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Abstract 

Background  This study developed a nomogram model using CT-based delta-radiomics features and clinical factors 
to predict pathological complete response (pCR) in esophageal squamous cell carcinoma (ESCC) patients receiving 
neoadjuvant chemoradiotherapy (nCRT).

Methods  The study retrospectively analyzed 232 ESCC patients who underwent pretreatment and post-treatment 
CT scans. Patients were divided into training (n = 186) and validation (n = 46) sets through fivefold cross-validation. 
837 radiomics features were extracted from regions of interest (ROIs) delineations on CT images before and after 
nCRT to calculate delta values. The LASSO algorithm selected delta-radiomics features (DRF) based on classification 
performance. Logistic regression constructed a nomogram incorporating DRFs and clinical factors. Receiver operating 
characteristic (ROC) and area under the curve (AUC) analyses evaluated nomogram performance for predicting pCR.

Results  No significant differences existed between the training and validation datasets. The 4-feature delta-radiomics 
signature (DRS) demonstrated good predictive accuracy for pCR, with α-binormal-based and empirical AUCs of 0.871 
and 0.869. T-stage (p = 0.001) and differentiation degree (p = 0.018) were independent predictors of pCR. The nomo-
gram combined the DRS and clinical factors improved the classification performance in the training dataset (AUC​

αbin = 0.933 and AUC​emp = 0.941). The validation set showed similar performance with AUCs of 0.958 and 0.962.

Conclusions  The CT-based delta-radiomics nomogram model with clinical factors provided high predictive accuracy 
for pCR in ESCC patients after nCRT.

Keywords  Delta-radiomics, Neoadjuvant chemoradiotherapy, Esophageal squamous cell carcinoma, Pathological 
complete response, Computed tomography

Background
Esophageal cancer (EC) ranks is the seventh most com-
mon cancer in terms of incidence and the sixth leading 
cause of death worldwide, with approximately 604,000 
new cases and 544,000 deaths each year [1]. Particularly 
in China,  around 478,000 new esophageal squamous 
cell carcinoma (ESCC) diagnoses occur annually [2]. 
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Squamous cell carcinoma (SCC) accounts for roughly 
90% of all esophageal cancer cases globally [3]. Despite 
advances in screening, treatment modalities like chem-
oradiotherapy and immunotherapy, 5-year survival 
remains under 20% for locally advanced disease due to 
tumor heterogeneity and treatment resistance [4]. There-
fore, exploring novel advanced treatment modalities, 
effectively predicting therapeutic efficacy, and precisely 
stratifying patient are imperative to improve prognosis in 
locally advanced ESCC.

Neoadjuvant chemoradiotherapy (nCRT) followed 
by esophagectomy is the standard treatment strategy 
for patients with resectable locally advanced ESCC (T1, 
N1–3, M0; or T2–4a, N0–3, M0) [5]. Compared to sur-
gery alone, nCRT can increase locoregional control rates 
and prolong overall survival through tumor downsizing 
and downstaging [6]. Pathological complete response 
(pCR) is a crucial indicator of nCRT efficacy. Patients 
achieving pCR have lower recurrence rates and longer 
survival than those with partial response and non-
response [7]. Moreover, studies suggest comparable out-
comes for wait-and-see versus surgery in pCR patients, 
highlighting pCR’s vital role in guiding treatment deci-
sions. However, due to tumor heterogeneity and individ-
ual differences, only 25 to 40% of cases achieve pCR [8]. 
Patients who have no response to neoadjuvant chemora-
diotherapy have worse prognosis than surgery alone [9]. 
Hence, it is imperative to predict treatment response to 
nCRT and discern which patients with ESCC may attain 
a pCR.

Although various methods are currently available 
to assess response to nCRT in ESCC, several limita-
tions exist that cannot be ignored. Firstly, traditional 
endoscopic ultrasound (EUS) and endoscopy may have 
reduced accuracy and objectivity in reflecting true treat-
ment sensitivity, as they can be confounded by inflam-
mation, edema, and fibrosis related to nCRT treatment 
effects [10]. Secondly, invasive examinations such as 
endoscopy and biopsy can be challenging to success-
fully perform in patients with nCRT-induced esophagi-
tis or luminal stenosis [11]. Imaging modalities such as 
computed tomography (CT) have been used to measure 
tumor diameter and volume changes after nCRT, but 
these parameters have resulted in unsatisfactory sensitiv-
ity and specificity. Therefore, clinical treatment decisions 
for ESCC patients following nCRT cannot be based solely 
on these existing methods, and more accurate predictive 
tools are needed.

