
Zhang et al. Journal of Translational Medicine          (2024) 22:772  
https://doi.org/10.1186/s12967-024-05395-1

RESEARCH

Tree-based ensemble machine learning 
models in the prediction of acute respiratory 
distress syndrome following cardiac surgery: 
a multicenter cohort study
Hang Zhang1†  , Dewei Qian2†, Xiaomiao Zhang1†, Peize Meng1, Weiran Huang3, Tongtong Gu4, 
Yongliang Fan2, Yi Zhang1, Yuchen Wang1, Min Yu2, Zhongxiang Yuan2, Xin Chen5*, Qingnan Zhao6* and 
Zheng Ruan1* 

Abstract 

Background Acute respiratory distress syndrome (ARDS) after cardiac surgery is a severe respiratory complication 
with high mortality and morbidity. Traditional clinical approaches may lead to under recognition of this heteroge-
neous syndrome, potentially resulting in diagnosis delay. This study aims to develop and external validate seven 
machine learning (ML) models, trained on electronic health records data, for predicting ARDS after cardiac surgery.

Methods This multicenter, observational cohort study included patients who underwent cardiac surgery in the train-
ing and testing cohorts (data from Nanjing First Hospital), as well as those patients who had cardiac surgery in a vali-
dation cohort (data from Shanghai General Hospital). The number of important features was determined using 
the sliding windows sequential forward feature selection method (SWSFS). We developed a set of tree-based ML 
models, including Decision Tree, GBDT, AdaBoost, XGBoost, LightGBM, Random Forest, and Deep Forest. Model per-
formance was evaluated using the area under the receiver operating characteristic curve (AUC) and Brier score. The 
SHapley Additive exPlanation (SHAP) techinque was employed to interpret the ML model. Furthermore, a comparison 
was made between the ML models and traditional scoring systems. ARDS is defined according to the Berlin definition.

Results A total of 1996 patients who had cardiac surgery were included in the study. The top five important features 
identified by the SWSFS were chronic obstructive pulmonary disease, preoperative albumin, central venous pres-
sure_T4, cardiopulmonary bypass time, and left ventricular ejection fraction. Among the seven ML models, Deep 
Forest demonstrated the best performance, with an AUC of 0.882 and a Brier score of 0.809 in the validation cohort. 
Notably, the SHAP values effectively illustrated the contribution of the 13 features attributed to the model output 
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Background
Cardiac surgery is increasingly frequent in a growing 
population of elderly patients with multiple morbidities 
in both developed and developing countries. A severe 
complication of cardiac surgery is acute respiratory dis-
tress syndrome (ARDS). ARDS is the leading cause of 
postoperative hypoxic respiratory failure, substantially 
increasing perioperative and long-term mortality [1, 2]. 
Data from an international, observational, multicenter 
prospective cohort investigation, namely the LUNG 
SAFE study, revealed that the severe forms of ARDS had 
a death rate of up to 46% [3]. Survivors of ARDS are also 
likely to suffer from long-term physical and psychological 
morbidity [4].

A previous systematic review reported that the inci-
dence of ARDS after cardiac surgery varied from 0.4 
to 8.1% [5]. This variability could be attributed to dif-
ferences in study populations and definitions used for 
ARDS. In 2012, the Berlin definition was published, and 
it described ARDS as having an acute onset with diffuse 
bilateral pulmonary infiltrates that cannot be explained 
by cardiac failure and/or fluid overload [6]. However, 
impacted by cardiovascular comorbidities, it is likely that 
ARDS after cardiac surgery has a poorer prognosis com-
pared with ARDS from other causes. As a consequence, 
the occurrence of ARDS after cardiac surgery is more 
common and relatively challenging to diagnose. When 
patients present with evident hypoxemic and positive 
radiographic findings, it often indicates that ARDS has 
progressed for some time [7]. In other words, the Ber-
lin definition cannot detect ARDS in the early stages, 
potentially leading to delays in diagnosis and treatment. 
The failure of clinicians to recognize ARDS is a barrier 
to the use of early prevention strategies, including lung-
protective ventilation, conservative fluid management, 
and adjunctive measures proven to improve survival, 
such as prone positioning [8–10]. However, timely diag-
nosis of ARDS is not an easy task. On the one hand, cli-
nicians have limited ability to distinguish ARDS from 
other causes of respiratory failure. It is often challenging 
to diagnose ARDS in patients with similar symptoms of 
potential clinical conditions, particularly in patients who 
have undergone cardiopulmonary bypass (CPB). The 
interpretation of a chest radiograph may be influenced 

by a number of comorbidities, such as pulmonary con-
gestion, lung infection, chest tubes and or pleural effu-
sions, and cardiac dysfunction [7, 11]. On the other hand, 
owing to the multifactorial and intricate pathogenesis 
of ARDS, few biomarkers have been proven to be effec-
tive in assessing risk [12]. Therefore, developing a clinical 
decision tool to assist clinicians accurately and early pre-
dict ARDS is a valuable and crucial.

