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Abstract
Background The tumor microenvironment (TME) plays a key role in lung cancer initiation, proliferation, invasion, 
and metastasis. Artificial intelligence (AI) methods could potentially accelerate TME analysis. The aims of this study 
were to (1) assess the feasibility of using hematoxylin and eosin (H&E)-stained whole slide images (WSI) to develop 
an AI model for evaluating the TME and (2) to characterize the TME of adenocarcinoma (ADCA) and squamous cell 
carcinoma (SCCA) in fibrotic and non-fibrotic lung.

Methods The cohort was derived from chest CT scans of patients presenting with lung neoplasms, with and without 
background fibrosis. WSI images were generated from slides of all 76 available pathology cases with ADCA (n = 53) 
or SCCA (n = 23) in fibrotic (n = 47) or non-fibrotic (n = 29) lung. Detailed ground-truth annotations, including of 
stroma (i.e., fibrosis, vessels, inflammation), necrosis and background, were performed on WSI and optimized via an 
expert-in-the-loop (EITL) iterative procedure using a lightweight [random forest (RF)] classifier. A convolution neural 
network (CNN)-based model was used to achieve tissue-level multiclass segmentation. The model was trained on 25 
annotated WSI from 13 cases of ADCA and SCCA within and without fibrosis and then applied to the 76-case cohort. 
The TME analysis included tumor stroma ratio (TSR), tumor fibrosis ratio (TFR), tumor inflammation ratio (TIR), tumor 
vessel ratio (TVR), tumor necrosis ratio (TNR), and tumor background ratio (TBR).

Results The model’s overall classification for precision, sensitivity, and F1-score were 94%, 90%, and 91%, respectively. 
Statistically significant differences were noted in TSR (p = 0.041) and TFR (p = 0.001) between fibrotic and non-fibrotic 
ADCA. Within fibrotic lung, statistically significant differences were present in TFR (p = 0.039), TIR (p = 0.003), TVR 
(p = 0.041), TNR (p = 0.0003), and TBR (p = 0.020) between ADCA and SCCA.

Combined expert-in-the-loop—random forest 
multiclass segmentation U-net based artificial 
intelligence model: evaluation of non-small 
cell lung cancer in fibrotic and non-fibrotic 
microenvironments
Anjali Saqi1* , Yucheng Liu2, Michelle Garlin Politis1, Mary Salvatore3 and Sachin Jambawalikar3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://orcid.org/0000-0003-3133-9886
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-05394-2&domain=pdf&date_stamp=2024-7-7


Page 2 of 13Saqi et al. Journal of Translational Medicine          (2024) 22:640 

Background
Lung cancer is the leading cause of cancer-related death 
in the United States [1] and worldwide [2]. Hematoxylin 
and eosin (H&E)-stained slides have served as the pil-
lar for lung cancer diagnosis. Over the years, a greater 
understanding of lung cancer and expanding repertoire of 
ancillary studies—histochemical, immunohistochemical 
and molecular diagnostics—have served to complement 
the established H&E stain. Lung cancer management cur-
rently integrates morphological features, ancillary studies 
and staging, factoring in variables like tumor size, pleural 
invasion, lymph node involvement and metastasis. This 
comprehensive approach provides predictive and prog-
nostic information for effective lung cancer management.

Continuously emerging evidence demonstrates that 
additional factors like the tumor microenvironment 
(TME) influence tumor development and impact prog-
nosis [3, 4]. For example, multiple studies report an 
increased incidence of lung cancer in the setting of 
underlying interstitial lung disease, which corresponds 
to the microenvironment [5–9]. Recent radiomics stud-
ies suggest that pulmonary fibrosis, which corresponds 
microscopically to TME, observed on chest computed 
tomography (CT) imaging predisposes to an increased 
risk for developing lung cancer [10]. On a cellular level, 
evidence shows that normal fibroblasts, primary precur-
sors of carcinoma-associated fibroblasts and a compo-
nent of TME, play an important role in carcinogenesis, 
tumor progression, and angiogenesis through their inter-
action with other stromal cells [11]. Moreover, the tumor 
stroma ratio (TSR) derived from TME is an independent 
prognostic determinant of tumor proliferation, invasion, 
and metastasis in various types of lung cancers, including 
non-small cell lung cancer (NSCLC) [11–15].

