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Abstract 

Background  Colorectal cancer (CRC) is a serious global health burden because of its high morbidity and mortal-
ity rates. Hypoxia and massive lactate production are hallmarks of the CRC microenvironment. However, the effects 
of hypoxia and lactate metabolism on CRC have not been fully elucidated. This study aimed to develop a novel 
molecular subtyping based on hypoxia-related genes (HRGs) and lactate metabolism-related genes (LMRGs) and con-
struct a signature to predict the prognosis of patients with CRC and treatment efficacy.

Methods  Bulk and single-cell RNA-sequencing and clinical data of CRC were downloaded from the TCGA and GEO 
databases. HRGs and LMRGs were obtained from the Molecular Signatures Database. The R software package DESeq2 
was used to perform differential expression analysis. Molecular subtyping was performed using unsupervised cluster-
ing. A predictive signature was developed using univariate Cox regression, random forest model, LASSO, and mul-
tivariate Cox regression analyses. Finally, the sensitivity of tumor cells to chemotherapeutic agents before and after 
hypoxia was verified using in vitro experiments.

Results  We classified 575 patients with CRC into three molecular subtypes and were able to distinguish their prog-
noses clearly. The C1 subtype, which exhibits high levels of hypoxia, has a low proportion of CD8 + T cells and a high 
proportion of macrophages. The expression of immune checkpoint genes is generally elevated in C1 patients 
with severe immune dysfunction. Subsequently, we constructed a predictive model, the HLM score, which effec-
tively predicts the prognosis of patients with CRC and the efficacy of immunotherapy. The HLM score was validated 
in GSE39582, GSE106584, GSE17536, and IMvigor210 datasets. Patients with high HLM scores exhibit high infiltration 
of CD8 + exhausted T cells (Tex), especially terminal Tex, and oxidative phosphorylation (OXPHOS)−Tex in the immune 
microenvironment. Finally, in vitro experiments confirmed that CRC cell lines were less sensitive to 5-fluorouracil, 
oxaliplatin, and irinotecan under hypoxic conditions.

Conclusion  We constructed novel hypoxia- and lactate metabolism-related molecular subtypes and revealed their 
immunological and genetic characteristics. We also developed an HLM scoring system that could be used to predict 
the prognosis and efficacy of immunotherapy in patients with CRC.
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Background
Colorectal cancer (CRC) is currently the third most 
common cancer and the second leading cause of cancer-
related deaths worldwide [1]. Growing evidence sug-
gests that the tumor microenvironment (TME) plays 
an important role in the development, progression, and 
drug resistance of CRC.

Hypoxia is a prominent feature of the microenviron-
ments of CRC and other solid tumors. The generation 
of hypoxic conditions may be related to the massive 
consumption of oxygen due to uncontrolled tumor pro-
liferation and impaired oxygen supply due to irregular 
and disorganized tumor-associated neovascularization. 
Hypoxic conditions increase the levels of hypoxia-induc-
ible factors (HIFs) in cells. As transcription factors, HIFs 
further increase the transcription of downstream tar-
get genes, thus playing a regulatory role in various bio-
logical processes, such as cell metabolism, proliferation, 
metastasis, epithelial-mesenchymal transition (EMT), 
and angiogenesis [2–10]. Additionally, hypoxia and HIF 
accumulation have been found to be associated with 
resistance to chemotherapy as well as worse prognosis 
in patients with CRC [11–14]. Recent studies have also 
found that hypoxia can be considered a biomarker for 
predicting the outcome of immunotherapy and that the 
efficacy of immunotherapy can be improved by ame-
liorating hypoxia and targeting HIF-1 [15–19]. Sev-
eral studies have demonstrated that hypoxia regulates 
the function and differentiation of immunosuppressive 
cells, such as myeloid-derived suppressor cells, tumor-
associated macrophages (TAMs), and regulatory T cells 
(Tregs), thereby promoting immunosuppression and 
tumor immune escape [20–25].

The hypoxia-mediated shift of tumor metabolism 
towards glycolysis, as well as the native characteristics 
of aerobic glycolysis (the so-called Warburg effect), leads 
to massive glucose consumption by tumor cells, conse-
quently increasing lactate production and decreasing 
the pH of the TME [26]. Lactate can directly modulate 
endothelial cell phenotype and drive tumor angiogenesis 
through multiple pathways [27–29]. Furthermore, con-
siderable lactate accumulation stimulates macrophage 
polarization to the M2 phenotype in tumors [30]. Lac-
tate has been found to reduce interferon-γ (IFN-γ) pro-
duction by CD8 + T cells and NK cells, inhibiting their 
cytotoxic function [31]. Lactate also decreases the motil-
ity of CD4 + and CD8 + T cells, which might reduce their 
infiltration and movement into the TME [32]. Addition-
ally, lactate in the highly glycolytic TME may increase the 
expression of programmed cell death-1 (PD-1) in Tregs; 
PD-1 blockade therapy could activate PD-1-expressing 
Tregs, leading to immunotherapy failure [33]. Lactate has 
also recently been found to provide metabolic support 

to tumor-infiltrating Tregs [34]. Moreover, patients with 
metastatic CRC have been reported to have higher serum 
lactate concentrations than those with non-metastatic 
CRC [35].

However, considering the heterogeneity of CRC and the 
complex interaction between hypoxia and lactate metab-
olism, the effects of hypoxia and lactate metabolism on 
CRC have not been fully elucidated. Therefore, it is nec-
essary to conduct a landscape assessment of the funda-
mental combination of hypoxia and lactate metabolism 
on CRC prognosis, TME, and immunotherapy. In this 
study, we performed a new subtype classification of CRC 
by combining hypoxia-related genes (HRGs) and lactate 
metabolism-related genes (LMRGs). We then identified 
the characteristics of the corresponding subtypes from 
multiple perspectives. Overall, this study aimed to deter-
mine a precise treatment strategy for CRC using this new 
subtype classification method, thereby improving the 
treatment efficacy and survival of patients with CRC.

Methods
Data acquisition
We obtained RNA sequencing data of CRC, as well as 
clinical information from the TCGA database (https://​
portal.​gdc.​cancer.​gov/). After removing patients with less 
than 1 month of follow-up, we included count and tran-
scripts per million (TPM) data from 575 patients with 
CRC and 51 normal tissues. The GSE39582, GSE106584, 
and GSE17536 expression matrices and clinical informa-
tion were downloaded from the GEO database (https://​
www.​ncbi.​nlm.​nih.​gov/). The IMvigor210 data were 
obtained from IMvigor210CoreBiologies (http://​resea​
rch-​pub.​gene.​com/​IMvig​or210​CoreB​iolog​ies). HRGs and 
LMRGs were obtained from the Molecular Signatures 
Database (http://​www.​gsea-​msigdb.​org/​gsea/​downl​oads.​
jsp). Specifically, 326 HRGs were identified from Harris 
hypoxia, hallmark hypoxia, GOBP regulation of cellular 
responses to hypoxia, and reactome cellular responses 
to hypoxia. Overall, 288 LMRGs were obtained from 
the GOBP glucose catabolic process to lactate via pyru-
vate, GOBP lactate metabolic process, GOBP lactate 
transmembrane transport, GOMF L-lactate dehydro-
genase activity, GOMF lactate dehydrogenase activity, 
GOMF lactate transmembrane transporter activity, HP 
abnormal brain lactate level by mrs, HP abnormal lac-
tate dehydrogenase level, HP-elevated lactate pyruvate 
ratio, HP-increased circulating lactate dehydrogenase 
concentration, HP-increased CSF lactate level, and HP-
increased serum lactate level.

