroxidase 
activity. Then, the sections were incubated with primary 
antibody CD8 (diluted at 1:100, #85,336, Cell Signaling 
Technology) at 37 ℃ for 1 h. After washing, the sections 
were incubated with a secondary antibody and stained 
with fluorescein-tyramide (AXT37100031, AlphaTSA 
Multiplex IHC Kit, Beijing, China) to amplify the signal. 
The slides were then counterstained with DAPI.

Statistical analysis
All statistical analyses in this study were performed using 
GraphPad Prism (version 9.0) and R version 4.2.3 soft-
ware (https:// www.r- proje ct. org/). Categorical variables 
were described by counts and percentages. Continuous 
variables were tested for normality before analysis. Nor-
mally distributed data were described by mean ± standard 

deviation, while non-normally distributed data were 
described by median and quartile. Intergroup compari-
sons were analyzed using the Chi-square test for cate-
gorical variables. Non-normally distributed and normally 
distributed continuous variables were analyzed using the 
Mann-Whitey U test and t-test, respectively. The Pearson 
correlation method was employed in correlation analy-
ses. P-values in K-M analysis were calculated by Log-
rank test. A p-value < 0.05 was regarded as statistically 
significant.

Results
Patient characteristics
A total of 915 NSCLC patients from The cBioPortal for 
Cancer Genomics and 23 NSCLC patients from the 
local cohort were involved in model construction, model 
evaluation, and genomics analyses. All 938 patients were 
treated with anti-PD-(L)1 therapy, including monother-
apy, anti-PD-(L)1 in combination with anti-CTLA-4, and 
anti-PD-(L)1 in combination with chemotherapy. Addi-
tionally, 952 NSCLC patients from TCGA were involved 
in WGCNA, functional enrichment analysis, and tumor 
immune microenvironment analysis. The flowchart of 
this study is shown in Figure S1. The information of the 
included datasets is shown in Table S1. The demograph-
ics and clinical characterization of the cohorts are shown 
in Table S2.

Construction and validation of the VAF‑related model
The genetic mutation profiles of the patients were 
extracted from genomic data, and mutations with a fre-
quency below 5% were excluded. Subsequently, differen-
tially mutated genes between the DCB and NDB groups 
were selected using the Chi-squared test. A p-value less 
than 0.05 was considered statistically significant. A total 
of 15 genes were identified, including PTPRT (P = 0.001), 
EGFR (P = 0.002), EPHA3 (P = 0.002), ERBB4 (P = 0.002), 
and others listed in Fig. 1A and Table S3. We then used 
the random forest algorithm to construct the model 
based on the VAF of the selected genes. The ROC-AUC 
values reached 0.905, 0.737, and 0.711 in the Train-
ing (n = 313), Test-1 (internal validation, n = 133), and 
Test-2 (external validation, n = 157) cohorts, respectively 
(Fig. 1B).

High‑score group of the VAF‑related stratification 
correlated with better ICI efficacy and favorable prognosis
All the patients were divided into high- and low-score 
groups according to the same threshold, which was the 
median of the training cohort (threshold = 0.2645). The 
K-M survival curve of the high-score group presented a 
preferable median PFS (mPFS) (Training: 9.70 months 
vs. 2.20 months, P < 0.0001; Test-1: 5.77 months vs. 1.80 

https://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://cibersortx.stanford.edu/
https://ecotyper.stanford.edu/
https://ecotyper.stanford.edu/
https://www.r-project.org/
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months, P < 0.0001; Test-2: 7.61 months vs. 3.65 months, 
P = 0.0066) (Fig.  2A) and OS (Test-3 [n = 341]: 15.00 
months vs. 8.00 months, P < 0.0001) (Fig. 2B), compared 
with the low-score group. We noticed that clinical char-
acteristics, such as therapy types, may affect outcomes 
(Figure S2). To eliminate the influence of confounding 
factors, we included clinical parameters in a multivariate 
Cox regression model. After correction, the stratification 
system remained statistically significant in predicting 
PFS (Fig. 2C) and OS (Fig. 2D), making the results more 
robust and reliable. The high-score group also con-
tained a higher proportion of DCB patients (Training: 
P < 0.0001, Test-1: P = 0.0087, Test-2: P = 0.0001). And 
for the assessment of BOR, the high-score group con-
tained a higher proportion of CR/PR patients (Training: 
P < 0.0001, Test-1: P = 0.0004, Test-2: P = 0.0142), indicat-
ing a favorable response to ICIs (Fig. 2E and 2F).

