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Abstract
Background Metastasis renal cell carcinoma (RCC) patients have extremely high mortality rate. A predictive model 
for RCC micrometastasis based on pathomics could be beneficial for clinicians to make treatment decisions.

Methods A total of 895 formalin-fixed and paraffin-embedded whole slide images (WSIs) derived from three 
cohorts, including Shanghai General Hospital (SGH), Clinical Proteomic Tumor Analysis Consortium (CPTAC) and 
Cancer Genome Atlas (TCGA) cohorts, and another 588 frozen section WSIs from TCGA dataset were involved in the 
study. The deep learning-based strategy for predicting lymphatic metastasis was developed based on WSIs through 
clustering-constrained-attention multiple-instance learning method and verified among the three cohorts. The 
performance of the model was further verified in frozen-pathological sections. In addition, the model was also tested 
the prognosis prediction of patients with RCC in multi-source patient cohorts.

Results The AUC of the lymphatic metastasis prediction performance was 0.836, 0.865 and 0.812 in TCGA, SGH and 
CPTAC cohorts, respectively. The performance on frozen section WSIs was with the AUC of 0.801. Patients with high 
deep learning-based prediction of lymph node metastasis values showed worse prognosis.

Conclusions In this study, we developed and verified a deep learning-based strategy for predicting lymphatic 
metastasis from primary RCC WSIs, which could be applied in frozen-pathological sections and act as a prognostic 
factor for RCC to distinguished patients with worse survival outcomes.
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Background
Renal cell carcinoma (RCC) is a highly prevalent cancer, 
with the sixth incidence rate in male malignancies and 
the ninth incidence rate in female malignancies [1–3]. 
In 2021, RCC patients accounted for around 3–5% of 
new estimated cancer patients [1, 4]. RCC has multiple 
pathological subtypes, including clear cell RCC (ccRCC), 
papillary RCC (pRCC), chromophobe RCC (ChRCC) and 
other rare types [5]. Among all the histological subtypes, 
ccRCC is the predominant subtype and comprises up to 
70–80% of all RCC cases [6]. The primary treatment of 
localized RCC is nephrectomy or ablation [7, 8]. Patients 
with localized RCC usually have acceptable clinical out-
comes after treatment [9]. However, metastasis or recur-
rence RCC patients have extremely high mortality rate, 
with the 5-year overall survival around 8-11.7% [6, 10, 
11]. It is estimated that around 30% of localized RCC 
patients eventually progress to metastasis even after 
treatment [7].

Lymph node involvement represents for regional 
spread of RCC, which may proceed to distant metastasis 
eventually [7, 12]. It is reported that RCC patients with 
lymph node involvement have worse clinical outcomes 
with a median recurrence-free survival of 4 months [12, 
13]. However, the benefit of lymph node dissection for 
RCC patients remains controversial [12]. In addition, 
some micrometastasis in lymph nodes may be unde-
tected by pathologists, which needs serial sections of 
lymph node histological slides [14]. It is necessary that 
an optimal criterion for lymph node dissection and serial 
sections of histological slides.

Intriguingly, with the further application of artificial 
intelligence on medical sciences, there appear some stud-
ies on prediction of lymph node involvement based on 
histological features [15–17]. These studies were targeted 
on prostate cancer, colorectal cancer and gastric cancer, 
through deep learning techniques [15–17]. In this study, 
we are the first to utilize deep learning method to predict 
the lymph node involvement based on whole slide image 
(WSI) of RCC.

Here, in this study, we developed a deep learning-based 
strategy for predicting lymphatic metastasis from pri-
mary WSI. We further verified the deep learning-based 
prediction of lymph node metastasis (DLNM) model in 
frozen-pathological sections and the potential clini-
cal use of prognosis prediction of patients with RCC in 
multi-source patient cohorts.

Materials and methods
Data sources
Our study recruited three large patient-based cohorts 
from Shanghai General Hospital (SGH), Clinical Pro-
teomic Tumor Analysis Consortium (CPTAC) [18, 19], 
and the Cancer Genome Atlas (TCGA) [18]. All the 

included patients shall have pathological diagnosis of 
RCC. Additional inclusion criteria for this study included: 
(i) with complete clinicopathological information and 
disease-free survival follow-up information; (ii) without 
severe surgical complications and other types of malig-
nant tumors; (iii) without postoperative drug therapy (iv) 
with access to hematoxylin-eosin stained (H&E) slides or 
WSI. Basic clinical characteristics of patients from three 
independent patient cohorts were shown in Table S1. The 
TCGA cohort was randomly divided at the patient level 
in training set (80%) and testing set (20%) for the train-
ing and internal verification of the deep learning-based 
model. The SGH cohort and CPTAC cohort were used as 
the independent external verification cohorts.