Artificial intelligence (AI) has been successfully applied 
in medicine [12], enabling automated recognition and 
processing of complex medical data such as images, 
genetics, and metabolism [13]. Machine learning (ML), a 
critical artificial intelligence branch, uses computational 

and mathematical models to analyze multi-scale data 
through self-learning, achieving classification and pre-
diction. Radiomics combines artificial intelligence and 
medical imaging to extract quantitative image features 
using algorithms, potentially reflecting underlying patho-
physiology and revealing pathogenesis [14]. The devel-
opment of CT radiomics has provided a new scope for 
tumor-related differential diagnosis, prognosis prediction 
and exploring gene expression [15–17]. Combining ML 
algorithms and CT is a promising tool to improve predic-
tion in esophageal cancer. Recent radiomics models used 
single-phase pretreatment scans to predict chemora-
diotherapy response, ignoring the alternations of tumors 
during treatment or follow-up [18–20].

Comparing radiomics features from pre- and post-
treatment scans provides information on microenvi-
ronment changes and may better predict response. This 
radiomics subfield has been identified to be predictive of 
treatment response in many types of cancer, including 
rectal adenocarcinoma [21] and gastric cancer [22]. To 
the best of our knowledge, no prior studies have explored 
the potential of CT delta-radiomics features in predicting 
pCR for ESCC patients subjected to nCRT. Accurately 
identifying nCRT responders could maximize benefits 
and avoid unnecessary toxicities for non-responders.

Thus, this retrospective study aimed to develop and 
validate a nomogram as a non-invasive tool combin-
ing clinical information and delta-radiomics features 
from baseline and post-nCRT CT scans to predict pCR 
in locally advanced ESCC. By enabling personalized pre-
diction of nCRT sensitivity, this nomogram can facilitate 
selecting optimal candidates. The nomogram has poten-
tial to significantly improve risk stratification, guide indi-
vidualized treatment decisions, and ultimately improve 
survival outcomes for ESCC patients.

Methods
Patient selection
This study retrospectively analyzed 304 patients with 
locally advanced ESCC who underwent nCRT followed 
by surgery between June 2018 and December 2021. 
Inclusion criteria were as follows: (1) pathological diag-
nosis by endoscopic biopsy; (2) clinical staging by EUS 
and CT from neck to abdomen; (3) no distant metastasis 
confirmed by whole-body positron emission tomography 
and computed tomography (PET/CT) or cranial mag-
netic resonance imaging (MRI); (4) neck ultrasonography 
with lymph node fine needle aspiration if indicated; (5) 
measurable lesion > 1 cm on CT; (6) all patients received 
standard nCRT followed by esophagectomy. Additionally, 
we excluded a portion of patients based on the following 
criteria: 21 patients had a history of disease-related treat-
ment; 7 patients had low-quality CT images; 11 patients 
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couldn’t accurately delineate tumor borders; 24 patients 
did not complete the standard nCRT treatment; and 9 
patients had an interval between post-treatment CT and 
surgery longer than 6  weeks. Therefore, the final analy-
sis included a total of 232 patients in the study cohort. 
Table  1 furnishes comprehensive details regarding 
recorded clinical factors, including gender, location, and 
T staging.

Radiotherapy delivery and chemotherapy administration
All patients with TNM staging of T1, N1–3, M0 or 
T2–4a, N0–3, M0 were treated with nCRT. Radiotherapy 
plans were generated using the Varian treatment plan-
ning system (Varian Medical System, Inc., Palo Alto, 
California, USA) The target volume included the gross 
tumor volume and metastatic lymph nodes. A total radia-
tion dose of 45 Gy was delivered by intensity-modulated 
radiotherapy (IMRT) with 6–15 MV X-rays over 5 weeks, 

with 1.8 Gy per fraction and 5 fractions administered per 
week.

All patients received concurrent chemotherapy with 
radiotherapy, consisting of 5 cycles of intravenous chem-
otherapy before response assessment. The chemotherapy 
regimen included paclitaxel at a dose of 50  mg/m2 and 
carboplatin dosed based on an area under the curve 
(AUC) of 2 mg/ml/min, administered on days 1, 8, 15, 22 
and 29. Chemotherapy doses and strategies were adjusted 
based on individual toxicity levels and blood counts.

Radical esophagectomy was typically scheduled 6 to 
8  weeks after completion of nCRT, allowing sufficient 
time for patients to recover before undergoing the surgi-
cal procedure. The surgical procedure involved either an 
open or minimally invasive transthoracic esophagectomy, 
accompanied by a two-field lymph node dissection. To 
improve local control and enhance prognosis, at least 15 
lymph nodes were removed during the surgery.