Despite acknowledging its significant impact, includ-
ing its potential predictive capabilities for treatment 
responses to immune checkpoint inhibitors and as a bio-
marker, TME is currently neither a constituent of pathol-
ogy staging nor integral to management decisions. The 
reasons for this disconnect may include delay in translat-
ing scientific research into clinical practice, lack of suffi-
cient direct evidence-based studies and limited access to 
efficient, accessible, and cost-effective quantitative tools 
that incorporate TME into pathological evaluation.

More recently, digitized whole slide images (WSI) have 
become available for research and clinical use paving the 
path for integrating computer-aided diagnosis (CAD) 
algorithms to assist with arduous tasks otherwise per-
formed by pathologists [16]. This has coincided with the 

continuous development of and accessibility to robust 
hardware, enhanced infrastructure speed, open-source 
software, and artificial intelligence (AI) platforms with 
convolutional neural networks (CNN) that permit deep 
learning analysis in pathology [17].

The objectives of this study were twofold: (1) to evalu-
ate the feasibility of developing a model based on WSI 
using CNN-based artificial intelligence methods for TME 
analysis and (2) to compare TME in adenocarcinomas 
(ADCA) and squamous cell carcinomas (SCCA) that 
developed in the presence or absence of background lung 
fibrosis observed on CT.

Methods
Datasets
Following IRB approval, a retrospective search of chest 
CT scans was performed as described previously [18]. 
Cases with pulmonary nodules were classified based on 
the presence or absence of surrounding fibrotic environ-
ment—a nodule was deemed to be within a fibrotic envi-
ronment if it was at least partially surrounded by fibrosis, 
and without fibrosis if there was complete lack of sur-
rounding fibrosis, respectively. (Supplementary Fig.  1) 
When fibrosis was present, usual interstitial pneumonia 
was the most common pattern. (Table 1)

Subsequently, a search for pathologically confirmed 
diagnosis of the radiographically identified nodules was 
performed. The study cohort was restricted to cases diag-
nosed as ADCA and SCCA, and where H&E slides of 
resections or core biopsies were available.

Preprocessing
All tumor samples underwent formalin-fixation and par-
affin embedding (FFPE), were cut at 4–5 microns, and 
stained with H&E. The slides were then scanned at 40x 
magnification using Leica Aperio AT2.

The scanned images consisted of foreground (H&E-
stained tissue) and background (empty space), with the 
latter being considerably more extensive in core biopsy 
relative to surgical resection samples. In order to improve 
the data analysis efficiency and focus only on areas with 
relevant information, the foreground was extracted 
from the background using a thresholding foreground 
segmentation algorithm implemented in CLAM [19]. 
The segmented foreground samples were cropped into 
512pixel × 512pixel  tiles. Depending on the size of the 
segmented foreground tissues, the number of tiles per 
slide ranged from hundreds to thousands.

Conclusion The combined EITL—RF CNN model using only H&E WSI can facilitate multiclass evaluation and 
quantification of the TME. There are significant differences in the TME of ADCA and SCCA present within or without 
background fibrosis. Future studies are needed to determine the significance of TME on prognosis and treatment.
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To address stain color intensity variations of WSI, 
which can affect the performance of CAD systems [20], 
stain normalization was performed using mean and vari-
ance optical density normalization before model training.

Expert-in-the-loop—random forest and multiclass tissue 
segmentation
Annotations were carried out by a board-certified pathol-
ogist on 25 WSI images from 13 individual cases. This 
included 6 ADCA (3 each in fibrotic and non-fibrotic 
lung) and 7 SCCA cases (3 in fibrotic and 4 in non-
fibrotic lung). All of these were derived from resections 
except 4 biopsies from non-fibrotic SCCA. To maintain 

focus on the TME, the analysis was limited to the tumor 
bed by encircling its border. This yielded 29,135 total tiles 
that were divided among training, validation and testing 
without overlap. More specifically, two thirds (19,423) 
of the tiles were used for training and validation [13,596 
(70%) tiles and 5,827 (30%)] and the remaining one third 
(9,712) tiles were used for testing. (Fig. 1)

QuPath [21], an open-source platform for analysis 
of 2-dimensional digitized WSIs, was utilized to anno-
tate 10 distinct categories—carcinoma (either ADCA or 
SCCA), fibrosis (elastotic, dense, loose), vessels, inflam-
mation (macrophages, lymphoplasmacytic), necrosis, 
and normal tissue (defined as background in this study). 
Stroma was defined as the summation of fibrosis, inflam-
mation and vessels.