VAF‑related stratification combined with PD‑L1 or TMB can 
efficiently differentiate ICI response
Subsequently, we investigated the association between 
the VAF-related stratification model and known bio-
markers for ICIs, namely TMB and PD-L1. We found no 
significant correlation between PD-L1 and the stratifica-
tion system but a weak correlation with the model score 
 (r2 = 0.01, P = 0.0366) (Fig. 3A). In contrast, a higher TMB 
was linked to the high-score category (P < 0.0001), and 

the model score showed a significant correlation with 
TMB  (r2 = 0.07, P < 0.0001) (Fig. 3B). To verify the inde-
pendence of the model from PD-L1 and TMB, we inte-
grated the stratification model into a multivariate Cox 
regression analysis. After adjustment, the VAF-related 
stratification remained a statistically significant prognos-
tic factor (Fig. 3C and 3D). This indicates that the model 
may influence prognosis through mechanisms independ-
ent of PD-L1 and TMB.

We then assessed the efficacy of TMB and PD-L1 
in conjunction with our model. The ROC-AUC of 
PD-L1 improved from 0.617 to 0.857 when combined 
with the model (Fig.  3E). Similarly, the performance 
of TMB increased from 0.617 to 0.825 (Fig.  3H). For 
the purpose of subgroup comparisons, we defined 
PD-L1 expression levels below 1% as ‘PD-L1 low’ and 
levels between 1–100% as ‘PD-L1 high’. A TMB of less 
than 10 mutations per megabase (mut/Mb) was cat-
egorized as ‘TMB-low’, while a TMB of 10 mut/Mb or 
above was considered ‘TMB-high’. Notably, a substan-
tially greater proportion of patients who experienced 
DCB were found in the high-score group, regardless of 
whether they had high (P < 0.0001) or low (P < 0.0001) 
PD-L1 expression (Fig. 3F). When PD-L1 was assessed 
in conjunction with the VAF-related model, the two 
factors together provided a more distinct PFS differen-
tiation for both high (P < 0.0001) and low (P < 0.0001) 
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PD-L1 groups (Fig.  3G). The high-score group also 
manifested a higher proportion of DCB in both the 
TMB-high (P < 0.0001) and TMB-low (P < 0.0001) 
populations (Fig.  3I). Furthermore, when TMB was 
considered alongside our stratification model, the com-
bined factors significantly improved the distinction of 
the PFS curves for both TMB-high (P < 0.0001) and 
TMB-low (P < 0.0001) groups (Fig.  3J). This combina-
tion addressed the limitations of using PD-L1 and TMB 
alone (Figure S3).

Collectively, these results suggest that the mutational 
VAF profile is a potent adjunctive biomarker that holds 
promise for increasing the accuracy of PD-L1 expression 
and TMB in differentiating therapeutic responses to ICIs.

Mutational landscape profiling of VAF‑related stratification 
system
The basic mutational analyses of the cohorts were pre-
sented in Figure S4-5. To validate the mutational profile 
of the 15 genes involved in the model, we drew an onco-
plot of these genes, delineating distinctions between the 
high- and low-score groups. We observed that EGFR and 
STK11 alterations were predominantly enriched in the 
low-score group. Whereas alterations in the remaining 
13 genes were more frequent within the high-score group 
(Fig. 4A). Additionally, the high-score group exhibited a 
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Fig. 2 Variant allele frequency (VAF)-related stratification model in predicting immune checkpoint inhibitors (ICIs) response and prognosis. A–B 
Kaplan–Meier (K-M) survival curve of progression-free survival (PFS) in Training, Test 1, Test 2 cohorts, and overall survival (OS) in Test 3 cohort. The 
p-value was calculated using the log-rank test. C–D Multivariate Cox regression analysis of risk score level and clinical characteristics in the Training, 
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pathway (P = 0.0059), NOTCH pathway (P = 0.0043), 
WNT pathway (P = 0.0009), TP53 pathway (P = 0.0003), 
Hippo pathway (P = 0.0038), MYC pathway (P = 0.0366), 
and NRF2 pathway (P = 0.0262) (Fig.  4B), suggesting a 
potential biological underpinning for risk categorization. 