Differential expression analysis
The R software package DESeq2 (version 1.32.0) was 
used for differential expression analysis. Genes with a 
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false discovery rate (FDR) < 0.05 and |fold change|≥ 2 
were screened as differentially expressed genes (DEGs). 
We analyzed the correlations among the 35 DEGs using 
Spearman correlation analysis. GeneMANIA was used to 
assess gene interactions and predict gene functions [36]. 
Additionally, we evaluated the prognostic significance of 
each gene using the Cox method with the survival pack-
age (version 3.5-5), which integrates survival time, sur-
vival status, and gene expression data.

Molecular subtyping
Cluster analysis was performed using ConsensusCluster-
Plus [37] with agglomerative PAM clustering with Euclid-
ean distance; 80% of the samples were resampled for 10 
repetitions. The optimal number of clusters was deter-
mined using an empirical cumulative distribution func-
tion plot and the average consistency within the group.

The prognostic differences between the groups were 
analyzed using the Survfit function of the R package sur-
vival (version 3.5-5). The log-rank test was used to assess 
the statistical significance, and Kaplan–Meier curves 
were plotted.

We classified the CRC samples in the TCGA database 
into four consensus molecular subtypes (CMS), following 
the report of Guinney et  al. [38]. Gene Set Enrichment 
Analysis (GSEA) software (version 3.0) was utilized to 
perform GSEA. The h.all.v2023.1.Hs.symbols.gmt sub-
set of the MSigDB was downloaded to assess the related 
pathways and molecular mechanisms.

Immune landscape analysis
We calculated 22 immune cell infiltration profiles per 
sample based on the CIBERSORT method in the R pack-
age IOBR [39]. Next, we analyzed and visualized the 
anticancer immune status of each sample and the pro-
portion of tumor-infiltrating immune cells in the seven-
step cancer immune cycle based on RNA-seq data in the 
Tracking Tumor Immunophenotype (TIP, http://​biocc.​
hrbmu.​edu.​cn/​TIP/) [40]. The immunophenoscore (IPS) 
and Tumor Immune Dysfunction and Exclusion (TIDE) 
score were used to assess the potential clinical efficacy of 
immunotherapies in the different subtypes and indicate 
the potential for tumor immune evasion. The IPS and 
TIDE scores for the samples were derived from The Can-
cer Immunome Atlas (TCIA, https://​tcia.​at/​home/) and 
an online tool called TIDE (http://​tide.​dfci.​harva​rd.​edu/), 
respectively [41]. Finally, we compared the expression 
levels of well-known immune checkpoint genes across 
the three subtypes.

Prediction of patients’ clinical drug response
The R package oncoPredict (version 0.2) [42] was used 
to predict each patient’s response to multiple clinical 

medications based on cell line drug response and gene 
expression data from the Broad Institute’s Cancer Thera-
peutics Response Portal (CTRP) and Sanger Genomics of 
Drug Sensitivity in Cancer (GDSC).

Characterization of somatic mutations in patients
To characterize the somatic mutations in patients with 
different subtypes, mutation annotation format (MAF) 
files of patients were downloaded from the TCGA data-
base. These files were analyzed and visualized using the R 
package maftools (version 2.10.05) [43].

Construction and validation of the prognostic model
Differential expression analysis was performed as pre-
viously described. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Gene Ontology (GO) enrichment 
analyses were performed using the R package clusterPro-
filer (version 3.14.3) to obtain the results of the gene set 
enrichment. The KEGG Rest API (https://​www.​kegg.​jp/​
kegg/​rest/​kegga​pi.​html) was also used. Genes in the R 
package org.Hs.eg.db (version 3.1.0) were used for GO 
annotation.

The R package randomForest (version 4.7-1.1) was 
used to develop optimal models. The importance of each 
explanatory variable was assessed by evaluating the mean 
decrease in accuracy and the Gini coefficient. The top 
20 genes in terms of importance were selected for the 
least absolute shrinkage and selection operator (LASSO) 
regressions. The R package glmnet (version 4.1-8) was 
used to perform the LASSO analysis. A stepwise multi-
variate Cox proportional hazards model was used to opti-
mize the model. Finally, we constructed an HLM scoring 
system based on six genes for prognostic prediction. 
HLM score = 0.43*(AGXT expression) + 0.03*(TRIB2 
expression) + 0.17*(ELFN2 expression) + 0.16*(PCDHB10 
expression) + 0.02*(CALCA expression) + 0.01*(CD79A 
expression). To validate the efficacy of the model, receiver 
operating characteristic (ROC) analysis was conducted at 
one, three, and five years using the R package Proc (ver-
sion 1.17.0.1). The area under the curve (AUC) and con-
fidence intervals were evaluated using the ci function of 
Proc.

To validate the stability of our model, we acquired 
GSE39582, GSE106584, GSE17536, and IMvigor210 
expression matrices and clinical information. These data 
were divided into the high- and low-risk groups based 
on the HLM score using optimal truncation, and survival 
analysis was performed.

Single‑sample gene set enrichment analysis (ssGSEA)
We obtained and defined the CD8 + exhausted T cell 
(Tex), GZMK + Tex, terminal Tex, oxidative phospho-
rylation (OXPHOS)−Tex, and TCF7 + Tex gene sets from 
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previous studies (Supplementary Table  1) [44, 45], set 
the minimum gene set to 5 and the maximum gene set to 
5000, and calculated the enrichment scores for each sam-
ple in each gene set using the R package GSVA (version 
1.40.1).

Single‑cell RNA sequencing (scRNA‑seq) data processing 
and analysis
The scRNA-seq data used in this study were down-
loaded from the GEO database under the accession code 
GSE132465. This dataset contains single-cell 3’-RNA 
sequencing data from 23 patients with primary CRC [46]. 
The Seurat R package (version 5.0) was used to analyze 
scRNA-seq data according to standard analysis proce-
dures [47]. Cells were selected for analysis based on the 
following criteria: cells with unique molecular identifier 
(UMI) counts greater than 1000, cells with more than 200 
but less than 6000 unique genes, and cells with less than 
20% mitochondrial gene expression in their UMI counts. 
The ElbowPlot function was used to determine the 
dimensionality of each dataset. The t-distributed stochas-
tic neighbor embedding (t-SNE) projection was used to 
visualize the cell clusters. Major cell types and subtypes 
were annotated by comparing the typical marker genes 
and differentially expressed genes in each cluster.

Pseudo‑bulk analysis of scRNA‑seq data
Pseudo-bulk analysis of scRNA-seq data was performed 
to characterize the gene expression profile of each sam-
ple. Specifically, scRNA-seq data were converted to bulk-
like data by aggregating the gene counts of individual 
cells belonging to each sample.