Pathological evaluation and response assessment
Resected tissues were subjected to pathological evalua-
tion by two independent pathologists with 8 and 12 years 
of experience who were blinded to the clinical data. 
Pathological complete response (pCR) indicates no viable 
cancer cells at the primary site and lymph nodes. Preop-
erative chemoradiotherapy response was assessed using 
the 5-point Mandard tumor regression grade (TRG) scale 
[23]: Grade 1 indicated a complete pathological response 
with no residual tumor cells; Grade 2 represented the 
presence of very few tumor cells scattered in fibrosis; 
Grade 3 meant a larger amount of residual tumor cells, 
but comprising a smaller proportion than fibrosis; Grade 
4 illustrated a higher proportion of residual tumor cells 
compared to fibrosis; Grade 5 was almost all tumor cells 
with little or no fibrosis present. pCR was defined as TRG 
Grade 1 with negative lymph nodes.

CT image acquisition and regions of interest segmentation
All patients underwent pre- and post-treatment CT. Pre-
treatment CT was performed 1–2 weeks before starting 
nCRT. To minimize effects of radiation-induced inflam-
mation, post-treatment CT was done 4–6  weeks after 
completing nCRT. The CT images were obtained using 
a 128-row CT scanner in the axial, coronal and sagit-
tal planes (Philips iCT 128, Philips Medical System, The 
Netherlands) with 120 kV voltage, 300–400 mA current, 
3 mm slice thickness, and 512 × 512 matrix.

Regions of interest (ROIs) encompassed the entire 
primary tumor volume, defined slice by slice on lung 
(1500/− 500 Hu) and mediastinal (300/− 60 Hu) window 
settings. Pre- and post-treatment ROIs were automati-
cally contoured using AccuContour software (version 3.0, 
Manteia Medical Technologies Co. Ltd., Xiamen, China) 

Table 1  Clinical factors of patients with non-pCR and pCR in the 
training and validation datasets

ECOG PS Eastern Cooperative Oncology Group Performance Status, nCRT​ 
neoadjuvant chemoradiotherapy, pCR pathological complete response

Characteristic Training dataset Validation 
dataset

Gender

 Male 139 37

 Female 47 9

ECOG PS

 0–1 144 38

 2 42 8

Alcohol history

 Yes 114 34

 No 72 12

T stage

 T1-2 43 5

 T3 81 19

 T4 62 22

N staging

 0–1 66 20

 2–3 120 26

Degree of differentiation

 Low 47 13

 Middle-high 139 33

Location

 Upper 26 14

 Middle 58 16

 Lower 102 16

nCRT response

 Non-pCR pCR 127
59

29
17



Page 4 of 13Fan et al. Journal of Translational Medicine          (2024) 22:579 

on the basis of deep learning algorithms, then manu-
ally modified by two radiologists with 10 and 15 years of 
experience. Two independent radiologists were blinded 
to the clinical data and pathological information, and any 
discrepancy ≥ 5% was resolved by consensus [24, 25].

Radiomics features extraction
CT radiomics feature extraction was automatically per-
formed with PyRadiomics packages, which enable feature 
calculation in 3D Slicer software (Version 4.10, http://​
www.​slicer.​org). A total of 93 features were extracted 
from each ROI, including 18 first-order intensity his-
togram (IH) and statistical matrix (SM) features, 24 
grey-level co-occurrence matrix (GLCM), 16  Gy-level 
run-length matrix (GLRLM), 16  Gy-level size zone 
matrix (GLSZM), 5 neighboring gray-tone difference 
matrix (NGTDM), and 14  Gy-level dependence matrix 
(GLDM) features. Additionally, 744 wavelet features for 
IH and SM were extracted from 8 wavelet decomposi-
tions. All features were z-score normalized to a mean of 
0 and standard deviation of 1. To assess intra-observer 
reproducibility, two radiologists independently per-
formed ROIs delineation. Both radiologists were blind 
to the clinical and histopathological data. They each seg-
mented CT images of esophageal cancer in 30 randomly 
selected samples. Radiomics features from the two ROIs 
were compared using intra-class correlation coefficients 
(ICCs). Features with ICC ≥ 0.8 were retained as having 
almost perfect agreement. Features with ICC < 0.8 were 
initially eliminated before further analysis.