To yield high-quality tissue segmentation with a limited 
dataset, an “expert-in-the-loop” (EITL) supervised learn-
ing workflow was adopted to enhance tissue annotations 
in the training set and combined with a random forest 
(RF) algorithm using QuPath. (Fig.  1) RF, a lightweight 
machine-learning algorithm consisting of 50 classifica-
tion trees [22], enabled an interactive multiclass segmen-
tation process within a span of 30- to 60-seconds training 
time and generated a full slide annotation on an individ-
ual WSI level. The pathologist continuously reviewed the 
whole slide multiclass segmentation results as generated 
by the RF algorithm and performed additional annota-
tions on the weaker performing categories. This EITL-
RF model with an iterative review-revise process was 
repeated ~ 3 to 5 times until the segmentation result visu-
ally attained > 80% accuracy, or no notable improvements 
were observed.

In order to define the region of interest, the tumor bor-
der was distinguished from the background by utilizing 
the RF algorithm, which classified the annotation classes 
into two binary categories – tumor and non-tumor.

Following the annotation process, the fore-
ground H&E containing areas were segmented into 
512pixel × 512pixel  tiles from the highest resolution 
(0.25 µm/pixel ) and subsequently downsampled by a 
factor of 2. Each tile was verified to meet a glass thresh-
old of 30%, thereby ensuring the tile contained sufficient 
H&E tissue.

A deep-learning CNN model was then trained using 
the tiles for multiclass segmentation. To achieve this, 
the U-Net architecture was chosen for multiple rea-
sons. Firstly, U-Net is a well-explored and stable model 
that has been successfully applied in medical imaging 
for single class and multiclass segmentation tasks. Sec-
ondly, it is particularly suited for smaller size datasets, 
which is often the case with pathology WSI data [23]. 
For the U-Net model training, 13 annotated cases (25 
WSIs) were used with a training-validation ratio of 70%-
30%. The trained model was then applied on the entire 76 

Table 1 Imaging, demographics, available smoking status, 
specimen subtypes, and pathology diagnoses
Lung Environment (Chest CT) Fibrotic 

Lung
Non-
fibrotic 
Lung

Over-
all

47 29 76
Airways-centered fibrosis 6 N/A 6
Combined pulmonary fibrosis and 
emphysema

2 N/A 2

Nonspecific interstitial pneumonia 4 N/A 4
Radiation fibrosis 2 N/A 2
Sarcoid 2 N/A 2
Usual interstitial pneumonia 25 N/A 25
Undetermined 6 N/A 6
Gender
Male 32 13 45
Female 15 16 31
Age
50–59 2 2
60–69 7 4 11
70–79 17 12 29
80–89 13 8 21
90 and above 10 3 13
Smoking Status (Available)
Smoker 11 12 23
Non-smoker 0 6 6
Pathology Diagnosis
Adenocarcinoma 28 25 53
Squamous cell carcinoma 19 4 23
Specimen subtypes
Resection 16 14 30
Biopsy 31 15 46
Dominant Histology in Resections
Adenocarcinoma Resections 12 14 26
Well differentiated* 0 0 0
Moderately differentiated** 12 11 23
Poorly differentiated*** 0 3 3
Squamous cell carcinoma 4 0 4
N/A: Not applicable. *Well differentiated represents predominant lepidic 
pattern. **Moderately differentiated represents predominant acinar or 
papillary patterns. ***Poorly differentiated represents predominant solid or 
micro-papillary patterns
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cases cohort (339 WSIs) for full slide segmentation and 
TME analysis (Fig. 1).