For over a decade, prediction models have been pro-
posed for use in clinical practice. Several studies have 
used clinical scoring systems to evaluate the risk of ARDS 
in diverse clinical settings, such as ARDS, Lung Injury 
Prediction Study (LIPS), and Surgical Lung Injury Predic-
tion (SLIP) scores [13–15]. However, these models have 
certain inherent limitations. Methodologically, the scor-
ing systems are constructed using the traditional logistic 
regression method, which requires statistical assump-
tions regarding a linear relationship between covariates 
and outcomes that are known to be clinically relevant. 
In addition, most studies derived models on the basis of 
small-scale candidate covariate pools, using the tradi-
tional approach, that involves initial univariate analysis 
to select variables followed by multivariate regression, 
potentially leading to underfitting and low classification 
accuracy. Furthermore, these models were not specifi-
cally designed for perioperative cardiac patients in terms 
of etiology, making it difficult to use them to evaluate 
ARDS in high-risk cardiac surgery.

With the advancements in electronic health records 
(EHR) and diverse datasets, machine learning (ML) algo-
rithms are increasingly employed to help diagnose and 
prevent specific diseases. As a new analysis tool, ML has 
the advantages of higher prediction accuracy, handling 
larger datasets, and analyzing more complex non-linear 
association between covariates and clinical outcomes. 
Several ML techniques have been applied to assess ARDS 
risk. For example, a novel gradient-boosting tree model 
could predict ARDS with high-precision prediction 
(within 48 h before its onset) [16]. Cardiac surgery with 
CPB induces unique physiological perturbations, result-
ing in different pathological and physiological abnormali-
ties associated with ARDS compared to other causes. To 
our knowledge, there is limited research using ML to 
assess ARDS risk after CPB cardiac surgery. In this study, 

and the individual feature’s effect on model prediction. In addition, the ensemble ML models demonstrated better 
performance than the other six traditional scoring systems.

Conclusions Our study identified 13 important features and provided multiple ML models to enhance the risk strati-
fication for ARDS after cardiac surgery. Using these predictors and ML models might provide a basis for early diagnos-
tic and preventive strategies in the perioperative management of ARDS patients.
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we aimed to (i) develop and validate seven tree-based ML 
models, by incorporating diverse perioperative data, to 
predict ARDS in patients who had cardiac surgery; (ii) 
investigate the performance of six conventional scoring 
systems to determine whether they can be used to pre-
dict ARDS after cardiac surgery.

Method
Participants
This is a multicenter, retrospective, observational cohort 
study. We enrolled in-patients who had coronary artery 
bypass grafting (CABG), valvular surgery, or a combina-
tion of both treatments from two academic medical cent-
ers in China: Shanghai General Hospital, Shanghai Jiao 
Tong University School of Medicine, Shanghai (SHGH) 
and Nanjing First Hospital Affiliated to Nanjing Medi-
cal University, Nanjing (NFH). Patients were excluded if 
they met any of the following criteria: (i) younger than 18 
years; (ii) preoperative ARDS; (iii) did not receive CPB; 
(iv) mechanical ventilation before surgery; (v) trauma, 
sepsis, aspiration, shock, and respiratory failure at any 
point during hospitalization before surgery.

Data source and partitioning
We developed prediction models based on the patient 
cohort from NFH, which comprised 1493 patients who 
had cardiac surgery between January 2016 and Decem-
ber 2021. They were randomly assigned to training and 
testing cohorts in a 7:3 ratio. To further assess the per-
formance of the models, data from SHGH were used 
for subsequent external validation. We curated data 
between January 2016 and December 2022, using the 
same recruitment criteria and included 503 patients in 
the validation dataset. As the proportion of positive cases 
in the consecutive cardiac patient cohort was relatively 
small, in order to increase ARDS cases and reduce mod-
eling bias, we created ARDS cohorts which recruited 
patients admitted to the two centers between January 
2013 and December 2022. Five physician investigators 
(NFH cohort: Hang Zhang, Hong Lang, Wuwei Wang, 
and Yunzhang Wu; SHGH cohort: Dewei Qian) gathered 
and organized the databases. Data integrity was verified 
by a secondary manual review of the EHR.