The changes in the radiomic features (delta-radiom-
ics features, DRF) were calculated from the differences 
between posttreatment CT (Post-nCRT radiomics fea-
tures, RFpost) and pre-treatment CT (Pre-nCRT radiom-
ics features, RFpre):

Delta‑radiomics features selection
To maintain an effective and robust delta-radiomics sig-
nature (DRS), feature selection was employed to identify 
and eliminate irrelevant features that could reduce per-
formance for identifying pathological complete response 
(pCR). Ideal features were first selected based on uni-
variate logistic regression between pCR and non-pCR 
patients in the training dataset, using a threshold of 0.1 
to avoid removing highly discriminative features before 
multivariable analysis. To reduce overfitting and selection 
bias, the least absolute shrinkage and selection operator 
(LASSO) machine learning method was then utilized to 
select optimal features capable of distinguishing between 
pCR and non-pCR [26]. For the binary logistic regres-
sion, the tuning parameter λ was chosen in LASSO 

(1)RFpost − RFpre = DRF

through fivefold cross-validation based on minimum cri-
teria using the “glmnet” package in R software (Version 
3.4, http://​www.r-​proje​ct.​org/) [27].

Delta‑radiomics signature and nomogram construction
A logistic regression model was constructed and evalu-
ated for the predictive performance of the selected 
radiomics features constituting the DRS. The DRS was 
calculated for each patient as the linear combination of 
features weighted by corresponding LASSO coefficients.

To determine if adding clinical factors could improve 
differentiating pathological response beyond the DRS 
alone, a nomogram was built combining DRS and clini-
cally significant factors identified through multivariable 
analysis. Then, a nomogram was established in accord-
ance with multivariable analysis to predict the probability 
of pCR.

Delta‑radiomics signature and nomogram validation
The neoadjuvant chemoradiotherapy (nCRT) response 
prediction performance was evaluated in the validation 
dataset using receiver operating characteristic (ROC) 
curve analysis. Given the limited sample size, bias from 
uneven distribution between groups was inevitable, 
potentially underestimating or overestimating perfor-
mance. When the positive and negative data used to 
construct the classifying model were not balanced, the 
ROC curves may manifest poorly in the evaluation with 
a high AUC value. In this situation, it was recommended 
to plot positive predictive value of all thresholds against 
true positive using a precision-recall curve (PRC), and 
the area under the PRC was named the average preci-
sion (AP). In the present study, we plotted the smooth 
ROC curve and PRC on the basis of α-binormal model, 
which solved the above problems. The discrimination 
of the nomogram was evaluated with the α-binormal 
model-based ROC curve and PRC. The nomogram was 
obtained from the training dataset and then tested in the 
validation dataset, and the total points for every patient 
were calculated. Agreement between predicted and 
actual pCR probability was assessed by calibration curves 
through restricted cubic splines. In addition to the cali-
bration curve, we reported a prediction metric AUC that 
reflects the calibration of the model.

Statistical analysis
Statistical analysis was performed using SPSS v21.0 (Chi-
cago, USA) and R software v3.4 (Auckland, New Zealand, 
http://​www.r-​proje​ct.​org/). Categorical variables were 
compared between groups using chi-squared or Fisher’s 
exact tests. Continuous variables were compared using 
Mann–Whitney U tests. Comparison, calibration and 
precision-recall curves were generated with the “rms” 

http://www.slicer.org
http://www.slicer.org
http://www.r-project.org/
http://www.r-project.org/
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and “pROC” packages. All the P-values were two-sided, 
and the results were considered statistically significant 
when the p-values were less than 0.05.

Results
Patient characteristics
This study included 232 patients, with 156 non-pCR and 
76 pCR cases. The patients were divided into a training 
dataset consisting of 186 patients and a validation data-
set consisting of 46 patients. The cohort included 176 
males and 56 females. Using TNM staging, 48 patients 
were classified as T1-2, while the numbers of T3 and T4 
were similar at 100 and 84, respectively. Most patients 
(n = 172) had moderate or well-differentiated tumors, 
with few poorly differentiated cases. Table 1 lists the clin-
ical variables, which did not significantly differ between 
the training and validation sets (p > 0.05), including dif-
ferences in gender, location and other factors.

Radiomics signature construction and validation
Four delta-radiomics features with non-zero LASSO 
regression coefficients were selected to construct the sig-
nature in the training set. Features were weighted by their 
coefficients, shown in Fig. 1.