Construction of a predictive nomogram
To visualize the prognosis prediction in patients with 
CRC, we constructed a nomogram based on survival 
time, survival status, age, sex, T stage, N stage, M stage, 
pathological type, and HLM score using the R pack-
age rms (version 6.7-1). Harrell’s concordance index 
(C-index), calibration curves, and decision curve analysis 
(DCA) were used to assess the nomogram performance.

Protein interactions
Protein interactions mediate a range of physiological 
functions and pathological developments in organisms. 
We obtained the interaction networks of proteins that 
interacted with the characterized genes from the BioPlex 
Interactome database (https://​biopl​ex.​hms.​harva​rd.​edu/) 
[48]. The purple circles represent the quered protein, 
the green circles represent the bait protein, the gray dia-
monds represent the prey protein, and the arrows repre-
sent the directed edge (bait-to-prey).

Cell viability assay
The HCT116 and LS174T cell lines were purchased from 
the American Type Culture Collection (ATCC) web-
site. The cells were cultured in 1640 medium (Invitro-
gen, C11875500BT) containing 10% fetal bovine serum 
(Vivacell, C04001-500) and 1% penicillin and streptomy-
cin (Gibco, 15140122) at 37 °C in a 5% CO2 incubator. A 
hypoxic environment was created using a CO2 three-gas 
incubator (Thermo Fisher Scientific, 51901137); the O2 
concentration was adjusted to 1%.

We seeded HCT116 and LS174T cells in 96-well plates 
(Costar 3599) at densities of 8,000 and 15,000 cells/well, 
respectively, and placed them in normoxic or hypoxic 
environments. The following day, different concentra-
tions of 1640 complete medium, 5-fluorouracil (5-FU, 
Solarbio, F8300), oxaliplatin (Solarbio, O8390), or iri-
notecan (Solarbio, II0140), in combination with or with-
out BAY87-2243 (a potent and selective HIF-1 inhibitor; 
Beyotime, SC1193), were added to the 96-well plates. The 
cells were then incubated under normoxic or hypoxic 
environments for another 48 h.

For Trypan blue staining, the spent medium in 
the wells was discarded, 100  µl of 0.4% Trypan blue 
(LABLEAD, T6146) solution was added to each well, and 
then the Trypan blue stain was washed away with PBS 
(Invitrogen, C20012500BT) after 5 min. Finally, the cells 
were observed and photographed under the microscope.

For Cell Counting Kit-8 (CCK8) experiments, the spent 
medium in each well of the 96-well plate was discarded, 
100 µl of 1640 medium containing 10% CCK8 (Beyotime, 
C0038) was added to each well, and the plates were incu-
bated at 37 °C for 2 h. Finally, the absorbance at 450 nm 
was measured using an enzyme labeling instrument 
(Thermo Fisher Scientific, VLBL00D0).

Statistical analysis
SPSS 26.0 (SPSS, Inc., Chicago, IL, USA) and GraphPad 
Prism 8 (GraphPad, Inc., CA, USA) software were used 
for the analyses. Differences between two groups were 
calculated using the paired two-tailed Student’s t-test or 
the Mann–Whitney–Wilcoxon test. Comparisons among 
three groups were performed using ANOVA or the 
Kruskal–Wallis rank-sum test. The chi-square test was 
used to compare the clinical characteristics. Statistical 
significance was set at p < 0.05.

Results
Identification of hypoxia‑associated DEGs and lactate 
metabolism‑associated DEGs in CRC​
Figure 1 illustrates the analytical framework used in this 
study. RNA-seq data were obtained from the TCGA 
database for 575 CRC samples with more than 1 month 

https://bioplex.hms.harvard.edu/
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of follow-up, and 51 normal colorectal tissues were used 
for comparison. Differential expression analysis was per-
formed, and 8168 DEGs were identified in CRC when 
the threshold was set at |fold change|> 2 and FDR < 0.05. 
Of these genes, 4496 were upregulated and 3672 were 
downregulated (Fig.  2A). Additionally, 326 HRGs and 
288 LMRGs were retrieved from the MSigDB database. 
We then conducted univariate Cox regression analysis on 
all protein-coding genes in the RNA-seq data of patients 
and identified 2207 genes associated with overall sur-
vival (OS). After taking the intersection of DEGs, genes 
associated with OS, HRGs, and LMRGs, we identified 26 
hypoxia-related DEGs (HRDEGs) and 9 lactate metabo-
lism-related DEGs (LMRDEGs, Fig.  2B, C). Analysis of 
these 35 genes revealed a wide range of correlations and 
intergene interactions (Fig. 2D, E). 

Constructing molecular subtypes based on the HRDEGs 
and LMRDEGs
Unsupervised clustering was performed on 575 CRC 
samples using the 35 identified HRDEGs and LMRDEGs. 
The highest average within-group agreement was 
observed when classified into three subtypes (Fig. 2F, G). 
Therefore, we classified the 575 samples into three sub-
types: C1 (n = 92), C2 (n = 324), and C3 (n = 159). A com-
prehensive evaluation revealed that different molecular 

subtypes exhibited distinct hypoxia and lactate metab-
olism-related microenvironments (Figure S1A, B). The 
Kaplan–Meier survival curves indicated that patients 
with the C1 subtype had the worst OS than patients with 
subtypes C2 (HR = 1.67, 95% CI 1.07–2.62, p = 0.02) and 
C3 (HR = 2.48, 95% CI 1.41–4.36, p < 0.01). Additionally, 
there was a trend towards better OS in the C3 subtype 
compared with C2, although the difference was not sta-
tistically significant (C2 vs. C3, HR = 1.48, 95% CI 0.92–
2.40, p = 0.11, Fig.  3A). The heat map in Fig.  3B shows 
the expression of the 35 genes in different subtypes 
and their association with clinical features. In particu-
lar, subtype C1 was associated with a higher number of 
patients with mucinous adenocarcinoma (MAC, p < 0.01) 
and advanced TNM stages (p < 0.01, Table 1). Addition-
ally, we assessed the correlation between the molecular 
subtypes related to hypoxia and lactate metabolism and 
recognized CMS. Our findings revealed that the C1 sub-
type had a higher proportion of CMS4 (68.48%), whereas 
CMS2 dominated the C3 subtype (61.01%, Fig.  3C). 
GSEA of subtypes C1 and C3 revealed that the hypoxia 
pathway was significantly upregulated in C1 (FDR = 0.02). 
In contrast, the oxidative phosphorylation pathway was 
significantly downregulated (FDR = 0.01, Fig.  3D), con-
sistent with our expectations. In addition, C1 exhibited 
a significant upregulation of KRAS signaling, EMT, and 

Fig. 1  Outline of the analyses performed in this study. CRC: colorectal cancer; TCGA: The Cancer Genome Atlas; K–M: Kaplan–Meier; GSEA: gene 
set enrichment analysis; CMS: consensus molecular subtype; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology; LASSO: least 
absolute shrinkage and selection operator; ROC: receiver operating characteristic; scRNA-seq, single-cell RNA-seq
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angiogenesis (Fig.  3E). In contrast, C3 showed a signifi-
cant upregulation of MYC targets v2, MYC targets v1, 
and E2F targets (Fig. 3F).