Tumor microenvironment metrics
TME analysis was performed on four subgroups (1) 
ADCA in fibrotic lung tissue, (2) ADCA in non-fibrotic 
lung tissue, (3) SCCA in fibrotic lung tissue, and (4) 
SCCA in non-fibrotic lung tissue.

Quantitative assessment of the TME segmentation 
results was performed within the pathologist-outlined 
tumor border using previously defined metrics [tumor 
stroma ratio (TSR), tumor necrosis ratio (TNR), and 
tumor inflammation ratio (TIR)] [24, 25]) and new met-
rics [tumor fibrosis ratio (TFR), tumor vessel ratio (TVR) 

and tumor background ratio (TBR) ], where background 
corresponds to non-neoplastic and non-fibrotic lung. 
Equations 1–6

 
TSR =

Stroma

Stroma + Tumor
× 100%  (1)

 
TFR =

Fibrosis

F ibrosis+ Tumor
× 100% (2)

 
TIR =

Inf lammation

Inflammation + Tumor
× 100% (3)

Fig. 1 “Expert-in-the-Loop” Workflow: The segmentation model is guided by a pulmonary pathologist. After the initial annotations, a lightweight classi-
fier (i.e., random forest) is applied to generate the whole slide image (WSI) segmentation in real-time. The pathologist reviews the segmented WSI and 
includes additional annotations based on the results. Note: The analysis is conducted on a tile (not patient) level
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TV R =

V essels

V essels+ Tumor
× 100% (4)

 
TNR =

Necrosis

Necrosis + Tumor
× 100%  (5)

 
TBR =

Background

Background+ Tumor
× 100% (6)

Evaluation
To assess the performance of the segmentation model, 
a 3-fold cross-validation with a leave-one-out strategy 
was implemented to evaluate the trained model across 
the entire cohort. Given that the ground-truth annota-
tions were created at a cell-cluster level and the auto-
segmentation was generated at an individual cell level, 
conventional metrics, such as the Dice score for evalu-
ating segmentation results, would yield incorrectly low 
scores due to contours mismatch. (Fig. 2) Though evalu-
ating a segmentation model, the goal was to accurately 
classify WSI tissue, hence metrics commonly used for 
classification tasks were employed to evaluate model 
performance for multiclass classification of each tile. 
Small tiles size of 100µm2was extracted according to 
the ground-truth annotations. If multiple tissues were 
segmented within a single tile, the tile’s classification 
was determined by the tissue with the greatest cover-
age. Each tile was then compared with the corresponding 
auto-segmented tile to compute precision (Eq. 7), recall 
(sensitivity) (Eq.  8), F1-score (Eq.  9), and the confusion 
matrix. Precision, sensitivity, and F1-score were chosen 
as classification performance metrics, particularly in the 

context of multiclass classification problem. Due to the 
fixed tile size and the fixed threshold design, interpreting 
ROC (Receiver Operating Characteristic) curves and the 
associated AUC (Area Under the Curve) becomes more 
complex. Rather, the confusion matrix permits direct 
quantification and understanding of the model’s perfor-
mance as true positives, false positives, true negatives, 
and false negatives, offering better comprehension of its 
predictive power and limitations. This level of detail is 
essential for informed decision making in our pathology 
application of TME analysis of lung fibrosis and cancer.

 
Precision =

TP

TP + FP
 (7)

 
Recall (Sensitivity) =

TP

TP + FN
 (8)

 
F1− score = 2× Recall × Precision

Recall + Precision
 (9)

TP: true positive; TN: true negative; FP: false positive; 
FN: false negative

Correlation with doubling times
The doubling time (DT) of carcinomas was calculated 
when ≥ 2 CT scans were available. Using an online DT 
calculator for growth rate of a lesion or a mass [26], 
the diameter and date of the first and second examina-
tions were entered, and the DT in days was generated as 
described previously [18, 27].