The complete gene profiles of the pathways were shown 
in Figure S6.

SBS signatures were discerned to reveal underlying 
mutagenic processes. SBS2 (APOBEC Cytidine Deami-
nase [C > T]), SBS4 (exposure to tobacco [smoking] 
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mutagens), and SBS5 (Unknown) demonstrated varia-
tions in distribution between the two groups (Figure S7 
and Fig.  4C). Particularly, Signature 2 (SBS4), which is 
associated with a smoking history, was significantly more 

prevalent in the high-score group. In contrast, signature 
1 (SBS2, APOBEC Cytidine Deaminase [C > T]) was more 
abundant in the low-score group (Fig. 4D). Moreover, of 
the 13 genes enriched in the high-score group, nine were 
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also characteristic of Signature 2 (the red genes under the 
blue bars) (Fig.  4E). These results illustrated the strong 
association between the high-score group and smoking. 
Further correlation analysis demonstrated a direct asso-
ciation between smoking, ICIs response, and the VAF 
stratification system (Fig.  4F). The smoking population 
tended to achieve a higher proportion of DCB (Fig. 4G), 
and K-M analysis showed a significantly improved PFS in 
smoking patients (Fig. 4H).

Separate analyses of SBS signatures within the high- 
and low-score groups provided further insights. In 
the high-score group, signatures corresponded to 
SBS13 (APOBEC Cytidine Deaminase [C > G]), SBS5 
(Unknown), and SBS4 (exposure to tobacco [smok-
ing] mutagens), respectively. Signatures extracted from 
the low-score group matched SBS2 (APOBEC Cytidine 
Deaminase [C > T]) and SBS3 (defects in DNA-double-
strand break [DSB] repair by homologous recombination 
[HR]) (Figure S7 and Fig.  4D). These divergent profiles 
suggest that various etiological factors may underlie the 
distinct mutational landscapes, potentially influencing 
the therapeutic responses to ICIs.

Transcriptomic landscape mapping of the dysregulated 
pathways in VAF‑related stratification system
To elucidate the biological underpinnings of the model, 
we conducted a comprehensive analysis of the genomic 
and transcriptomic data from 952 NSCLC patients 
derived from TCGA. Each patient was evaluated using 
the VAF-related model. Subsequently, WGCNA identi-
fied 5 modules correlated with the stratification system. 
Four of these modules—green, turquoise, red, and yel-
low—were associated with the low-score group, while 
the brown module was indicative of the high-score group 
(Fig. 5A-B, Figure S8 and Table S4).

Functional pathway analysis of the characteristic 
genes within these modules was performed using GO 
and KEGG enrichment analyses (Table  S8-9). The low-
score gene modules were notably enriched in pathways 
pertaining to cellular interaction, inflammation, and 
cytoskeleton organization, such as cytoskeleton in mus-
cle cells, ECM-receptor interaction, focal adhesion, leu-
kocyte transendothelial migration, cytokine-cytokine 
receptor interaction, and complement and coagulation 
cascades. Conversely, the high-score group exhibited 
significant enrichment in DNA damage response (DDR) 
pathways, such as cell cycle, DNA replication, base exci-
sion repair (BER), mismatch repair (MMR), and homolo-
gous recombination (HRR) (Fig. 5C and Figure S9-10).

GSEA of the whole gene set further substantiated 
these findings. The analysis demonstrated enrich-
ment for cell adhesion molecules, chemokine signal-
ing pathway, cytokine-cytokine receptor interaction, 

viral protein interaction with cytokine and cytokine 
receptor, efferocytosis, endocytosis, and regulation of 
actin cytoskeleton in the low-score group (Fig.  5D). 
In the high-score group, GSEA revealed enrichment 
for chemical carcinogenesis-DNA adducts pathway 
(Fig. 5D).