Immune landscape of the different molecular subtypes
As hypoxia is closely related to the immune microen-
vironment, we evaluated immune cell infiltration in 

the three subtypes. We analyzed the infiltration of 22 
immune cells using CIBERSORT and found that the C1 
subtype predominantly contained macrophages, includ-
ing M1 (p = 0.02) and M2 (p < 0.01). Meanwhile, an 
increase in the number of CD8 + T cells was observed in 
subtypes C2 and C3 (p = 0.01). Resting CD4 + memory T 
cells (p < 0.01), activated CD4 + memory T cells (p < 0.01), 

Fig. 2  Identification of DEHRGs and DELMRGs in CRC. A Volcano plot of the DEGs between CRC and normal tissues. B Venn diagram of the HRGs, 
DEGs, and genes related to OS. C Venn diagram of the LMRGs, DEGs, and genes related to OS. D Heatmap of the correlations between the 35 
DEHRGs and DELMRGs. E Interactions and gene function of the 35 DEHRGs and DELMRGs. F Heatmap for different numbers of clusters 
after unsupervised clustering. G Within-group clustering consistency at different numbers of clusters. DEHRGs: different expressed hypoxia-related 
genes; DELMRGs: different expressed lactate metabolism-related genes; CRC: colorectal cancer; OS: overall survival

Fig. 3  Molecular subtyping based on the DEHRGs and DELMRGs. A Kaplan–Meier curve of the different molecular subtypes. B Heatmap 
of the 35 DEHRGs and DELMRGs in different subtypes and their association with clinical characteristics. C Distribution of the CMS in the molecular 
subtypes based on the DEHRGs and DELMRGs. D The hypoxia pathway was significantly upregulated and the oxidative phosphorylation pathway 
was downregulated in the C1 subtype. E The top 3 HALLMARK signaling pathways upregulated in the C1 subtype than in the C3 subtype, 
except hypoxia. F The top 3 HALLMARK signaling pathways upregulated in the C3 subtype than in the C1 subtype, except hypoxia. DEHRGs: 
different expressed hypoxia-related genes; DELMRGs: different expressed lactate metabolism-related genes; CMS: consensus molecular subtype; 
MAC: mucinous adenocarcinoma; NMAC: non-mucinous adenocarcinoma

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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and activated dendritic cells (p < 0.01) were significantly 
more abundant in subtypes C2 and C3 than in the C1 
subtype (Fig. 4A).

The cancer immune cycle (CIC) comprises seven 
major steps necessary for the immune-mediated control 
of tumor growth, beginning with the release of antigens 
from cancer cells and ending with the killing of can-
cer cells. The three subtypes were also evaluated for the 
seven major steps of CIC. The C1 subtype was found to 
play a significant role in the release of cancer antigens, 
priming and activation, trafficking of immune cells to 
tumors, and infiltration of immune cells into tumors 
(Fig. 4B). Additionally, Fig. 4C suggests that immune cells 
such as T cells, macrophages, and NK cells were widely 
recruited in the C1 subtype. However, the performance 
of the C1 subtype was slightly lower than that of the C2 
and C3 subtypes in the recognition of cancer cells by T 
cells and killing of cancer cells, which are key steps in 
antitumor immunity, despite its ability to enrich more 
immune cells.

To evaluate the immunocompetence status of the three 
subtypes, we assessed their IPS. The IPS of the C1 sub-
type was significantly lower than those of subtypes C2 
and C3 (p < 0.01, Fig. 4D), indicating that the C1 subtype 
was less responsive to immunotherapy. Specifically, the 
C1 subtype exhibited higher scores for MHC molecules 
(p < 0.01) and effector cells (p < 0.01) and lower scores 
for suppressor cells (p < 0.01) and checkpoints (p < 0.01, 
Fig.  4E). These findings appear to be inconsistent with 
the poor prognosis associated with the C1 subtype. To 
further investigate this phenomenon, we analyzed the 
immune functions of the samples using the TIDE algo-
rithm. The results showed that the C1 subtype had a 
significantly higher overall TIDE score (p < 0.01), tumor 
immune dysfunction score (p < 0.01), and tumor immune 
exclusion score (p < 0.01) than the C2 and C3 subtypes 
(Fig. 4F), suggesting that immune escape was more com-
mon in the C1 subtype. Additionally, the PD-L1 score 
(p < 0.01, Fig. 4G) and cancer-associated fibroblast (CAF) 
score (p < 0.01, Fig.  4H) were significantly higher in the 
C1 subtype than in subtypes C2 and C3. We also evalu-
ated the expression of 24 well-known immune check-
point genes across the different subtypes. The results 
showed that these molecules, including CD274 (PD-L1), 

Table 1  Clinicopathological characteristics of the different 
molecular subtypes

MAC: mucinous adenocarcinoma; NMAC: non-mucinous adenocarcinoma

C1 (N = 92) C2 (N = 324) C3 (N = 159) P value

Age 0.97

 > 50 79 (85.87%) 281 (86.73%) 137 (86.16%)

 ≤ 50 13 (14.13%) 43 (13.27%) 22 (13.84%)

Sex 0.42

 Female 43 (46.74%) 155 (47.84%) 66 (41.51%)

 Male 49 (53.26%) 169 (52.16%) 93 (58.49%)

Tumor site  < 0.01

 Right-sided 
colon

31 (33.70%) 142 (43.83%) 25 (15.72%)

 Left-sided colon 32 (34.78%) 89 (27.47%) 74 (46.54%)

 Rectum 12 (13.04%) 45 (13.89%) 26 (16.35%)

 Unknown 17 (18.48%) 48 (14.81%) 34 (21.38%)

Pathological type  < 0.01

 MAC 20 (21.74%) 52 (16.05%) 3 (1.89%)

 NMAC 72 (78.26%) 272 (83.95%) 156 (98.11%)

T stage  < 0.01

 T1 0 (0%) 11 (3.40%) 8 (5.03%)

 T2 7 (7.61%) 61 (18.83%) 35 (22.01%)

 T3 67 (72.83%) 217 (66.98%) 108 (67.92%)

 T4 18 (19.57%) 35 (10.80%) 8 (5.03%)

N stage  < 0.01

 N0 41 (44.57%) 200 (61.73%) 85 (53.46%)

 N1 25 (27.17%) 68 (20.99%) 51 (32.08%)

 N2 26 (28.26%) 56 (17.28%) 23 (14.47%)

M stage 0.22

 M0 63 (68.48%) 250 (77.16%) 124 (77.99%)

 M1 20 (21.74%) 41 (12.65%) 23 (14.47%)

 Mx 9 (9.78%) 33 (10.19%) 12 (7.55%)

TNM stage  < 0.01

 Stage I 5 (5.43%) 66 (20.37%) 34 (21.38%)

 Stage II 36 (39.13%) 128 (39.51%) 47 (29.56%)

 Stage III 31 (33.70%) 87 (26.85%) 55 (34.59%)