Fig. 2 Dice score: An example of adenocarcinoma (ADCA) with ground-truth annotations and auto-segmentation results (only annotations for ADCA 
and auto-segmentation results above the black line are shown for clarity). The auto-segmentation result is hidden below the dotted black line for better 
visualization of cancer cells. The pathologist’s ground-truth annotations within the yellow contours are at a cell-cluster level. The auto-segmentation is 
generated at an individual cell level as demonstrated in red. Due to the scale difference and contour mismatch, the Dice score used to evaluate segmenta-
tion results may yield incorrectly low scores
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A comparative analysis of DT, ADCA and SCCA was 
conducted. Available DTs were correlated with TSR, 
TFR, TIR, TVR, and TNR.

Statistical analysis
Data are presented as mean ± SD or median (25–75% 
IQR), based on their distribution. Figures 5A and 5B 
(Supplementary Table  1A and 1B) Two-tailed p-values 
below 0.05 were considered statistically significant. 
Comparisons of cancer TME ratios between fibrotic and 
non-fibrotic lung tissues, as well as between fibrotic and 
non-fibrotic tissues in ADCA and SCCA, were conducted 
using unpaired t-tests for normally distributed data and 
Wilcoxon rank-sum tests for non-normally distributed 
data. Additionally, a sub-analysis of ADCA (categorized 
by short and long DT) and SCCA in fibrotic lung tissue 
was performed using the same statistical methods as 
appropriate.

Results
Study cohort
A total of 76 cases from 45 men and 31 women fulfilled 
the study criteria; the mean ages were 80 and 78 years in 
the fibrotic and non-fibrotic cohorts, respectively. These 
included 53 ADCA and 23 SCCA present in fibrotic 
(n = 47) or non-fibrotic (n = 29) backgrounds from 30 
resections and 46 biopsies. (Table  1)) The 26 adenocar-
cinoma resections were either moderately differentiated 
(n = 23, predominant acinar or papillary patterns) or 
poorly differentiated (n = 3, predominant solid or micro-
papillary patterns). The biopsies were not categorized but 
imaging of all adenocarcinomas had a solid component.

Tissue segmentation
There were 211± 85 average annotations per WSI. The 
EITL-RF annotation process resulted in an overall 11% 
increase in classification accuracy. The number of anno-
tations was approximately 2 times greater in the final 
(cancer cell and fibrosis annotations doubled) versus ini-
tial iterations. The EITL-RF process was especially useful 
in adenocarcinomas with subregions showing relatively 
subtle differences between the adenocarcinoma and 
adjacent non-neoplastic lung. For example, some lep-
idic pattern regions had small neoplastic cells, low-grade 
cytology and relatively preserved architecture requiring a 
greater number of annotations to distinguish from other 
non-neoplastic elements. (Fig. 3)

This process resulted in an EITL-RF auto-segmen-
tation model for tissue analysis. To train and evaluate 
the model’s performance, a dataset containing a total 
of 29,135 image tiles was utilized. The model architec-
ture employed a U-Net framework and consisted of an 
encoder-decoder structure, incorporating four layers 
of 2D convolutional blocks with a kernel size of 3 × 3. 

To enhance the model’s learning capabilities, leaky rec-
tified linear units (LeakyReLU) and batch normaliza-
tion techniques were incorporated. These components 
helped in capturing and preserving important features 
during the segmentation process. To optimize memory 
usage, the feature channels within the model were care-
fully organized. Specifically, the channels were arranged 
in a sequence of 32, 64, 128, 256, and 512, following the 
approach proposed by Oskal et al. in 2019 [28]. This 
arrangement allowed for efficient utilization of compu-
tational resources without compromising the model’s 
performance. The multiclass tile classification model was 
evaluated using standard metrics, resulting in excellent 
performance with an overall precision, sensitivity, and 
F1-score of 0.94, 0.90, and 0.91, respectively. (Table 2) For 
a detailed visualization of the auto-segmentation mod-
el’s performance, please refer to Fig.  4, which presents 
the confusion matrix. (Fig. 4) Overall, the segmentation 
model, employing the U-Net architecture and optimized 
feature channel arrangement, demonstrated robust per-
formance in accurately segmenting tissue regions in our 
dataset.