This study was approved by the Medical Ethical Com-
mittee of SHGH and NFH. Written informed consent 
from participants was waived because of the retrospec-
tive nature of the study. This study was conducted in 
accordance with the Helsinki Declaration (1964) and was 
reported according to the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) guideline [17].

Clinical information and airway management
In the model development phase, we selected a large 
set of clinical characteristics including baseline infor-
mation (patient demographics, comorbidities, and 
admission assessment), medical text, imaging data, 
laboratory biomarkers, medication, treatment detail, 
and CPB data. In the validation phase, only the impor-
tant features were collected and incorporated into the 
models.

All patients were performed with the same stand-
ard surgical procedure and similar anesthesia induc-
tion and maintenance. The standard intensive care unit 
(ICU) protocols were approximately similar in two 
centers. In brief, postoperatively, patients were placed 
on mechanical ventilation in synchronized intermit-
tent mandatory ventilation or assist/control models, 
set at 8–10 mL/kg tidal volume and 5  cmH2O positive 
end-expiratory pressure (PEEP). Arterial blood gas 
(ABG) analysis was checked at regular intervals ranging 
from every 30  min to 6  h, depending on the patient’s 
condition. Patients were extubated after meeting the 
following criteria: (i) alertness and cooperation, with 
sufficient muscle strength; (ii) hemodynamic stability, 
without low cardiac output syndrome or signs of myo-
cardial ischemia, requiring minimal muscular support 
(norepinephrine or epinephrine ≤ 0.05 μg/kg/min); (iii) 
chest tube drainage < 50 mL/h, without active bleeding; 
(iv) acceptable ABG, in the absence of respiratory dis-
tress, with  FiO2 ≤ 0.5 and PEEP ≤ 5  cmH2O, including 
 PaO2 ≥ 80 mmHg and  PaCO2 < 45 mmHg.

End point definition
ARDS is defined according to the 2012 Berlin defini-
tion, specifically, the partial pressure of arterial oxygen 
and fraction of inspired oxygen  (PaO2/FiO2) less than 
300 mmHg, diffuse bilateral pulmonary infiltration, and 
pulmonary artery wedge pressure less than 18 mmHg, 
in absence of hydrostatic or cardiogenic pulmonary 
edema [6].

Model development
This study mainly comprised three stages: (i) feature 
selection, (ii) model derivation and validation, and 
(iii) model comparison. First, we applied sliding win-
dows sequential forward feature selection (SWSFS), a 
ML-based feature selection method, to determine the 
number of important features. Based on the selected 
features, we constructed a set of tree-based ML models. 
Finally, in the testing and validation cohorts, we com-
pared the model performance with other six conven-
tional scoring systems: The Logistic Organ Dysfunction 
System (LODS), Sequential Organ Failure Assessment 
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(SOFA), LIPS, SLIP, Multiple Organ Dysfunction Score 
(MODS), and ARDS scores [13–15, 18–20].

Feature selection
We selected features using the SWSFS method. Details 
of the SWSFS have been described previously [21, 22]. 
Briefly, the feature importance score (FIS) was evaluated 
by the Gini index which was initially obtained using a 
Random Forest (RF) classifier via the importance func-
tion in R. To minimize the random error, we ran the RF 
30 times and calculated the average Gini index of each 
feature. FIS was ranked in descending order and included 
one by one to the RF model. Afterward, we plotted the 
’out of bagging (OOB) ’, a parameter of evaluating the 
model error, which measured the performance of each 
model consisting of a certain number of features. Based 
on the lowest OOB, the number of important features 
was determined. Finally, these features were used as 
input variables to construct the ML models.

ML models
We developed the prediction models using the following 
model-building approaches, which are commonly used 
and advanced tree-based learning algorithms for binary 
classification: Decision Tree, Gradient Boosting Decision 
Tree (GBDT), eXtreme Gradient Boosting (XGBoost), 
Adaptive Boosting (AdaBoost), Light Gradient Boosting 
Machine (LightGBM), RF, and Deep Forest (DF). Except 
for Decision Tree, all of the algorithms are tree-based 
ensemble learning algorithms. The ensemble learning 
methods have the advantage of combining predictions 
from multiple ML models to achieve more accurate and 
robust predictive performance. In addition, they are par-
ticularly useful in reducing overfitting, where a model 
performs well in training data but fails to replicate the 
results in testing data. The detailed introduction of ML 
algorithms is provided in the Additional file 1.