Figure  2 displays α-binormal-based and empirical 
ROC and PRC for the delta-radiomics signature. The 
α-binormal and empirical AUCs and APs of the delta-
Rad score are summarized in Table  2. The delta-Rad 
score exhibited a high efficiency for differentiating pCR 
and non-pCR according to AUC​αbin = 0.871 and AUC​
emp = 0.869. This performance was confirmed in the vali-
dation set, and the aforementioned radiomics yielded 
good results with AUC​αbin = 0.911 and AUC​emp = 0.929. 
Overall, the delta-radiomics signature exhibited favorable 
diagnostic performance for distinguishing between non-
pCR and pCR.

Nomogram development and validation
The results of the relationship between clinical factors 
and treatment response types in the training dataset are 
shown in Table  3. Chi-squared and Mann–Whitney U 
tests were used for univariate analysis to establish the 
relationship between clinical factors and therapeutic 
response. No significant difference was found between 
non-pCR and pCR groups by gender (p = 0.365) or ECOG 
PS (p = 0.189). However, T staging showed marked differ-
ences between non-pCR and pCR groups (p = 0.001) with 
most non-pCR cases distributed in T3 and T4, while pCR 

Fig. 1  Features selection through LASSO with a binary regression model. A The LASSO coefficient profile plot was produced against the log lambda 
sequence. B Tuning parameter (log lambda) selection in the LASSO via minimum criteria. AUC​ area under the curve
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patients were predominantly T1. Notably, the degree of 
differentiation was higher in pCR patients compared to 
non-pCR with p value = 0.018. No significant difference 
in N staging was seen between groups (p = 0.192), and 
location was not a predictive factor (p = 0.483).

The delta-radiomics signatures and independent 
clinical factors were combined to create a nomogram 
(Fig. 3). In training samples, the α-binormal and empiri-
cal AUCs of the nomogram were 0.933 and 0.941, sub-
stantially higher than the DRS alone. The nomogram 
was also validated in an external cohort, demonstrating 
superior discriminative ability with AUC​αbin = 0.958 and 
AUC​emp = 0.962. As shown in Fig.  4, a clear distinction 
between non-pCR and pCR was seen in the validation 
cohort with APs of 0.953 and 0.914, respectively.

The calibration curve showed good agreement between 
estimated pCR probability and actual observed results 
by restricted cubic splines, AUC = 0.870 (95% CI: 0.781–
0.959) (Fig. 5). The distance of the calibration curve from 
the diagonal was inversely correlated to the predictive 
ability of the nomogram. Decision curves were plot-
ted for both the DRS and the nomogram to assess their 

clinical utility. The results above confirmed that the nom-
ogram exhibited optimal performance in discriminating 
non-pCR from pCR. yielding a greater net benefit com-
pared to the DRS (Fig. 6).

Discussion
Early prediction of treatment response in locally 
advanced esophageal cancer to nCRT is crucial for 
adjusting treatment strategies. Patients achieving pCR 
may avoid esophagectomy and preserve the esophagus. 
This study aimed to develop and validate a CT-based 
delta-radiomics score to effectively predict pCR in ESCC 
patients. Additionally, combining it with clinical vari-
ables improved predictive performance compared to the 
DRS alone, as evidenced in independent validation sets. 
Therefore, the nomogram incorporating clinical and 
delta-radiomics features may provide an effective, non-
invasive tool to guide clinical decision-making. Adop-
tion of this nomogram into routine clinical practice could 
significantly enhance current standards of patient care 
by enabling personalized therapy. This has the poten-
tial to improve clinical response rates, optimize health 

Fig. 2  The performances of the developed delta-radiomics signature. A Receiver operating characteristics (ROC) curves. B Precision-recall curve 
(PRC)

Table 2  Comparison of the performances of delta-radiomics signature and nomogram

DRS Delta-radiomics signature, AUC​ Area under the curve, AP Average precision, AUCα-bin The α-binormal area under the curve, AUCemp The empirical area under the 
curve, APα-bin The α-binormal average precision, APemp The empirical average precision

Performance Training dataset Validation dataset

AUCα-bin AUCemp APα-bin APemp AUCα-bin AUCemp APα-bin APemp

DRS 0.871 0.869 0.848 0.826 0.911 0.929 0.921 0.883

Nomogram 0.933 0.941 0.930 0.918 0.958 0.962 0.953 0.914

p-value  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
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outcomes, prolong survival, and preserve quality of life 
for patients. The predictive model therefore constitutes a 
major step forward towards precision oncology and indi-
vidualized treatment in this deadly disease.