SGH cohort
The SGH cohort recruited 486 patients who underwent 
partial or radical nephrectomy operative treatments and 
were pathologically diagnosed as RCC from January 2012 
to September 2019 in SGH. After excluding the par-
ticipants failed to meet the inclusion criteria, 402 cases 
were suitable for this study, including 307 ccRCC case, 
51 pRCC cases, and 44 ChRCC cases. The correspond-
ing H&E-stained slides of formalin-fixed and parrffin-
embedded sections were retrieved from the pathology 
database in SGH, which were further scanned at SGH 
with Leica Aperio AT2 scanners at 200× equivalent mag-
nification for the digitalization of slides.

TCGA cohort
A total of 381 patients from the TCGA database were 
also included in the study, which contained diagnos-
tic pathological images met with the inclusion crite-
ria mentioned above. The corresponding H&E-stained 
images with 200× equivalent magnifications were further 
acquired from the same database, including 307 ccRCC 
case, 51 pRCC cases, and 44 ChRCC cases.

CPTAC cohort
In addition, 112 cases with ccRCC from the CPTAC 
cohort with digitized WSIs, which were met with the 
inclusion criteria mentioned above, were also included. 
The CPTAC cohort was used as an external validation 
cohort to estimate the generalization performance of the 
DLNM model.

Image pre-processing
All available WSIs were strictly reviewed by two expe-
rienced pathologists to ensure that each slide had rep-
resentative tumor regions. Since the WSIs were labeled 
in slide-level without manual annotations of tumor 
regions, we firstly segmented the WSI to remove non-
tissue regions and exclude any holes. During the tessel-
lation process, we segmented the whole slide within the 



Page 3 of 9Gao et al. Journal of Translational Medicine          (2024) 22:568 

segmented foreground contours into 256 × 256 patches 
at 100× magnification without overlap. All the patches 
extracted from the same slide were then identified as the 
instance of the WSI. Image patches and their coordinates 
were then stored as hdf5 hierarchical format [20].

Deep learning strategy based on multiple instance 
learning
In this study, we applied a clustering-constrained-atten-
tion multiple-instance learning method [20] to accurately 
perform instance-level clustering without any manual 
annotations. The overall architecture of the hybrid neu-
ral network was displayed in Fig. 1. Based on the patches 
of WSI, the multiple-instance learning strategy achieved 
the classification of WSI in view of the entire informa-
tion from the slide. Firstly, we carried out dimensional-
ity reduction from raw image data through encoding 
each 256 × 256 patch into a descriptive 1024-dimensional 
feature vector using a ResNet50-based CNN with fixed 
parameters pretrained on ImageNet32 [21–23]. Feature 
information from the whole region of each WSI was then 
assembled through attention-based pooling and contrib-
uted to predict the classification of a slide [20, 24]. Two 
fully-connected layers were set followed by the activation 
function of rectified linear unit (ReLU). Referring to the 
predicted attention weight of each patch, the attention 
pooling would average the representative features of a 
slide for prediction. We implied cross-entropy loss func-
tion for multiple tasks to predict tumor group.

Evaluation of the deep learning-based model
In this study, evaluation of the DLNM was performed 
through receiver operating characteristic curve (ROC) 
analysis with area under curve (AUC). The best cut-off 
value for the prediction model was calculated through 
ROC analysis, with the best specificity and sensitivity. 
Significant differences of AUC values were evaluated 
through DeLong methods [25]. Survival analysis was per-
formed via Kaplan–Meier (KM) curve with hazard ratio 
(HR) and 95% confidence interval (CI) to compare differ-
ent overall survival (OS) outcomes.