Model interpretation
Understanding why a model made a prediction is impor-
tant for clinical application. We used SHapley Additive 
exPlanation (SHAP) values to demonstrate the impact 
of features on ARDS risk prediction. SHAP, inspired 
by the cooperative game theory, develops an additive 
explanatory model that considers all features as con-
tributors [23]. The model calculates a predictive value 
for each predictive sample, assigning the SHAP to each 
feature. This technique could examine the significance of 
each feature on individual or global model output, mak-
ing it easy to understand the contribution of individual 
features to outcome. As an example, we used SHAP val-
ues, by employing the SHAP plot function, to reveal the 

complex relationship between features and output in the 
RF model.

Statistical analysis
For descriptive analysis, continuous variables are 
reported as means (SD) and categorical variables as fre-
quencies and proportions. Differences between ARDS or 
non-ARDS cohort were tested using t test, Mann–Whit-
ney U test, chi-square test, or Fisher’s exact probability 
method as appropriate. As all variables are collected by 
manual review of the EHR from two centers, missing val-
ues are unavoidable. Out datasets had missing data rang-
ing from 0 to 3.15%. We used the multiple imputation 
method, by employing the “mice” package in R, to impute 
missing data. For the imbalance of data (the imbalance 
between positive and negative cases) in the training 
cohort, we used the random over-sampling method to 
prevent overfitting. Model performance was evaluated 
according to a range of ML metrics including the area 
under the receiver operating characteristic curve (AUC), 
Brier score, sensitivity, specificity, positive predictive 
value, negative predictive value, and F1 score. Statisti-
cal analyses were performed using R (version 4.0.3) and 
Python (version 3.8). A two-sided P value < 0.05 was con-
sidered statistically significant.

Results
Characteristics of the study population
The study populations in the training, testing, and valida-
tion cohorts numbered 1057, 436, and 503, respectively. 
In the discovery phase, the study population comprised 
1493 patients from NFH. The mean (SD) age of the NFH 
cohort was 61.9 (10.5) years, with 867 (58.1%) being 
males. In both training and testing cohorts, a compari-
son of patients with or without ARDS is presented in 
Additional file 2: Table S1. The dataset for the validation 
phase comprised 503 patients from SHGH. The mean age 
of these patients was 63.1 (11.6) years, with 308 (61.2%) 
being males. The occurrences of ARDS in the training, 
testing, and validation cohorts were 11.5%, 11.9%, and 
15.1%, respectively. The flow chart for the patient selec-
tion process and data partitioning is provided in Addi-
tional file 2: Fig. S1.

Feature importance
In the training cohort, 126 perioperative features were 
included in the model and ranked in descending order 
(Fig.  1). The importance matrix plot showed the top 
100 features of ARDS. The SWSFS identified 13 impor-
tant features associated with the development of ARDS, 
including six preoperative features [chronic obstruc-
tive pulmonary disease (COPD), preoperative albumin, 
left ventricular ejection fraction (LVEF), left ventricular 
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end-diastolic diameter (LVEDD), preoperative white 
blood cell (WBC) count, preoperative neutrophil-to-
lymphocyte ratio (NLR)] and five intraoperative fea-
tures [CPB time, aortic cross-clamping (ACC) time, 

transfusion, central venous pressure (CVP)_T4, intraop-
erative urine output] (Fig. 2). A comparison of important 
features of patients in the training, testing, and validation 
cohorts is provided in Additional file 2: Table S2.
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Fig. 1 Importance matrix plot of candidate features in the training cohort
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ML model and model performance
In the testing and validation cohorts, we presented the 
AUC and Brier score for ML models. The DF model 
exhibited the highest AUC (0.886 [95% CI 0.831–0.940] 
in the testing cohort and 0.827 [95% CI 0.769–0.885] in 
the validation cohort), indicating the highest discrimi-
nation ability for ARDS classification; followed by RF 
model (0.864 [95% CI 0.820–0.909] and 0.792 [95% CI 
0.736–0.848]), LightGBM (0.863 [95% CI 0.812–0.913] 
and 0.809 [95% CI 0.752–0.865]), AdaBoost (0.852 
[95% CI 0.798–0.906] and 0.760 [95% CI 0.696–0.824]), 
XGBoost (0.843 [95% CI 0.788–0.897] and 0.818 [95% 
CI 0.764–0.873]), GBDT (0.816 [95% CI 0.753–0.880] 
and 0.813 [95% CI 0.759–0.867]), and Decision Tree 
(0.696 [95% CI 0.598–0.794] and 0.643 [95% CI 0.562–
0.724]) (Fig.  3A, B). Accordingly, the DF model dem-
onstrated the best calibration performance, with Brier 
scores of 0.067 and 0.091 in the testing and validation 
cohorts, respectively (Fig. 3C, D). Furthermore, a set of 
interpretable parameters (sensitivity, specificity, posi-
tive predictive value, negative predictive value, and F1 
score) were calculated to evaluate the performance of 
the ML models (Table 1).