Previous studies assessed CT and EUS for evaluating 
ESCC response to nCRT based on tumor volume and 
diameter reduction [28, 29]. However, visual assess-
ment can be influenced by inter- and intra-observer 
variability, and volume reduction does not always 
correlate with response. Furthermore, PET/CT and 
diffusion-weighted imaging magnetic resonance imag-
ing (DWI-MRI) displayed a good performance in pre-
dicting pathological response to nCRT [30], but the 
expensive medical examination fees limit accessibility 
and affordability. Besides that, perfusion CT and dual 
energy CT (DECT) were also applied to predict the 
response of ESCC after nCRT. However, there are some 
important limitations for CT perfusion. In particular, 
results may vary depending on the proprietary software 
used, making comparisons between studies difficult. 
There are also issues with reproducibility of CT perfu-
sion techniques that need to be addressed [31]. On the 
other hand, DECT is limited since not all tumor lesions 

exhibit hypervascularity, and vascularity reduction 
after chemoradiotherapy does not always strictly relate 
to response [32, 33].

As a novel imaging quantification method, previous 
studies have illustrated the potential value of radiomics 
in predicting histological response to nCRT in esopha-
geal cancer. Hu et  al. used CT-based radiomics features 
and constructed a model to differentiate between ESCC 
patients with non-pCR and those with pCR, achieving an 
AUC of 0.852. However, they did not involve any clinical 
parameters in the model and the efficacy of the models 
was not explicitly confirmed through external validation 
[34]. Luo et  al. extracted 851 radiomics features from 
pretreatment CT to build a model for predicting the 
response of esophageal cancer to nCRT. The model con-
tained 7 radiomics features and had an AUC score of 
0.844. But the sample sizes of these studies were rela-
tively small, which increased the risk of model overfitting 
[35]. A research by van Rossum et al. reported a predic-
tive model of tumor response via 18F-FDG PET radiom-
ics features of patients with esophageal cancer, and a 
corrected c-index of 0.77 was achieved. However, adeno-
carcinoma accounted for most cases in this study, which 
has significantly different tumor biology and response to 
neoadjuvant chemoradiotherapy compared to esophageal 
squamous cell carcinoma (pCR rate of 27% versus 43.2%, 
respectively) [36]. Therefore, selecting only one histologi-
cal type of esophageal cancer for analysis may improve 
the performance of the model in predicting pCR.

The results of our study indicate that the model based 
on delta radiomics features had higher predictive power 
than previous studies, especially when combined with 
clinical factors. DRF can provide information on hetero-
geneous changes, which is ignored by single time-point 
models. Nardone et  al. proposed that delta radiomics 
based on CT improved accuracy for pCR prediction, 
reporting AUCs of 0.87 and 0.88 in the training and 
validation sets, respectively [37]. Guo et  al. performed 
a study predicting pCR using delta-radiomics features 
extracted from pre-treatment and post-treatment DCE-
MRI in breast cancer patients undergoing neoadjuvant 
treatment, achieving highest AUCs of 0.917 and 0.842 for 
the training and validation sets [38]. Moreover, Shen et al. 
developed a model on an internal cohort of 132 advanced 
gastric cancer patients and validated it on 45 external 
patients. The model incorporated CT-based delta radi-
omics and clinical factors to predict overall survival, with 
AUC values of 0.827 and 0.853 for internal and exter-
nal datasets [39]. To our knowledge, no previous stud-
ies have assessed delta-radiomics features of CT images 
for evaluating tumor response in ESCC patients under-
going nCRT. Calculating feature differences before and 
after treatment using DRF may provide more detailed 

Table 3  Clinical factors of patients with non-pCR and pCR in the 
training dataset

ECOG PS Eastern Cooperative Oncology Group Performance Status, nCRT​ 
neoadjuvant chemoradiotherapy, pCR pathological complete response

Characteristic Non-pCR pCR p

Gender 0.365

 Male 92 47

 Female 35 12

ECOG PS 0.189

 0–1 102 42

 2 25 17

Alcohol history 0.520

 Yes 80 34

 No 47 25

T stage 0.001

 T1-2 19 24

 T3 61 20

 T4 47 15

N staging 0.192

 0–1 41 25

 2–3 86 34

Degree of differentiation 0.018

 Low 39 8

 Middle-high 88 51

Location 0.483

 Upper 18 8

 Middle 36 22

 Lower 73 29
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information on treatment response compared to static 
radiomics analysis.