Reshape of tumor immune microenvironment 
in VAF‑related stratification system
To investigate TME discrepancies between the high- 
and low-score groups, we employed the CIBERSORTx 
algorithm to calculate the composition of tumor-infil-
trating immune cells. The high-score group exhibited 
a higher abundance of immune cells. We identified five 
cell types with significant differences between the two 
groups. The low-score group contained a reduced pro-
portion of  CD8+T cells (P = 0.0236), activated memory 
 CD4+T cells (P = 0.0079), follicular helper T cells (Tfh) 
(P = 0.0066), activated NK cells (P = 0.0322), and M1 
macrophage (P = 0.0117) (Fig. 6A and Table S5). Addi-
tionally, IF staining was performed to assess  CD8+T 
cell presence within the local cohort of 23 patients. 
Logistic regression analysis showed that the  CD8+T 
cells was statistically associated with the high-score 
group (P = 0.0127) (Fig.  6B). Figure  6C illustrates a 
comparison of staining intensity in a typical case of 
the high-score group (PFS = 17.0 months, average CD8 
positive intensity: 331.87) and a case of the low-score 
group (PFS = 3.7 months, average CD8 positive inten-
sity: 215.79).

Moreover, we applied Ecotyper [34] to further estimate 
the detailed cell states of each cell type. We found that 
exhausted/effector memory (S03) CD8 T cells were sig-
nificantly elevated in the high-score group (P = 0.0015), 
which may account for the preferable response to ICIs in 
this group (Fig.  6D–E). Classical M1 (S03), which dem-
onstrate an anti-tumor function, was also higher in the 
high-score group, while Classical M0 (normal-enriched) 
(S02) was lower (P = 0.0675) (Fig.  6E). This result sug-
gests a potential transformation from M0 to M1 in the 
high-score group. CD4 T cell (P = 0.0083) and NK cell 
(P = 0.0120) also showed statistically different com-
positions of cell states (Fig.  6E). Other cell types were 
shown in the supplementary materials (Figure S11 and 
Table S6–7).

In summary, our findings highlight the critical role of 
gene alterations in reconfiguring the TME, which con-
sequently influences tumor immunity and modulates 
responses to ICI therapies. The pronounced disparity in 
 CD8+T cell infiltration between the high- and low-score 
groups particularly illustrates the immune mediation role 
of genomic variations in ICI treatment.
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Discussion
Despite extensive efforts being made in the field of 
immunotherapy [6–8], the availability of predictive bio-
markers for ICIs remains limited, and the mechanisms 
underlying ICI resistance are not fully understood. 
Gene alterations have shown prominent contributions 
in reshaping TME and influencing responses to ICIs 
[13–16]. The mutational VAF may serve as a promis-
ing and reliable biomarker. To address the shortcom-
ings of existing biomarkers, we focused on oncogenetic 
mutational VAF and developed a stratification system 
aimed at differentiating ICI responses in patients with 
NSCLC. Subsequently, we investigated the mutational 
and transcriptomic landscape associated with the VAF-
related model and analyzed the composition of tumor-
infiltrating immune cells in high- and low-score groups.

The MSK cohort was utilized in model construc-
tion and internal validation, leveraging MSK-IMPACT 
Sequencing—a hybridization capture-based  next gen-
eration sequencing (NGS) assay. An external cohort 
employing WES assay further validated the model. The 
consistency across these disparate platforms bolsters the 
robustness of the VAF-related model. Additionally, VAF 
detection is potentially a more stable, technically feasible, 
and cost-effective predictor compared to current bio-
markers. Recent studies have demonstrated the ability to 
detect VAFs as low as 0.1% using approaches such as low-
depth NGS or quantitative PCR with multiplex blocker 
displacement amplification (mBDA) method [35, 36], 
further supporting VAF’s utility as a clinical biomarker.