In this study, the Decision Tree algorithm provided 
the fundamental framework for the ensemble learn-
ing models. We additionally presented a Decision Tree 
model for classifying patients into having ARDS or 
not. The higher the Gini index in the terminal leaf, the 
poorer the prediction accuracy. Five of the 14 terminal 

leaf nodes exceeded 0.40, indicating that the classifica-
tion was inaccurate (Fig. 4).

SHAP value visualization
We used the SHAP value to accurately represent the 
contribution of each feature to ARDS in the RF model. 
As depicted in the SHAP summary plot, the impor-
tant features were ranked in descending order accord-
ing to their contribution to model output. The top five 
features in the SHAP model were transfusion, pre-
operative albumin, CPB time, LVEDD, and preopera-
tive NLR. Accordingly, using point estimation, we can 
clearly observe whether a feature has a negative impact 
on the prediction of non-ARDS or a positive impact on 
the prediction of ARDS (Fig. 5).

The SHAP dependent plot was utilized to visualize 
the individual impact of features on ARDS risk pre-
dictions. When the SHAP value of a specific feature 
exceeds the zero threshold, it indicates an increased 
risk of ARDS. Conversely, falling below the zero thresh-
old indicates a decreased risk of ARDS (Fig.  6). Addi-
tionally, we used the SHAP decision plot to display 
the individual patient-level predictions (Additional 
file 2: Fig. S2). This function provides a valuable depic-
tion to describe the decision pathway for individual 
patient prediction and provides insights into why some 
patients (A–C) were predicted to have ARDS while oth-
ers (D–F) were not (Fig. 7).

Fig. 2 Feature selection using the sliding windows sequential forward feature selection method (SWSFS). The SWSFS was used to determine 
a set of important features of ARDS. First, the candidate features were included one by one in the Random Forest model in order of their rank 
in the importance matrix. Then, the optimal number of features (13 features) was determined by minimum out of bag error (red circle)
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Model comparison
The derivation detail for the ML models and the other six 
models is provided in Additional file 2: Table S3. In the 
testing and validation cohorts, the clinical scoring sys-
tems exhibited insufficient discrimination for predicting 
ARDS, with AUCs ranging from 0.613 to 0.708; neverthe-
less, their calibration performance is comparable to that 
of the ML models (Brier score 0.099–0.128) (Additional 
file 2: Table S4 and Fig. S3).

Discussion
In this study, using clinical features retrieved from EHR, 
we developed and validated seven ML models for pre-
dicting ARDS after cardiac surgery. The ML models per-
formed well in an external validation cohort, with AUC 
values ranging from 0.652 to 0.827. Our study demon-
strated that the tree-based ensemble models outper-
formed conventional linear regression modeling and may 
be useful as an analytical tool for assessing ARDS risk 

after cardiac surgery. It is worth noting that our dataset 
is specifically organized for patients who have undergone 
cardiac surgery. Using the SWSFS technique, we success-
fully identified 13 perioperative predictors. These novel 
predictors have the potential to allow for early detection 
of ARDS, personalized preventive strategies, and clinical 
decision-making during early stage of the disease.

The current scoring systems for critically ill patients, 
such as LODS, MODS, and SOFA scores, are widely used 
in clinical practice and have been proven to be closely 
associated with patient outcomes. However, these scor-
ing systems are often subjective and incapable of effec-
tively predicting the risk, prognosis, or mortality of 
patients with specific diseases. Although the ARDS, 
LIPS, and SLIP scores were developed for acute lung 
injury (ALI)/ARDS, the etiology of ARDS encompasses 
various factors including trauma, burns, sepsis, and pul-
monary infections. These scoring systems do not incor-
porate disease-related pathophysiological indicators. In 

Fig. 3 Performance of the machine models for predicting ARDS after cardiac surgery. Comparison of area under the receiver operating 
characteristic curves among Decision Tree, GBDT, XGBoost, AdaBoost, LightGBM, Random Forest, and Deep Forest in the testing and validation 
cohorts (A and B). Calibration plots of the models in the testing and validation cohorts (C and D)
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other words, none of these tools were ideal for ARDS in 
the CPB settings, making early diagnosis and personal-
ized prevention guidance for cardiac patients difficult. 
Our findings indicate that the above scoring systems have 
insufficient discriminative ability and cannot be used to 
predict ARDS after cardiac surgery. Future work should 
focus on developing ARDS risk-scoring models within a 
more comprehensive and systematic cardiac database.