 Stage IV 20 (21.74%) 43 (13.27%) 23 (14.47%)

Chemotherapy 0.51

 Yes 41 (44.57%) 123 (37.96%) 61 (38.36%)

 No 51 (55.43%) 201 (62.04%) 98 (61.64%)

(See figure on next page.)
Fig. 4  Immunoscape of the different molecular subtypes. A CIBERSORT revealed the infiltration of 22 types of immune cells in the different 
molecular subtypes. B Differences between the three subtypes in the cancer immune cycle. C Radar chart of the differences in the recruitment 
of immune cells by different molecular subtypes in the cancer immune cycle. D IPS of the three molecular subtypes. E Major histocompatibility 
complex (MHC) molecules, effector cells (EC), suppressor cells (SC), and checkpoint (CP) scores of the different molecular subtypes. F Total TIDE 
scores of the three molecular subtypes. G PD-L1 and H CAF score of three molecular subtypes. I Expression of 24 well-known immune checkpoint 
genes in the different subtypes. IPS: immunophenoscore; TIDE: Tumor Immune Dysfunction and Exclusion; CAF: cancer-associated fibroblast. 
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.001
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Fig. 4  (See legend on previous page.)
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LAG3, CTLA4, and CD276, were upregulated in the C1 
subtype (Fig. 4I).

Mutation mapping of the different molecular subtypes
To better understand the distinctions between the vari-
ous subtypes, we examined them at the gene mutation 
level. Subtypes C1 and C2 exhibited a high total muta-
tion burden (TMB), whereas subtype C3 exhibited a low 
TMB (p < 0.01, Fig.  5A–C). The top 20 genes in terms 
of mutation frequency were analyzed for each subtype. 
APC showed increasing mutation frequency in subtypes 
C1, C2, and C3 (67% vs. 72% vs. 82%), whereas MUC16 
(37% vs. 30% vs. 13%) and PIK3CA (32% vs. 27% vs. 20%) 
showed decreasing mutation frequency in subtypes C1, 
C2, and C3, respectively. Additionally, TP53 mutation 
frequency was the highest in the C3 subtype (78%), fol-
lowed by C1 (63%) and C2 (49%). The C2 subtype had 
the highest KRAS mutation frequency (48%), followed by 
subtypes C1 (40%) and C3 (33%).

Drug sensitivity
In clinical practice, stage II CRC patients with high-risk 
factors and patients with stage III and IV CRC require 
postoperative chemotherapy. Sensitivity to commonly 

used chemotherapeutic agents greatly affects the out-
comes and prognosis of patients with CRC. Therefore, 
we predicted the sensitivity of patients with the three 
subtypes to the most commonly used chemotherapeutic 
agents for CRC, namely 5-FU, oxaliplatin, and irinote-
can, based on the GDSC2 and CTRP2 databases. The 
sensitivities of the C1, C2, and C3 subtypes to 5-FU did 
not differ significantly in the GDSC2 database (p = 0.51, 
Fig. 5D). However, patients in the C1 subtype had a sig-
nificantly higher half-maximal inhibitory concentration 
(IC50) for oxaliplatin than those in subtypes C2 (p < 0.01) 
and C3 (p < 0.01); no significant difference in oxaliplatin 
sensitivity was found between patients in subtypes C2 
and C3 (p = 0.45, Fig. 5E). There was no significant differ-
ence in the IC50 for irinotecan between subtypes C1 and 
C2 (p = 0.39) or C3 (p = 0.22). Patients with the C3 sub-
type had slightly higher IC50 values than those with the 
C2 subtype (p < 0.01, Fig. 5F). When we switched to the 
CTRP2 database, we found that the AUC for 5-FU was 
higher in the C1 subtype than in the C2 (p < 0.01) and C3 
(p < 0.01, Fig.  5G) subtypes, suggesting that the C1 sub-
type was the least sensitive to 5-FU. In addition, ssGSEA 
found higher stemness enrichment scores in C1 (Figure 
S2A) and stemness-associated genes such as LGR5 and 

Fig. 5  Mutation mapping and drug sensitivity. A–C TMB, mutation frequency and types in the three molecular subtypes. Comparison of the IC50 
values of various chemotherapies in the three subtypes, including D 5-fluorouracil, E oxaliplatin, and F irinotecan. G Comparison of the AUC values 
of fluorouracil in the three subtypes based on the CTRP2 database. IC50: half maximal inhibitory concentration; AUC: area under the curve; TMB: 
tumor mutation burden
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CD34 were significantly overexpressed in the C1 subtype 
than in the other two subtypes (Figure S2B, C). The dif-
ferences in characteristics of stemness may explain the 
differences in drug sensitivity between the subgroups.

To gain a better understanding of the sensitivity of 
tumor cells to chemotherapeutic drugs under hypoxic 
conditions, we performed in  vitro experiments under 
hypoxic (1% O2) and normoxic (21% O2) conditions. The 
experimental workflow is shown in Fig. 6A. The sensitiv-
ity of the CRC cell lines HCT116 and LS174T to the con-
ventional chemotherapeutic agents 5-FU, oxaliplatin, and 
irinotecan was characterized. Moreover, the cells were 
treated with or without the HIF-1 inhibitor BAY87-2243 
under hypoxic and normoxic conditions. Trypan blue 
staining revealed that the survival rate of tumor cells was 
higher after 48  h of hypoxia compared with that under 
normoxic conditions at the same concentrations of 5-FU 
(7.5  µM), oxaliplatin (7.5  µM), or irinotecan (10  µM in 
HCT116 cells and 50 µM in LS174T cells) (Fig. 6B). These 
results were confirmed by CCK8 experiments (Fig. 6C–
H). Notably, under hypoxic conditions, BAY87-2243 
increased the sensitivity of HCT116 and LS174T cells 
to 5-FU to normoxic levels (Fig. 6C, F). However, under 
both normoxic and hypoxic conditions, BAY87-2243 
decreased the sensitivity of HCT116 cells to oxaliplatin 
(Fig.  6D); this was also observed in LS174T cells under 
normoxic conditions (Fig.  6G). Under hypoxic condi-
tions, BAY87-2243 increased the sensitivity of HCT116 
and LS174T cells to irinotecan (Fig. 6E, H).

Construction of a prognostic prediction model
To clarify the molecular mechanisms underlying hypoxic 
tumors and their impact on the OS of patients with CRC, 
we compared the C1 subtype, which had the worst prog-
nosis, with the C3 subtype, which had the best prognosis. 
Differential expression analysis using DESeq2 revealed 
that 1953 genes were upregulated in the C1 subtype, 
while 362 genes were downregulated (Fig. 7A). The heat-
map in Fig. 7B displays the top 20 genes that were upreg-
ulated and downregulated. KEGG analysis of these 2315 
DEGs revealed that they were predominantly enriched 
in cell adhesion molecules, ECM-receptor interactions, 
and the PI3K-Akt signaling pathway (Fig. 7C). GO func-
tional enrichment analysis revealed that these DEGs 
were significantly enriched in extracellular structure 

organization, extracellular matrix organization, collagen-
containing extracellular matrix, and extracellular matrix 
structural components, suggesting a close association 
between DEGs and extracellular matrix (Fig. 7D).