The majority of gene alterations implicated in our 
model, including PTPRT, EPHA3, ERBB4, ATRX, 
PTPRD, AMER1, TERT, HGF, POLE, NTRK3, EPHA5, 

* ** ** **

0.0

0.2

0.4

0.6

Mac
rop

ha
ge

s M
0

Mac
rop

ha
ge

s M
2

T c
ell

s C
D4 m

em
ory

 re
sti

ng

Mac
rop

ha
ge

s M
1

Plas
ma c

ell
s

T c
ell

s C
D8

Mas
t c

ell
s r

es
tin

g

T c
ell

s C
D4 m

em
ory

 ac
tiv

ate
d

T c
ell

s fol
licu

lar
 he

lpe
r

Den
dri

tic
 ce

lls 
res

tin
g

T c
ell

s r
eg

ula
tor

y T
reg

s

NK ce
lls 

ac
tiv

ate
d

B ce
lls 

na
ive

Neu
tro

ph
ils

B ce
lls 

mem
ory

T c
ell

s C
D4 n

aiv
e

T c
ell

ga
mma d

elt
a

NK ce
lls 

res
tin

g

Mon
oc

yte
s

Den
dri

tic
 ce

lls 
ac

tiv
ate

d

Mas
t c

ell
s a

cti
va

ted

Eos
ino

ph
ils

C
el

l c
om

po
si

tio
n

High-score Low-score
TME Cell composition

Group
CD8_Avg_Positive_Intensity

Age

Sex (Male)

Histology (LUSC)

CD8_Avg_Positive_Intensity

0.4431

0.2623

0.3424

0.0127

1.009 ( 0.987 , 1.030 )

0.776 ( 0.505 , 1.192 )

1.195 ( 0.835 , 1.709 )

1.002 ( 1.001 , 1.004 )

0.5 1 1.5

Variable p value OR ( 95% CI )

Low-score group (n = 240)
State

CD8 T cells

State
S01 S02 S03

Relative expression

−4 −2 0 2 4

High-score group (n = 121)
State

Relative expression

−4 −2 0 2 4

47%
59%

21%

26%

32%
15%

(n = 254)(n = 104)
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

High Low
Score

CD8 T cell
S01

S02

S03

P = 0.0015

High score group, PFS = 17.0 month Low score group, PFS = 3.7 month 

A B

C

D E
27% 25%

23% 33%

6%
2%10%

18%11%

11%15%
7%9% 3%

(n = 227)(n = 105)
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

High Low
Score

CD4 T cell
S01

S02

S03

S04

S05

S06

S07

P = 0.0083

35% 31%

25% 28%

17% 27%

17%
7%

7% 7%
(n = 323)(n = 133)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

High Low
Score

NK cell
S01

S02

S03

S04

S05

P = 0.0120

8% 13%
15%

23%
21%

17%8%

8%
4%

4%12%

12%13%
7%

12% 9%
8% 7%

(n = 397)(n = 182)
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

High Low
Score

Monocyte and 
Macrophage

S01

S02

S03

S04

S05

S06

S07

S08

S09

P = 0.0675
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ALK, and PGR, were positively correlated with the high-
score group and favorable ICI responses. For some of 
these genes, like PTPRT [37, 38], PTPRD [38], ERBB4 
[39], ATRX [40], TERT [41], POLE [8], NTRK3 [42], 
EPHA5 [43], and ALK [14], previous literature has high-
lighted their potential roles as biomarkers for ICIs ther-
apy in NSCLC. Our study firstly reported the significance 
of EPHA3, AMER1, HGF, and PGR alterations. Consist-
ent with prior research, these genes were associated with 
DDR pathways, a higher TMB, and increased infiltration 
of tumor infiltrating lymphocytes (TILs). TERT was a 
catalytic subunit of telomerase, and played an impor-
tant role in cancer proliferation, invasion, and DNA 
damage response [44, 45]. POLE encoded the catalytic 
and proofreading subunits of DNA polymerase, affect-
ing DNA replication and proofreading [46]. EPHA3 was 
reported related to tumor-specific antigens presented by 
HLA class II molecules to  CD4+T cells [47]. HGF was 
positively correlated with PD-L1 and promoted immune 
escape in EGFR-TKI resistance NSCLC patients [48]. 
PTPRT mutations were related to a higher TMB, and 
increased infiltration of TILs [37]. PTPRD/PTPRT co-
mutations exhibited an improved immune-activated 
phenotype than mutated alone [38]. ERBB4, NTRK3, and 
EPHA5 mutations also had similar effects on TMB and 
TILs [39, 42, 43].