The predictors included in our study were a combina-
tion of clinical characteristics, laboratory biomarkers, 

hemodynamic parameter, and CPB process, indicating 
that the pathophysiology of ARDS following cardiac sur-
gery is multifactorial and intricate. Epidemiological stud-
ies have shown that CBP is a well-known risk factor for 
ARDS, especially the intraoperative factors, which reflect 
the acute physiological response during the surgical pro-
cess and play a critical role in the ARDS development. 
Our findings revealed that the longer the duration of 
CPB and ACC, the higher the risk of developing ARDS. 
During CPB, the pulmonary circulation stops, and the 

Table 1 Evaluation parameters of machine learning models in the testing and validation cohorts

ML machine learning, PPV positive predictive value, NPV negative predictive value, GBDT Gradient Boosting Decision Tree, AdaBoost Adaptive Boosting, LightGBM Light 
Gradient Boosting Machine

ML models Specificity (%) Sensitivity (%) PPV (%) NPV (%) F1 score

Testing cohort

 Decision Tree 84.6 53.8 32.1 93.1 0.80

 GBDT 97.3 32.6 62.9 91.4 0.89

 XGBoost 96.6 32.6 56.6 91.3 0.88

 AdaBoost 89.0 57.6 41.6 93.9 0.85

 LightGBM 97.9 34.6 69.2 91.7 0.90

 Random Forest 92.4 46.1 45.2 92.6 0.86

 Deep Forest 99.2 36.5 86.3 92.0 0.91

Validation cohort

 Decision Tree 85.0 47.3 36.0 90.0 0.79

 GBDT 93.6 40.7 53.4 89.8 0.85

 XGBoost 93.4 43.4 54.0 90.2 0.85

 AdaBoost 77.9 64.4 34.2 92.5 0.75

 LightGBM 95.0 43.4 61.1 90.4 0.87

 Random Forest 87.3 44.7 38.6 89.8 0.80

 Deep Forest 96.0 43.4 66.0 90.5 0.88

Fig. 4 The decision tree results from the learning process for a specific patient without ARDS. Each node contains the proportion of samples 
considered up to that point in the tree and their distribution among the two different classes. Each leaf node is labeled with the classification 
choice. The darker the color of a leaf node, the higher the risk of being allocated to the non-ARDS class
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Fig. 5 Importance evaluation in the SHAP summary analysis. A The plots show the 13 important features ranked in descending order in the SHAP 
analysis; B dot estimation of each feature on the model output. Each point represents an individual patient’s prediction on the model output. Red 
indicates higher SHAP values for specific features, while blue indicates lower SHAP values for specific features. The higher the SHAP value, the higher 
the risk of developing ARDS

Fig. 6 SHAP dependence plot of the Random Forest model. Each panel demonstrates that each feature affects the output of the Random Forest 
prediction model. The x-axis represents the raw values of each feature and the y-axis indicates the SHAP values of features. When the SHAP value 
of a specific feature exceeds zero, it indicates an increased risk of ARDS
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lungs receive blood supply solely from the bronchial 
arteries, which is insufficient to meet their metabolic 
demands, resulting in high oxygen consumption and 
increased metabolism [24]. Meanwhile, insufficient met-
abolic substrates reduce adenosine triphosphate pro-
duction within lung tissue and increase lactate levels. 
The reintroduction of highly oxygenated blood to the 
lung tissue during aortic reperfusion disrupts the bal-
ance of superoxide dismutase and peroxidase enzymes, 
resulting in an abundance of oxygen free radicals. This 
cascade causes endothelial cell injury, increased vas-
cular permeability, and the onset of pulmonary edema 
[25]. Furthermore, the systemic inflammatory response 
syndrome (SIRS) induced by CPB is recognized as a key 
factor contributing to lung injury. SIRS is initiated and 
progressed by activation of complement factors (C3a, 
C4a, and C5a), neutrophils, and an imbalance in inflam-
matory/anti-inflammatory cytokines (TNF-α, IL-1, IL-2, 
and IL-6). CPB is a predictor for the onset of ARDS and 
a prognostic factor for patients with ARDS [26]. CVP is 
a hemodynamic parameter in CPB surgery and used as 
an indicator of volume status and cardiac pre-load. Ele-
vated CVP levels often reflect systemic congestion, which 
causes increased pulmonary circulation pressure, pulmo-
nary edema, and vascular leakage. Intraoperative oliguria 
usually indicates an acute response to unstable arterial 
pressure and inadequate organ perfusion. These findings 
highlight that, during CPB, not only the importance of 
venous congestion but also inadequate perfusion plays 
a crucial role in the deterioration of lung function. The 
SHAP analysis identified intraoperative blood transfusion 