Tumor staging is widely known as the most impor-
tant prognostic indicator for patients with malignant 
tumors, and it serves as the foundation for clinicians to 
develop treatment strategies. Previous studies showed 

patients with earlier T stages before treatment have a 
higher chance of achieving pCR after chemoradiotherapy 
[40, 41]. Initial findings by Szumilo et al. revealed tumor 
invasion depth as the only clinical variable significantly 
correlated with neoadjuvant chemotherapy response in 
thoracic ESCC [42]. American joint committee on cancer 

Fig. 3  Nomograms developed in this study using the training dataset

Fig. 4  The performance of the developed nomogram. A Receiver operating characteristics (ROC) curves. B Precision-recall curve (PRC)
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Fig. 5  Calibration curve of the nomogram shows as a red line

Fig. 6  The decision of the delta-radiomics signature, nomogram and two extreme curves were plotted based on the validation dataset. The figure 
illustrated that the utilize of nomogram to predict pCR probability has a greater benefit that the delta-radiomics signature
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(AJCC) T staging depends on tumor infiltration depth, 
considering only the horizontal axis, rather than verti-
cal axis [43]. Consequently, it may be difficult to fully 
evaluate esophageal cancer due to the lack of partial 
prognostic information. Radiomics analysis can extract 
high-throughput and quantitative features of malignancy 
lesions, reflecting tumor information and improving pre-
dictive efficacy. Our results state that T-stage has a close 
relationship with pCR (p = 0.014), and the combination 
of radiomics and clinical parameters can be applied to 
further improve predictive performance, surpassing the 
performance of independent models with an AUC of 
0.963. More advanced T stages are associated with larger 
tumor volumes, higher heterogeneity, poorer differen-
tiation, and increased radiotherapy resistance, reducing 
radiosensitivity. This conclusion is generally consistent 
with the study by Luo et al. [35]. In the present study, our 
results revealed higher differentiation degree could serve 
as a biomarker of nCRT response with p = 0.041. Differ-
ent differentiation statuses influence apoptotic pathways, 
causing varying treatment responses. Poorly differenti-
ated tumor may exhibit increased expression of DNA 
repair enzymes and proteins conferring radiotherapy 
resistance. This enhanced expression enables them to 
more efficiently repair DNA damage induced by radio-
therapy [44]. The superior performance of the combined 
model may relate to tumor heterogeneity, reflected by 
radiomics and clinical features describing biological char-
acteristics like cell cycle and chemokine signaling [45].

In addition to T stage and tumor differentiation we 
mentioned, other clinical factors may associate with 
neoadjuvant chemoradiotherapy response in esophageal 
cancer. Although ECOG performance status is an estab-
lished prognostic factor in cancer, its utility for predicting 
outcomes in ESCC patients undergoing nCRT is unclear.. 
Poorer ECOG PS often indicates worse chemoradiation 
outcomes, as it associates with increased sensitivity to 
treatment toxicities and complications [46]. Patients with 
good ECOG PS can better tolerate full-dose radiotherapy 
and complete chemotherapy cycles [47]. However, there 
are certain tumor types, such as small cell lung cancer, 
that exhibit high responsiveness to chemoradiotherapy, 
thus presenting potential exceptions [48]. Given the dif-
ferent mechanisms of etoposide and paclitaxel, tolerabil-
ity within ECOG cohorts may depend on the regimen 
specifics. More research is needed on the relationships 
between performance status, treatment regimens, and 
nCRT outcomes.

Other studies have identified additional clinical 
predictors of pCR. Huang et  al. [49] and Hamai et  al. 
[50] mentioned that younger age, higher pretreat-
ment hemoglobin levels, smoking status, and shorter 
tumor length were significant pCR predictors in ESCC 

specifically. Meanwhile, Patel et  al. [51] demonstrated 
that the presence of signet ring cell histology in the 
baseline biopsy was associated with lower rates of pCR 
and survival in esophageal adenocarcinoma. Recently, 
prediction models and nomograms for nCRT response 
have expanded. Schneider et  al. [52] created a model 
using histomorphology tumor regression and nodal 
stage to predict complete surgical resection rates after 
nCRT in esophageal cancer. These findings highlight 
the range of potential clinical predictors for neoadju-
vant treatment response and outcomes.

In this study, our pCR rate was approximately 32.7%, 
lower than the 49% rate for squamous cell carcinoma 
in the CROSS study. This disparity can be attributed to 
differences in patient factors. The CROSS study pre-
dominantly excluded T4 and N2 stages, while some of 
our patients had advanced disease. Compared to the 
CROSS study, the overall patient condition was gener-
ally poorer in this present study, with approximately 
21.5% of patients having an ECOG performance status 
score of 2. Haisley et  al. demonstrated that approxi-
mately 37 patients (26%) achieved a pCR according to 
the final pathology results. T The cisplatin/5-fluoroura-
cil group had a pCR rate of 33%, while the carboplatin/
paclitaxel group had a lower rate of 22% [45]. Huang 
et al. evaluated the independent predictive clinical fac-
tors associated with pCR after nCRT for ESCC, and 
only Fifty-nine (20.9%) of the 282 patients achieved 
pCR [49]. The pCR rates can vary among different stud-
ies and multiple factors have an effect on the pathologi-
cal response in esophageal squamous cell carcinoma. It 
is normal to observe pCR rates ranging between 20 and 
40%.