Univariate Cox regression analysis was performed to 
identify 2910 OS-related genes. After determining their 
intersection with the obtained 2315 DEGs, 830 OS-
related DEGs were identified (Fig. 7E). Subsequently, the 
830 DEGs were screened using a random forest model, 
and the top 20 genes were selected (Fig.  7F). To avoid 
problems with covariance and overfitting, we further 
screened these 20 DEGs using the LASSO method, which 
identified eight potential genes (Fig.  7G, H). Finally, we 
conducted a multivariate Cox regression analysis based 
on these eight genes and obtained six DEGs to construct 
a prognostic prediction signature, which we named the 
HLM score (Fig. 8A).

Validation of the predictive efficacy of the HLM score
We divided the 251 patients in the C1 and C3 subtypes 
into high-risk and low-risk groups based on their HLM 
scores. A marked decrease in the OS of CRC patients 
was observed as the HLM score increased (Fig. 8B). The 
Kaplan–Meier curves indicated that patients in the high-
risk group had significantly worse OS (HR = 3.14, 95% CI 
1.66–5.94, p < 0.01, Fig.  8C). The AUCs of the ROC for 
predicting 1-, 3-, and 4-year OS were 0.78 (95% CI 0.90–
0.651), 0.80 (95% CI 0.90–0.71), and 0.70 (95% CI 0.83–
0.57), respectively, suggesting superior predictive efficacy 
(Fig.  8D). Additionally, compared with clinical factors 
alone, we found that when we combined the HLM score 
with clinical factors such as age and T, N, and M stage, it 
significantly improved the AUCs (Figure S3). When the 
HLM score was applied to the entire TCGA CRC cohort 
(n = 575), the C1 subtype had the highest HLM score, 
the C3 subtype had the lowest HLM score, and the C2 
subtype had an intermediate HLM score, consistent with 
our previous molecular subtyping results (Fig.  8E). The 
TCGA CRC cohort was also divided into high-risk and 
low-risk groups based on the HLM scores. GSEA of the 
high-risk and low-risk groups revealed that the hypoxia 
and angiogenesis pathway were significantly upregu-
lated in the high-risk group. In contrast, the oxidative 
phosphorylation pathway was significantly downregu-
lated (Figure S4A). The expression of HIF-1α and lactate 

(See figure on next page.)
Fig. 6  In vitro cell viability assay under normoxic and hypoxic circumstances. A The experimental workflow. B Trypan blue staining of cells 
subjected to different oxygen concentrations and treated with different chemotherapy drugs. CCK8 experiments after normoxia or hypoxia and C 
5-FU, D oxaliplatin, or E irinotecan treatment combined with or without BAY87-2243 in HCT116 cells. CCK8 experiments after normoxia or hypoxia 
and F 5-FU, G oxaliplatin, or H irinotecan treatment combined with or without BAY87-2243 in LS174T cells. OXA: oxaliplatin; IRI: irinotecan; CCK8: Cell 
Counting Kit-8; ns: no significance. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.001
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metabolism-related genes such as IGFBP3, TGFB3, and 
CAV1 were significantly higher in the high-risk group 
than in the low-risk group (Figure S4B, D). Patients in the 
high-risk group had a significantly worse OS (HR = 1.64, 
95% CI 1.16–2.38, p < 0.01, Fig. 8F). In addition, the high-
risk group, similar to the C1 subtype, exhibited a higher 
proportion of CMS4 while the low-risk group exhibited 
a higher proportion of CMS2 (Figure S5A). The effect of 
CMS alone on CRC prognostic stratification was insig-
nificant. However, the HLM score in concert with CMS 
demonstrated the capacity to refine CRC prognostic 
stratification (Figure S5B, C).

To validate the efficacy of the HLM score more exten-
sively, we obtained three datasets from the GEO data-
base. These datasets were categorized into high- and 
low-risk groups based on the HLM scores. Results 
showed that in the GSE106584 (HR = 2.10, 95% CI 1.25–
3.53, p < 0.01, Fig.  8G), GSE17536 (HR = 1.94, 95% CI 
1.14–3.31, p = 0.01, Fig.  8H), and GSE39582 (HR = 1.48, 
95% CI 1.09–2.00, p = 0.02, Fig.  8I) datasets, patients in 
the high-risk group displayed inferior OS than patients 
in the low-risk group. Additionally, we analyzed the 
IMvigor210 immunotherapy cohort, in which patients 
in the high-risk group had a higher proportion of pro-
gressive disease (54.42% vs. 43.48%) and fewer patients 
with complete response/partial response/stable disease 
(30.61% vs. 40.79%, p = 0.02; Fig.  8J) than the low-risk 
group. The Kaplan–Meier curve also suggested worse 
OS for patients in the high-risk group in the IMvigor210 
cohort than in the low-risk group (HR = 1.36, 95% CI 
1.05–1.76, p = 0.02, Fig.  8K). Besides, we assessed the 
efficacy of the HLM score in these four validation sets 
through ROC curves, risk heatmaps, and calibration 
curves, all of which suggest that the HLM score is robust 
(Figure S6).

ssGSEA and scRNA‑seq analysis to assess immune cell 
infiltration
The ssGSEA results indicated that the enrichment scores 
for CD8 + Tex, GZMK + Tex, terminal Tex, OXPHOS- 
Tex, and TCF7 + Tex were significantly higher in the C1 
subtype than in subtypes C2 and C3 (p < 0.01, Fig.  9A). 
Similar results were obtained when TCGA CRC sam-
ples were categorized into high- and low-risk groups 

based on the HLM score (p < 0.01, Fig.  9B). To further 
validate these findings, publicly available scRNA-seq 
data were analyzed. After selection and filtering, 47,285 
cells were included in the analysis. These cells clustered 
into five major types: B cells, T cells, myeloid cells, stro-
mal cells, and epithelial cells (Fig.  9C, D). Based on the 
HLM score of each sample after pseudo-bulk analysis, 
the 23 CRC samples from the scRNA-seq data source 
were categorized into the high-risk (n = 11) and low-
risk (n = 12) groups. The proportion of myeloid cells was 
slightly higher in the low-risk group than in the high-risk 
group (p = 0.05, Fig. 9E, F). We then performed subclus-
ter annotation on 16,065T cells from these CRC samples 
(Fig.  9G). The proportion of exhausted CD8 + T cells 
(p = 0.05, Fig. 9H) and CD8 + intraepithelial lymphocytes 
(p = 0.04, Figure S7A) was higher in the high-risk group 
than in the low-risk group. To determine specific differ-
ences in the proportion of CD8 + T cells between the two 
groups, we performed further subpopulation annotation 
of CD8 + T cells (Fig.  9I). The results showed that the 
proportions of terminal Tex (p < 0.05, Fig. 9J), OXPHOS-
Tex (p < 0.05, Fig.  9K) and GZMK + early Tem (effective 
memory T cells) (p < 0.05, Figure S7B) were significantly 
higher in the high-risk group than in the low-risk group. 
These findings suggest that HRGs and LMRGs may play a 
role in CD8 + T cell exhaustion in CRC.