as the strongest factor influencing model output. Over 
the past few decades, in-depth discussions on the patho-
physiology and clinical condition of transfusion-related 
ALI have increased [27, 28]. Perioperative blood compo-
nent transfusions are generally recognized as a significant 
risk factor for ARDS, regardless of which component was 
predominantly used. In this study, we categorized blood 
transfusion as a multi-class variable to emphasize the 
influence of various blood components on ARDS. NLR 
has recently been reported as a potential novel biomarker 
of the baseline inflammatory process and could be as an 
outstanding predictor or prognostic marker in patients 
with chronic lung diseases, ARDS, and lung cancer [29–
31]. NLR and WBC are relatively accessible and easy to 
calculate, reflecting the role of inflammation in the onset 
of ARDS. Taken together, our study has identified a 
series of novel factors contributing to the development of 
ARDS after cardiac surgery. These factors may reflect the 
pathophysiological processes of ARDS in CPB settings. 
Of note, some predictive factors are potentially modifi-
able. The use of these factors may provide a basis for early 
diagnosis, prevention, and treatment strategies in the 
preoperative and intraoperative management of patients 
with ARDS. These strategies might include preoperative 
anti-inflammatory treatment, nutrition support, intraop-
erative transfusion management, and optimizing hemo-
dynamic status during CPB.

To our knowledge, published research using ML mod-
els for predicting ARDS in cardiac surgery is rare. We 
searched PubMed for the terms “ARDS”, “cardiac sur-
gery”, “cardiopulmonary bypass” and “machine learning” 

Fig. 7 Individual patient decision path in the SHAP decision analysis. These plots depict the individual patient decision paths for predicting ARDS. 
All patients start with an average predicted value and are evaluated at each feature level to obtain the predicted probability of ARDS. A–C illustrate 
three patients predicted as ARDS while D–F show examples of three patients predicted as non-ARDS
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to find English language publications reporting on the 
ML for predicting ARDS, covering the period from the 
inception of the database up to June 1st, 2023. Only two 
original articles were included. Using HER data, Wang 
et  al. [32] applied an RF model to predict the risk of 
ARDS following cardiac surgery. They visualized the top 
10 factors associated with the development of ARDS, 
some of which overlapped with the results of our work. 
Wang et  al. [33] conducted a prospective nested cohort 
study to identify proteomic biomarkers and develop an 
XGBoost model for ARDS. The XGBoost calculated fea-
ture contributions for proteins at the end of CPB, yielding 
11 novel protein features capable of effectively differenti-
ating CPB-ARDS from non-ARDS cases. Other studies 
have reported the application of ML-based ARDS pre-
diction in various etiologies. For example, a GBDT-based 
radiomics score could predict ARDS in polytraumatized 
patients with a sensitivity/specificity of 0.80/0.76 and an 
AUC of 0.79, significantly outperforming conventional 
trauma scores [34]. Zhang et al. [35] used five ML mod-
els to predict the occurrence of ARDS in patients with 
severe acute pancreatitis. All these models are tree-based 
ensemble learning algorithms. The ensemble method 
integrates the predictions of multiple weak classifiers to 
generate a strong classifier, which has the advantages of 
improving prediction performance, reducing errors, and 
enhancing the generalization ability of the models. In this 
study, we validated six types of ensemble learning mod-
els and proved their superiority in ARDS classification. 
Selecting an appropriate model is crucial for the accurate 
prediction of specific diseases. On the other hand, the 
interpretation of a ML model is also of great importance 
in clinical practice, as a true “black-box” can hardly be 
used in clinical decision-making. In recent years, a num-
ber of innovative visualization techniques such as permu-
tation importance, Partial Dependence Plot (PDP), Local 
Interpretable Model-Agnostic Explanations (LIME), and 
SHAP, have been proposed to interpret ML models. In 
our study, we employed SHAP to visualize the RF model, 
which stood out for its ability to consider the influence 
of individual features and the potential synergistic effects 
of variable groups on the overall model. Using SHAP, we 
analyzed the decision paths of six individual patients, 
revealing the strength of each feature in distinguishing 
between ARDS and non-ARDS.