Interestingly, gene alterations in EGFR and STK11 
attracted an immunosuppressive TME. Our findings 
revealed a decrease in TILs, especially a decrease in 
exhausted/effector memory CD8 T cells, in the low-
score group, characterized by an accumulation of EGFR 
and STK11 mutations. Previous research has shown that 
EGFR mutations can lead to reduced PD-L1 expression, 
diminished T-cell infiltration, and a shrinking propor-
tion of PD-L1+/CD8+ TILs [49]. A lack of   CD8+ tissue-
resident memory (TRM) cells in EGFR-mutated lung 
adenocarcinoma might be a key factor contributing to 
a suppressive TME [50]. Tumors with STK11 mutations 
are typified by excessive production of pro-inflamma-
tory cytokines (IL6, G-CSF, and CXCL-7), accumulation 
of neutrophils with T-cell suppressive capacities, and 
low expression of PD-L1[16, 51]. Hence, specific gene 
alterations can remodel the TME, resulting in diverse 
responses to ICIs. However, the intrinsic regulatory 
mechanisms linking gene alterations and the TME rep-
resent a complex and dynamic system. DDR-related 
mutations, for example, can increase genomic instabil-
ity, generate tumor neoantigens, and improve tumor 
recognition by the adaptive immune system, leading to 
TIL recruitment [52, 53]. Conversely, certain oncogene 
mutations can attract immunosuppressive, resulting in a 
 CD8+T cell-deficient TME.

Our mutational signature analysis highlighted signifi-
cant differences between high- and low-score groups. 
In regard to APOBEC-driven SBS signatures, SBS2 
(APOBEC C > T) was enriched in the low-score group, 
while SBS13 (APOBEC C > G) was enriched in the high-
score group. The high-score group was also character-
ized by SBS4 (exposure to tobacco [smoking] mutagens). 
A recent genomic study revealed that tobacco-driven 
SBS4 and APOBEC signature SBS13 were enriched in 
stop-gain mutations (SGMs) in various cancer types [54]. 
C > G and C > A mutations are common to SBS13, while 
C > T mutations are common to SBS2. This accounted for 
why SBS13 was preferable to SBS2 in converting codons 
to stop codons (TAG, TAA, and TGA). Notably, SGMs 
are the most disruptive class of SNVs that induces pro-
tein loss of function (LOF), implicating these possibly as 
sources of neoantigens and correlating with increased 
TILs in the high-score group.

Due to the complexity of co-mutation and gene inter-
actions, developing a collaborative mutational profile to 
integrate complementary oncogenes is of critical impor-
tance for personalized oncology. In this study, we con-
structed a VAF-related model and integrated genomic 
and transcriptomic data to probe the initial mechanisms 
underlying the response to ICIs. Inevitably, there are 
several limitations. In clinical practice, combinations 
of anti-PD-(L)1 therapy with other treatments, such as 
chemotherapy or anti-angiogenic therapy, are commonly 
used. The number of patients using combined anti-PD-
(L)1 therapies in this study was limited. It is essential 
to verify the stratification system and investigate resist-
ance mechanisms within a larger cohort receiving vari-
ous combined ICI therapies. Additionally, our study lacks 
access to randomized trial data. Ideally, a test for inter-
action between treatment exposure and the biomarker 
would be necessary to verify the predictive role of the 
biomarker [55]. Future research should aim at validating 
the model in randomized controlled trials to better eluci-
date its predictive capabilities. Furthermore, the detailed 
biological functions of the mutated genes within the 
TME warrant more in-depth investigation. Future work 
should also focus on developing reliable detection meth-
ods with acceptable technical feasibility and attempting 
to validate the model based on circulating tumor DNA 
(ctDNA), which will further extend the clinical applica-
tion of the model.

In conclusion, we have established a VAF-related model 
for differentiating ICI response in NSCLC, highlighting 
the importance of precision therapy. The VAF mutational 
profile provides a valuable biomarker that enhances the 
stratification and treatment management of NSCLC 
patients using ICI therapy. Notably, it complements 
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PD-L1 and TMB biomarkers, demonstrating its applica-
tion in clinical personalized medicine.
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