Tumor microenvironment analysis
Two analyses were performed. First, each cancer subtype 
was evaluated separately. For ADCA, there were statis-
tically significant differences in TSR and TFR between 
fibrotic and non-fibrotic lungs (p-value < 0.005), where 
TSR and TFR in fibrosis were 28% and 32% greater, 
respectively. (Fig.  5 and Supplementary Tables  1A and 
1B) For SCCA, no significant differences were noted in 
any TME metrics.

In the second analysis, both ADCA and SCCA were 
analyzed together within the (1) fibrotic and (2) non-
fibrotic backgrounds. In a fibrotic lung environment, 
ADCA and SCCA exhibited significant differences in TIR 
(ADCA 30.4%, SCCA 13.2%) and TVR (ADCA 32.3%, 
SCCA 13.3%), but no differences in TSR (ADCA 67.1%, 
SCCA 54.1%), or TFR (ADCA 44.8%, SCCA 47.2%), indi-
cating similar fibrosis percentage in both. In contrast, 
within the non-fibrotic environment, SCCA had a 39% 
higher TFR compared to ADCA. No significant differ-
ences were noted in other TME ratios.

Correlation with doubling times
A comparative sub-analysis using DT was performed on 
21 cases, including 12 ADCA and 9 SCCA in fibrotic 
lung with > 2 available CT scans.

The ADCA were divided into two groups based on 
the median DT (139 days): short DT (20–94) and long 
DT (139–1001). The SCCA were not stratified because 
of a narrower DT range (17–297 days with a normal 
distribution).
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Fig. 3 Multiple Iterations A and B: Two examples of challenging lepidic pattern regions in adenocarcinoma comparing the classification results from the 
first and final iterations. These demonstrate notable differences in classification of normal lung (green), adenocarcinoma (red) and inflammation (yellow) 
between the first and final iterations. The initial iterations misclassified the relatively bland-appearing cells of the lepidic pattern as normal; the classifica-
tion is improved in the final iteration utilizing the EITL-RF annotation process. Carcinoma in Non-fibrotic and Fibrotic Lung C: Example cases demonstrate 
the auto-segmentation results and the tumor border demarcation (light blue). The case on the left is an adenocarcinoma (red) in a non-fibrotic lung 
environment showing inflammation (yellow). The case on the right is squamous cell carcinoma (pink) with necrosis (black) and fibrosis (lilac and blue) in 
a fibrotic lung environment
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First, there were differences in median DT: ADCA = 139 
days and SCCA = 72 days. Second, there were statisti-
cally significant differences between ADCA long DT 
and SCCA in TNR (p = 0.001), TIR (p = 0.013) and TVR 
(p = 0.05). (Fig. 6 and Supplementary Table 2) Third, there 
were statistically significant differences between the 
ADCA short DT and SCCA in TNR (p = 0.005) and TVR 
(p = 0.01).

The DT of non-fibrotic cases was limited (2 SCCA and 
5 ADCA cases in total), which constrained further com-
parative analysis.

Discussion
This study utilized H&E WSI (1) to develop a combined 
EITL—RF multiclass segmentation AI model and (2) 
evaluated the TME of ADCA and SCCA in fibrotic and 
non-fibrotic lung backgrounds.

Artificial intelligence model
Several pathology studies have previously used WSI and 
CNN, including to evaluate lung cancers [16] and applied 
a RF algorithm [29, 30]. A limited number have sepa-
rately described the utility of EITL [31] or human-in-the-
loop [32]. To our knowledge, this study is novel, because 

it is the first to describe an interactive combined EITL—
RF—CNN model.

The combined EITL—RF—CNN model addresses cur-
rent challenges. Typically, CNN use large training sets 
(hundreds to thousands of WSI) to obtain high accuracy 
and meaningful results [33]. Moreover, assessment of 
multiple classification categories requires even greater 
input data for model training and validation [33]. While 
the availability of limited data sets can be overcome by 
annotations, this is time-consuming and requires exper-
tise; as a result, slides are either only partially annotated 
for training or not at all.