Results
Overall performance of the DLNM
Based on the TCGA cohort, we explored the slide-level 
classification performance of the deep neural network in 
the task of detecting lymph node metastasis (LNM) from 
primary tumor images. The TCGA cohort was firstly ran-
domly partitioned into a training set (80% of cases) and 
a testing set (20% of cases), stratified by each class. We 
adopted any level of LNM as positive reference stan-
dard in the training. All models are trained for at least 
50 epochs according to the monitored validation loss of 
each epoch [20]. The DLNM was then developed based on 
the optimization model with the lowest validation loss. 
Evaluated by the ROC analysis, our DLNM achieved an 
AUC of 0.836 (95% CI 0.734–0.911) in the internal test-
ing set (Fig. 2A). When the cut-off value was set as 0.382, 
the DLNM achieved the best general performance with a 

Fig. 1 Architecture of the deep neural network in this study
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sensitivity and specificity of 0.818 (0.482–0.977) and 
0.908 (0.810–0.965), respectively.

Validation on the external cohort
The robustness of a prediction model might be influ-
enced by different datasets due to the data-specific vari-
ables among different patient cohorts, which arouses 
the importance for validating models in external patient 
cohorts [11]. Therefore, we recruited external validations 
in SGH cohort and CPTAC cohort to further evaluate the 
generalization performance of our DLNM. As shown in the 
Fig. 2B and C, the DLNM also performed well in external 
validations, with AUC of 0.865 (0.828–0.897) and 0.812 
(0.727–0.879) in the SGH cohort and CPTAC cohort, 
respectively, which suggested the good generalization of 
the DLNM.

Application of DLNM in frozen-pathological sections
For localized RCC, surgery is the only curative treatment 
with high-quality evidence [26]. For patients with local-
ized disease and clinically enlarged lymph nodes, the 
lymph node dissection is currently performed for stag-
ing purposes. However, as the most common method 
for preliminary evaluation of LNM before surgery, radio-
logical observation is still restrained by its indirect imag-
ing and low-resolution. Therefore, we further explored 
whether our DLNM could also be applied in frozen-path-
ological sections, which could be made in the operations 
and help to make auxiliary diagnosis during surgery. We 
retrieved another 588 WSIs from frozen RCC sections 
in the TCGA dataset and used the analytical framework 
of the same DLNM without transformation. As shown in 
Fig.  3, our DLNM could also be applied in frozen-patho-
logical sections, with AUC of 0.801 (0.766–0.833), sen-
sitivity of 0.831 (0.717–0.912) and specificity of 0.614 
(0.571–0.656). Our DLNM could accurately and efficiently 
evaluate LNM status as well as greatly improve the sur-
gery efficiency.

Prognosis prediction of patients with RCC through DLNM
Prognosis of patients with RCC is influenced by molecu-
lar and clinicopathologic factors. Among all risk factors, 
LNM acts as a key factor in clinical prognosis. Therefore, 
we further explored whether our DLNM could also provide 
reliable prognostic information for patients with RCC. 
Patients were categorized into high-DLNM or low-DLNM 
groups based on the best cut-off value of our model. KM 
curve analyses indicated that patients with high-DLNM 
seemed to have worse survival outcomes compared with 
patients with low-DLNM, with the HR of 1.84 (1.11–3.08, 
p = 0.0036) in the whole TCGA cohort (Fig.  4A). Vali-
dations on the external SGH cohort and the CPTAC 
cohort also confirmed that patients with different pre-
dicted DLNM statuses had distinct prognosis during 

Fig. 2 Overall performance of the DLNM in the internal validation and 
external validations through receiver operating characteristic curve. (A) 
Evaluation of the DLNM in the TCGA testing cohort. (B) Verification of the 
DLNM in the SGH cohort. (C) Verification of the DLNM in the CPTAC cohort. 
DLNM, deep learning-based prediction of lymph node metastasis; TCGA, 
the Cancer Genome Atlas; Shanghai General Hospital, SGH; CPTAC, Clini-
cal Proteomic Tumor Analysis Consortium; AUC, area under the curve with 
95% confidence interval
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the follow-up, with HR of 8.71 (1.62–46.90, p < 0.0001, 
Fig. 4A) and 5.79 (1.48–22.63, p < 0.0001, Fig. 4A), respec-
tively. Further Cox regression analysis revealed that our 
DLNM could act as a prognostic factor for RCC, illustrat-
ing that our DLNM had a promising risk stratification 
performance in independent patient cohorts (Fig.  4B). 
In addition, differences in the distribution of RCC with 
different tumor grades between patients with high or low 
DLNM were also observed in the study, which revealed 
that our DLNM might be associated with higher levels of 
tumor grades (Fig. 4C).