Before implementing ML models in clinical practice, 
their ability in accurate predictions on new patients from 
diverse clinical settings, e.g., time periods, geographical 
locations, or populations, should be repeatedly validated. 
Unlike clinical scoring systems, the ML model calculates 
risk without the involvement of clinicians, making it as 
a completely data-driven predictive tool. With advance-
ments in EHR, the ML algorithm can be integrated into 

EHR systems to automatically assess the risk of ARDS by 
capturing important clinical features. For example, arti-
ficial intelligence models for bedside decision support 
can output the disease risk, identify high-risk factors, and 
provide text explanations: “Warning: This patient is about 
to go into developing ARDS.”. High-risk factors: <she had 
a high CVP level prior to weaning off cardiopulmonary 
bypass>. Recommended next steps: <conservative fluid 
management and closely monitoring her circulation>.

Our study has several strengths. First, we used multi-
ple ML algorithms to predict ARDS following cardiac 
surgery, thus establishing the most comprehensive ML 
study in ARDS prediction, to the best of our knowledge. 
RF, XGBoost, LightGBM, and DF are particularly suitable 
for training with small-sample datasets. Second, we first 
used DF to predict ARDS after cardiac surgery. Among 
the 7 ML models, the DF exhibited the best model per-
formance among seven ML models. As an alternative to 
deep neural networks, DF improves the robustness of 
traditional deep learning methods on small-scale clini-
cal data. At the algorithmic level, DF integrates multi-
ple RF, demonstrating a successful implementation of 
“second-level ensemble” in boosting the model’s pre-
dictive ability. Third, previous studies constructed ML 
models with all features as input variables. However, 
incorporating a large number of features often resulted 
in increased model complexity, making it challenging to 
validate the models on external datasets, as most features 
are irrelevant to ARDS classification. To address this, 
we employed the SWSFS technique to identify a subset 
of ARDS-relevant features. Including a smaller subset of 
features not only reduces the risk of overfitting and sim-
plifies the model, but also facilitates model training and 
cross-site transportability.

We emphasize several limitations of our study. First, 
the training data was rather small despite the ML algo-
rithms used in our study being more suitable for small-
scale training. The ML training process is the cornerstone 
of model validation, interpretation, and cross-site trans-
portability. Theoretically, ML model performance is 
highly dependent on data volume, and larger training 
dataset can improve model robustness and reduce the 
risk of overfitting. Second, it was a retrospective study; 
although the data collection process was considered high 
quality, the real-world clinical data were noisy, compared 
with synthetic datasets. The ensemble learning meth-
ods could successfully work with noisy data because this 
is the reality to which the models will be applied. How-
ever, a retrospective validation cohort with few positive 
cases (the occurrence of ARDS) limits the reliability of 
the validated results. External validation using prospec-
tively collected data could address this limitation. Third, 
as previously stated, the issue of unbalanced data cannot 
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be ignored. Actually, in our consecutive inpatient cohort, 
the incidence of ARDS was relatively low (less than 5%). 
The limited number of ARDS cases can potentially result 
in a classifier’s prediction accuracy skewed towards pre-
dicting outcomes for the larger category (patients with-
out ARDS). To address this, we have established ARDS 
cohorts specifically to increase the number of positive 
cases and used a random oversampling technique to 
balance the ratio between ARDS and non-ARDS cases 
(nearly 1:1). However, patients who are not part of a con-
secutive cohort or a concurrent period may experience 
differences in diagnosis and treatment. In addition, the 
oversampling technique that overfits minority class sam-
ples may reduce their generalization ability to unseen 
samples.

Taken together, our study identified a set of novel pre-
dictors for CPB-induced ARDS. Meanwhile, we demon-
strated the potential of tree-based ensemble methods in 
generating robust predictive tools for ARDS after cardiac 
surgery. As multicenter, multimodal EHR data systems 
are established, we anticipate discovering more novel 
associations that reflect the pathophysiology of ARDS. 
Future work will focus on refining clinical data structures 
and developing more advanced ML algorithms to aid in 
the risk assessment of ARDS after cardiac surgery, ulti-
mately optimizing treatment strategies and enhancing 
patient prognoses.

Conclusions
In this study, based on the EHR, we identified 13 impor-
tant perioperative predictors and established multiple 
tree-based ensemble ML models to optimize ARDS pre-
diction after cardiac surgery.
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