Table 2 Multiclass precision, sensitivity and F1
Classes Precision Sensitivity (Recall) F1-Score
Adenocarcinoma 0.96 0.88 0.92
Squamous 0.94 0.88 0.91
Stroma 0.95 0.90 0.90
Fibrosis 0.98 0.73 0.90
Vessels 0.84 0.92 0.93
Inflammation 1.00 0.75 0.86
Necrosis 0.93 0.96 0.96
Background Normal 0.63 0.99 0.77
Weighted Average 0.94 0.90 0.91

Fig. 4 Confusion Matrix: Multiclass auto-segmentation model performance
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Fig. 5 Tumor Microenvironment Analysis (TME) Analysis: A) The box-and-whisker diagram of the tumor microenvironment (TME). In Figure A, (a) adeno-
carcinomas (ADCA) and (b) squamous cell carcinomas (SCCA) are analyzed separately in fibrotic and non-fibrotic lung. B) ADCA and SCCA are evaluated 
together in (c) fibrotic and (d) non-fibrotic lung environments. The edges of the boxes correspond to the 25th and 75th percentiles, and the length of 
the whiskers is 1.5 times the interquartile range. Outliers beyond this limit are shown in hollow blocks. Statistically significant differences are marked with 
asterisk (p-value ≤ 0.05)
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A two-step auto-segmentation process, as described 
in this study, with (1) supervised review and revise 
EITL—RF model for slide annotation and (2) CNN can 
evaluate multiple categories with limited data sets (25 
slides from 13 cases in this study) and yield high perfor-
mance metrics, save time and decrease costs. In contrast, 

unsupervised learning models necessitate vast amounts 
of data that may require years to acquire, be unavailable, 
or demand significant computing systems.

The EITL [32, 34] iterative annotation mechanism 
enables pathologists to interact with lightweight (e.g., 
RF) machine-learning models and create fully annotated 

Fig. 6 Doubling times in fibrotic lung: (A) Comparison between adenocarcinoma with long doubling time and squamous cell carcinoma showing statis-
tically significant differences between tumor necrosis ratio, tumor inflammation ratio and tumor vessel ratio. (B) Comparison between adenocarcinoma 
with short doubling time and squamous cell carcinoma showing statistically significant differences between tumor necrosis ratio and tumor vessel ratio. 
ADCA: Adenocarcinoma, SCCA: Squamous Cell Carcinoma, DT: Doubling Time, TSR: Tumor Stroma Ratio, TNR: Tumor Necrosis Ratio, TFR: Tumor Fibrosis 
Ratio, TIR: Tumor Inflammation Ratio, TVR: Tumor Vessels Ratio
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slides with only partial slide annotations as input by a 
pathologist. With an EITL—RF model, the training data 
size can be drastically expanded with smaller number of 
H&E WSI, and the quality of annotations also optimized 
through iterations.

Second, most deep learning models of lung cancer 
using WSI have evaluated a single parameter, like pres-
ence/absence of carcinoma or subclassification of carci-
noma (e.g. ADCA versus SCCA) and yield area under the 
curve (AUC) of approximately 0.9 [16]. Meanwhile, 0.6 
to 0.8 AUC is the range of more complex tasks [16]. We 
examined multiple categories and achieved performance 
metrics expected for single parameter analysis.

The current study evaluated more parameters than pre-
viously described and compared the TME within fibrotic 
and non-fibrotic lung. This model provides multiple sig-
nificant advantages. First, it uses only H&E-stained slides 
and no special ancillary studies (e.g., multiple antibodies) 
or equipment (e.g., immunofluorescence microscope). 
Second, it provides quantitative analysis. Third, the anal-
ysis is performed on all slides to capture heterogeneity. 
In contrast, a representative slide(s) is used to extrapolate 
global results when performing immunohistochemical or 
multiplex immunofluorescence analyses.

Tumor microenvironment
Our analysis demonstrates notable differences in the 
TME of fibrotic and non-fibrotic lung. In the first analy-
sis of ADCA and SCCA, there are significant differences 
in ADCA TSR and TFR (both greater in the fibrotic com-
pared to non-fibrotic lung). Meanwhile, no differences 
were noted between the fibrotic and non-fibrotic SCCA 
cohort. In the second analysis of fibrotic and non-fibrotic 
lung, SCCA demonstrated significantly greater TFR and 
significantly less TIR and TVR compared to ADCA.