In addition, we classified the 23 samples of scRNA-seq 
into C1/C2/C3 subtypes. It was found that, similar to the 
HLM score classification results, for the T cell subpop-
ulation, exhausted CD8 + T cells especially OXPHOS- 
Tex were significantly higher in C1 than in C2 and C3 
subtypes (Figure S7C, D). Furthermore, we found that 
naïve T (Tn) cells were lower in C1 than in C2, C3 sub-
types (Figure S7D). Tn cells are precursors of effector 
and memory T cell subsets. Differences in Tn proportion 
between the three subtypes may be attributed to the fact 
that the proportion of exhausted T cells varies between 
the subtypes.

Establishment of a predictive nomogram
A predictive nomogram based on seven factors, namely 
age, sex, T stage, N stage, M stage, pathological type, and 
HLM score, was constructed to visualize the prognosis of 
patients in the total TCGA CRC cohort. The nomogram 

Fig. 7  Screening process for the characterized genes. A Volcano plot of the DEGs between subtypes C1 and C3. B Heatmap of the top 20 
upregulated and downregulated genes. C Top 10 KEGG pathways of the DEGs. D Top 5 pathways of the DEGs involved in GO BP, CC, and MF 
terms, respectively. E Venn diagram of the DEGs between subtypes C1 and C3 and genes associated with OS. F The top 20 characterized genes 
screened using the random forest model. G, H The LASSO regression analysis and partial likelihood deviance on the prognostic genes selected 
by the random forest model. DEGs: differentially expressed genes; BP: biological process; CC: cellular component; MF: molecular function; OS: overall 
survival; LASSO: least absolute shrinkage and selection operator

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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Fig. 8  Construction and validation of the HLM score. A Multivariate Cox regression analysis to construct the prognostic predictive model. B 
Distribution of risk scores, clinical events, and the expression of model genes in patients under subtypes C1 and C3. C The Kaplan–Meier survival 
curve for the low-risk and high-risk groups of patients in subtypes C1 and C3. D Time-dependent ROC curves for patients in subtypes C1 and C3. E 
Risk score distribution in subtypes C1, C2, and C3. The Kaplan–Meier survival curve for the low-risk and high-risk groups in F the total TCGA cohort 
and the G GSE106584, H GSE17536, and I GSE39582 datasets. J Proportion of patients who respond to anti-PD-1/L1 immunotherapy with high 
or low risk scores in the IMvigor210 cohort. K Kaplan–Meier survival curve for the low-risk and high-risk groups in the IMvigor210 cohort. CR: 
complete response; PR: partial response; SD: stable disease; PD: progressive disease; NE: not evaluated. ****p < 0.0001
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could predict the OS of patients with CRC with a C-index 
of 0.78 (Fig. 10A). Calibration curves for the nomogram 
also showed ideal prediction accuracy (Fig.  10B). The 

DCA curve demonstrated that the nomogram provided 
more net clinical benefits than the clinical characteristics 
alone (Fig. 10C). The nomogram based on the HLM score 

Fig. 9  ssGESA and scRNA-seq analysis to assess immune cell infiltration. Enrichment scores of CD8 + Tex, GZMK + Tex, terminal Tex, OXPHOS- Tex, 
and TCF7 + Tex in (A) different molecular subtypes and B the high-risk and low-risk groups based on the HLM score in the TCGA cohort. C t-SNE 
plot of 47,285 cells from 23 patients with CRC in the GSE132465 cohort. D Percentage of the five major cell types in each sample. E Percentage 
of the five major cell types in the high-risk and low-risk groups based on the HLM score. F Percentage of myeloid cells in the high-risk and low-risk 
groups. G t-SNE plot of T cells in the GSE132465 cohort. H Percentage of CD8 + Tex in the high-risk and low-risk groups. I t-SNE plot of CD8 + T 
cells in the GSE132465 cohort. Percentage of J terminal Tex and K OXPHOS- Tex in the high-risk and low-risk groups. Tex: exhausted T cells; t-SNE: 
t-distributed stochastic neighbor embedding



Page 17 of 22Huang et al. Journal of Translational Medicine          (2024) 22:587 	

could predict both short- and long-term OS in patients 
with CRC and assist their clinical management.

Single gene analysis
To understand how the HLM score predicts the prog-
nosis of patients with CRC, we performed a single gene 
analysis of six characterized genes in C1 and C3 sub-
types, and the Kaplan–Meier curve indicated that the 
overexpression of TRIB2 or ELFN2 predicted poorer 

OS in patients with CRC, with HRs of 2.39 (95% CI 
1.30–4.40, p < 0.01, Fig. 10D) and 1.88 (95% CI 1.05–3.38, 
p = 0.03, Fig.  10G), respectively. The expression matrix 
revealed that TRIB2 expression was significantly higher 
in CRC tissues than in normal tissues. In CRC, the 
expression of TRIB2 increased sequentially in subtypes 
C3, C2, and C1 (p < 0.01, Fig. 10E). Additionally, ELFN2 
was highly expressed in CRC, particularly in the C1 sub-
type (p < 0.01, Fig. 10H). However, TRIB2 and ELFN2 are 

Fig. 10  Establishment of the prognostic predictive nomogram and single gene analysis. A Nomogram for predicting 1-, 3-, and 4-year OS using 
the HLM score and other clinical features. B Calibration plot showing the differences between nomogram-predicted OS and observed OS. C DCA 
demonstrating the net clinical benefits associated with the nomogram. D Kaplan–Meier survival curve for the high-expression and low-expression 
groups depending on TRIB2 expression. E TRIB2 expression in normal tissues, different molecular subtypes, and the TCGA CRC cohort. F Proteins 
that interact with TRIB2. G Kaplan–Meier survival curve for the high-expression and low-expression groups depending on ELFN2 expression. H 
ELFN2 expression in normal tissues, different molecular subtypes, and the TCGA CRC cohort. I Proteins that interact with ELFN2. DCA: decision curve 
analysis; MAC: mucinous adenocarcinoma; NMAC: non-mucinous adenocarcinoma; OS: overall survival; CRC: colorectal cancer
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not included in the existing set of HRGs and LMRGs. 
To obtain information on the proteins interacting with 
TRIB2 and ELFN2, we consulted the BioPlex Interac-
tome database. Our findings indicated that ISCA1, which 
interacts with TRIB2, is closely related to lactate metabo-
lism (Fig. 10F). Similarly, KLHL24, which interacts with 
ELFN2, is closely associated with hypoxia (Fig.  10I). 
Therefore, we infer that TRIB2 and ELFN2 are associated 
with hypoxia and lactate metabolism.

Discussion
Hypoxia and acidosis within the TME, caused by the 
increased secretion of lactic acid and H+ as end products 
of glycolysis [49], are markers of solid tumors, includ-
ing CRC. These conditions determine the selection of 
invasive and aggressive malignant clones that display 
resistance to radiotherapy, conventional chemotherapy, 
targeted therapy, or immunotherapy [50]. Due to the 
extensive intratumor heterogeneity and complex genetic 
and biological characteristics of CRC [51], predicting 
the outcome of patients with CRC remains challeng-
ing. To address this, we performed molecular subtyping 
of CRC based on HRGs and LMRGs and developed an 
HLM scoring system to predict prognosis and treatment 
response in patients with CRC.