The nomogram developed this study provides robust 
evidence for predicting neoadjuvant chemoradiother-
apy efficacy in future esophageal cancer care. However, 
not all patients are sensitive to neoadjuvant therapy. 
Expanding clinical utility of existing drugs for differ-
ent diseases could improve sensitivity in esophageal 
cancer patients. This novel research direction saves 
time and resources while ensuring current medication 
safety. More importantly, it accelerates development of 
innovative therapeutic approaches [53]. For esophageal 
cancer drug repurposing, we can refer to a study uti-
lizing machine learning and deep learning across large 
cancer datasets to systematically identify repurpos-
ing opportunities [54]. By screening suitable drugs for 
each cancer type, their computational framework ena-
bles systematic rediscovery for anti-tumor treatment. 
In addition, with the accumulation of new clinical data, 
continued optimization and updating of the model will 
be crucial. Including new cases can avoid retrospective 
study limitations. We can also selectively incorporate 
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more parameters like lab tests, treatment variables, and 
genomics to enhance predictive accuracy.

Compared to previous studies, this study has several 
advantages: first, the analyzed CT images were acquired 
from the same machine using unified scanning param-
eters, preventing interference caused by variations in 
imaging parameters. Second, fivefold cross-validation 
was employed to more accurately estimate the predic-
tion model. Finally, we minimized inter-rater variation 
through two radiologists’ independent evaluation, only 
a few studies examined the reproductivity, reproduc-
ibility and reliability errors in radiomics [55, 56].

While the longitudinal images in delta-radiomics 
demonstrate significant predictive potential, it’s impor-
tant to acknowledge some limitations in this study. 
First, it is a retrospective study, there exists a bias in the 
selection and control of patients. Future prospective 
studies with larger sample sizes are needed to ensure 
generalization. Second, training and validation data-
sets were acquired from a single institution, further 
investigation will concentrate on samples from various 
institutions as external validation dataset. Additionally, 
genomics data should be incorporated to associate with 
treatment response in the future, which might improve 
the accuracy of this model. Finally, a key limitation of 
radiomics studies is the lack of clear biological inter-
pretability for radiomic features and their changes, 
as underlying mechanisms remain unclear. In sum-
mary, this study demonstrates the potential impact of 
a predictive model using radiomics and clinical factors 
on treatment decision-making for resectable locally 
advanced ESCC. Further optimization and validation 
are warranted to translate these findings into clini-
cal practice. In addition, the method of patient group-
ing still needs to be discussed. Previous studies have 
shown that randomly splitting patients into training 
and validation sets with a ratio of 8:2 or 7:3 when build-
ing clinical prediction models may lead to unstable 
model performance [57]. Employing k-fold cross-vali-
dation on the sample may be one way to address this 
issue. Moreover, it can also provide more stable model 
evaluation and avoid overfitting and underfitting [58]. 
However, in machine learning models based on radi-
omics, k-fold cross-validation risks data leakage and 
introduces errors. Also, inappropriate k values, imbal-
anced training and validation set division, and unshuf-
fled data order affect model prediction [59, 60]. This 
study adopted random grouping and k-fold cross-vali-
dation for parameter selection during model building. 
We also introduced model validation, normalization, 
and preprocessing to ensure model stability. Radiom-
ics research standard protocols and guidelines have not 

specified criteria for grouping, necessitating further 
research [61, 62]. But avoiding underfitting and overfit-
ting, improving generalization and interpretability, are 
key future research goals.

Conclusions
In conclusion, this preliminary study demonstrated 
that combining clinical factors and CT delta-radiomics 
before and after treatment can accurately predict pCR 
in patients with ESCC receiving nCRT. The nomogram 
model provides an economical, non-invasive approach 
to predict neoadjuvant chemoradiotherapy response, 
which is helpful for guiding clinical treatment deci-
sions. This study suggests radiomic analysis may be 
a useful tool for individualized assessment of tumor 
response and personalized therapy selection in locally 
advanced esophageal cancer.
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