To the best of our knowledge, only a single study has 
examined the TME of lung cancer using WSI-CNN [35], 
and a single study has applied CNN for tumor micro-ves-
sel assessment [36]. No reports have compared TME in 
fibrotic vs. non-fibrotic lung or concomitantly analyzed 
individual stromal components (i.e., fibrosis, inflam-
mation, vessels). In their study of the TME, Wang et al. 
evaluated > 900 ADCA and > 1900 WSI to generate a 
spatial map of ADCA and its TME (i.e., stromal cells and 
lymphocytes) using CNN and achieved an overall 90.1% 
accuracy in the testing dataset [35]. Our model had simi-
lar performance metrics and evaluated both ADCA and 
SCCA. In their study of 88 lung ADCA, Yi et al. used 
CNN to evaluate the tumor micro-vessels [36]. Mean-
while, our model represents the first to evaluate tumor 
micro-vessels amidst additional components of the TME 
using CNN.

There were notable differences in TFR, TNR, TIR, and 
TVR between ADCA and SCCA in fibrotic lung. Based 

on these findings, one may hypothesize that fibrosis is 
an increased risk factor for developing SCCA. Moreover, 
using DT as a surrogate for prognosis [37], increased TIR 
and TVR may be associated with less aggressive behavior 
due to greater accessibility of immune cells through rela-
tively increased vasculature.

Limitations
Our study had several limitations that should be 
acknowledged. Firstly, the fibrotic and non-fibrotic 
cohorts were defined based on CT scans rather than 
through interdisciplinary clinical, radiological and patho-
logical correlation. Second, only biopsies were available 
for the non-fibrotic SCCA cohort. Third, the model eval-
uated only ADCA and SCCA and its performance may 
vary across various histological subtypes. Accurately dif-
ferentiating lepidic adenocarcinoma from reactive cells 
may present difficulties for the model. These limitations 
highlight the need for further research and refinement of 
the model to address specific challenges and expand its 
applicability to a broader range of tumor types and histo-
logical features. Additionally, the cohort of fibrotic TME 
was derived from multiple etiologies, and DT rather than 
overall survival data were used.

Future directions
Future steps include separately evaluating and compar-
ing results between biopsies and resections to determine 
if biopsies could serve as surrogates for larger speci-
mens, both for purposes of training and predicting other 
data, such as outcomes. Additional prospective analyses 
include evaluation at a patient-level and post-processing 
to evaluate spatial relationships among various param-
eters and application of the model to extra-institutional 
datasets for reproducibility studies. The correlation of 
TSR, TFR, TIR and TVR with outcomes—a likely more 
robust parameter than DT—is required to determine if 
these parameters impact prognoses and should be incor-
porated into routine pathological assessment. Moreover, 
an investigation comparing results of pathologist and 
model assessments of complete or major pathological 
response in ADCA or SCCA resected following neoad-
juvant therapies would determine feasibility in clinical 
trials that may potentially provide expeditious results 
and reduced costs. Finally, the current study represents 
a subset derived from previously studied carcinomas in 
fibrotic and non-fibrotic lung. The cases were evaluated 
by a radiologist on chest CT scans and subsequently clas-
sified on CT scans using CNN [18, 27]. With overlapping 
results among the former and current analyses, these 
studies provide a platform for launching a collective radi-
ology, pathology and AI approach with potential syner-
gies in diagnoses, management and prognosis.
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Conclusion
In conclusion, this study introduces an innovative 
approach by combining EITL—RF and CNN to aug-
ment WSI analysis and represents the first AI lung cancer 
model to evaluate multiple features that detail the TME 
of ADCA and SCCA in fibrotic and non-fibrotic lung. 
The integration of this comprehensive deep learning 
model with radiology, molecular diagnostic and clinical 
outcomes has the potential to provide a more objective 
and multi-dimensional assessment of lung cancer. By 
incorporating these analyses, predictive and prognostic 
information can be enhanced, leading to improved man-
agement strategies for patients.
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