Currently, molecular subtyping of CRC has shifted 
from a mutation-centered to a transcriptome-centered 
approach and from supervised to unsupervised cluster-
ing [52]. For instance, the CMS approach proposed by 
Guinney et al. in 2015, which is based on transcriptome 
analysis, has gained widespread acceptance [38]. To the 
best of our knowledge, this is the first study to propose an 
unsupervised clustering method for the molecular sub-
typing of CRC, based on HRGs and LMRGs. Our molec-
ular subtyping method classified CRC into three subtypes 
and distinguished between their prognostic differences. 
In addition, the molecular subtypes generated correlated 
with the CMS and can complement it to guide the indi-
vidualized treatment of patients with CRC.

Subsets of immune cells form a complicated network 
and cross-talk in different ways within the tumor [53]. 
Rather than their mere presence, the type of immune 
cells is more likely to be crucial. The C1 subtype pre-
dominantly contains macrophages, including M1 and 
M2 macrophages. Through specific differentiation, mac-
rophages can evolve into two different polarization states 
in CRC: classically activated M1 (pro-inflammatory) and 
M2 (anti-inflammatory) macrophages. CRC originates 
from the epithelium; hence, TAMs are predominantly 
pro-inflammatory M1 macrophages in the early stages. 
However, they tend to convert to the anti-inflammatory 
and cancer-promoting M2 phenotype with tumorigenic 

activity as tumor cells utilize them to support the growth 
and progression of advanced CRC [54].

The results indicate that the hypoxic C1 subtype has 
abundant immune cell infiltration. However, the ability of 
these immune cells to kill tumor cells is inferior to that 
of the other two subtypes, suggesting that the number of 
infiltrating immune cells and the distribution of immune 
cell subsets play an important role in influencing anti-
tumor immunity in the TME. TIDE analysis similarly 
demonstrated this, with the C1 subtype exhibiting higher 
tumor immune dysfunction and tumor immune exclu-
sion scores than the other subtypes. This suggests that 
patients with the hypoxic subtype have a higher preva-
lence of immune escape from the TME, as evidenced by 
the upregulation of 24 well-known immune checkpoint 
genes. Additionally, the C1 subtype had a significantly 
higher CAF score than the C2 and C3 subtypes. CAFs 
play a crucial role in the reactive stroma of the TME and 
significantly influence tumor biology, including angio-
genesis, invasion, immune evasion, metastasis, and drug 
resistance [55, 56]. Hypoxia activates resident fibro-
blasts by activating the reactive oxygen species (ROS) 
and HIF-1α pathways, transforming them into CAFs. 
CAFs undergo metabolic reprogramming to adapt to the 
TME and support glycolysis under hypoxic conditions. 
Increased glycolysis contributes to tumor cell prolifera-
tion [57, 58]. Furthermore, hypoxia affects chemokine 
and cytokine production by CAFs, leading to an increase 
in the proportion of immune cells associated with an 
immunosuppressive microenvironment [59].

Our study developed the HLM scoring system to pre-
dict the OS and efficacy of immunotherapy in patients 
with CRC using univariate Cox regression, the random 
forest model, LASSO, and multivariate Cox regression 
analyses. Notably, the group with a high HLM score 
exhibited a high proportion of CD8 + Tex infiltration, 
especially terminal Tex and OXPHOS CD8 + T cells. 
CD8 + T-cells are critical for eliminating cancer cells. We 
observed a reduction in both the number and function of 
CD8 + T cells in patients with high levels of hypoxia. In 
cancer, the continuous stimulation of antigen receptors 
can lead to an alternative differentiation trajectory known 
as T cell exhaustion, when antigens cannot be completely 
eliminated [60]. In CD8 + T cells, sustained exposure to 
hypoxia rapidly accelerates their differentiation to ter-
minal exhaustion and represses antitumor immunity 
[61]. T cell exhaustion can be classified into four stages: 
T cell exhaustion progenitors 1, T cell exhaustion pro-
genitors 2, T cell exhaustion intermediate and T cell 
exhaustion terminally [62]. Hypoxia results in abnormal 
OXPHOS in the mitochondria, which hinders T cell pro-
liferation and promotes the transcriptional and metabolic 
reprogramming of the progenitor Tex (Tpex) and their 
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differentiation into terminal Tex [63, 64]. Monoclonal 
antibody-based immunotherapies, such as anti-PD-L1/
PD-1 agents, can become ineffective when T cells reach 
a stage of terminal exhaustion [62]. This explains why we 
observed that the hypoxic C1 subtype highly expresses 
numerous immune checkpoint molecules but still suffers 
from poor immunotherapeutic outcomes.

The HLM score was constructed based on six genes, 
AGXT, TRIB2, ELFN2, PCDHB10, CALCA, and CD79A, 
which have been previously reported to be associated 
with the tumorigenesis and progression of various cancer 
types, including CRC, as well as chemotherapy resistance 
[65–69]. When considering individual genes, we discov-
ered that the high expression of TRIB2 and ELFN2 was 
associated with poor prognosis in patients with CRC. 
TRIB2 is a specialized member of the tribbles pseudoki-
nase family that interacts with MAPK, AP4, CDC25, 
OCT3/4, C/EBP-alpha, ubiquitin E3 ligases, PCBP2, and 
AKT to regulate cellular processes, such as the cell cycle, 
senescence, stem cell pluripotency, protein degradation, 
and cell survival [70]. One study discovered that TRIB2 
impedes tumor cell senescence, stimulates prolifera-
tion, and triggers cell cycle arrest via AP4/p21 signaling 
in CRC [66]. ELFN2 is a newly discovered hypometh-
ylated gene that can inhibit the formation of protein 
phosphatase complexes and suppress the activity of pro-
tein phosphatase 1 by regulating it [71]. ELFN2 is also 
involved in glioblastoma cell autophagy [71], pancreatic 
cancer radiotherapy resistance [72], gastric cancer inva-
sion [67], and endometrial cancer progression [73].

However, this study has certain limitations. First, most 
of our analyses and conclusions are based on data from 
public databases. Although our findings were validated 
across multiple datasets, it is important to acknowledge 
the possibility of bias. Moreover, we did not delve into 
the mechanisms by which hypoxia causes insensitivity 
to chemotherapeutic agents in patients with CRC. More 
in-depth in  vitro and in  vivo experiments are required 
to further explore the mechanisms underlying hypoxia-
induced resistance to chemotherapy.

Conclusions
In conclusion, we molecularly typed patients with CRC 
based on their HRGs and LMRGs and revealed the 
immunologic and genetic characteristics of the differ-
ent molecular subtypes. In addition, we constructed an 
HLM score that can be used to predict the prognosis and 
efficacy of immunotherapy of patients with CRC. This 
score has been validated in multiple datasets and has the 
potential to guide individualized and precise diagnosis 
and treatment of patients with CRC.
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