Discussion
TNM classification is the most important and commonly 
used prognosis evaluation system [3, 27, 28]. In addi-
tion, histological features concerning prognosis should 
also be taken into consideration. Different pathologi-
cal subtypes of RCC indicate diverse clinical outcomes 
[5]. Moreover, the difference in cell differentiation also 
results in different clinical outcomes [27, 29, 30]. Addi-
tionally, the appearance in cellular levels of RCC shows 
relationship with the prognosis of RCC patients [31]. 
The International Society of Urological Pathology (ISUP) 
grading system is a prognostic classification regarding 

the morphology of histological nuclear abnormality [2, 
32, 33]. High ISUP scores indicate advanced nuclear 
abnormality and unfavorable prognosis [5, 32]. Clinicians 
make treatment decisions for RCC patients usually based 
on TNM classification, histological subtypes and ISUP 
grading [2].

With the development of artificial intelligence, deep 
learning techniques have been intended to be applied in 
the analysis of pathological images [2]. Initially research-
ers mainly targeted in single cell level on immunochemi-
cal images [34]. As the rapid progress in deep learning, 
the multicolored HE-stained whole-slide images were 
analyzed for various purposes, mainly for precise diag-
nosis, cancer prognosis prediction and drug resistance 
evaluation. However, limited studies were targeted on 
lymph node involvement prediction based on WSIs. 
Wang et al. evaluated the lymph node involvement of 
gastric cancer from lymph node WSIs [17]. Wessels et 
al. applied convolutional neural network to predict the 
lymph node involvement in prostate cancer WSIs [15]. 
Moreover, Brockmoeller et al. predicted the lymph node 
involvement in early-stage colorectal carcinoma patients 
WSIs through deep learning [16]. In this study, we judged 
the lymph node involvement of RCC through the origin 

Fig. 3 Performance of the DLNM in frozen sections of renal cell carcinoma. DLNM, deep learning-based prediction of lymph node metastasis; AUC, area 
under the curve with 95% confidence interval
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Fig. 4 Prognosis prediction of patients with renal cell carcinoma through the DLNM. (A) Kaplan-Meier survival analysis stratified by DLNM for overall survival 
in three independent patient cohorts. (B) Cox regression analysis of the DLNM for overall survival in three independent patient cohorts. (C) Differences 
in the distribution of renal cell carcinoma with different tumor grades between patients with high or low DLNM. DLNM, deep learning-based prediction 
of lymph node metastasis; TCGA, the Cancer Genome Atlas; Shanghai General Hospital, SGH; CPTAC, Clinical Proteomic Tumor Analysis Consortium; HR, 
hazard ratio; CI, confidence interval; ns, no significant
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RCC histological images by deep learning and verified 
the performance of the model in frozen-pathological sec-
tion WSIs.

Lymph node involvement is a critical event for 
advanced RCC patients [35]. The appearance of lymph 
node involvement and remote metastasis represent for 
late stages of RCC, which usually show poor clinical out-
comes and unfavored drug responses [7, 36]. Currently, 
the evaluation of lymph node involvement is mainly 
through computed tomography, magnetic resonance 
imaging and 18F-fluorodeoxyglucose positron emission 
tomography/computed tomography [7]. The golden stan-
dard of lymph node involvement assessment is histopath-
ological confirmation based on lymph node dissection. 
However, it remains unclear that the role of lymph node 
dissection during radical RCC surgery [12]. It is esti-
mated that only 14.8% RCC patients underwent lymph 
node dissection are confirmed pathological lymph node 
involvement [37]. The American Urological Association 
suggests to take lymph node dissection for RCC patients 
with suspicious regional lymph node involvement based 
on computed tomography, magnetic resonance imaging 
and 18F-fluorodeoxyglucose positron emission tomog-
raphy/computed tomography images [12, 37]. However, 
there is a huge gap between clinical lymph node positive 
and pathological lymph node positive [13]. Furthermore, 
the evaluation of micrometastasis is difficult from radio-
logical imaging [38]. Hence, an improved parameter for 
lymph node dissection is necessary.

Unfortunately, even pathologists still could neglect 
some micrometastasis in lymph nodes [14]. Consider-
ing the workload, pathological technicians usually resect 
one HE-slide for each lymph node sample. Neverthe-
less, some micrometastasis occupy very limited space 
of a lymph node and can be detected only after serial 
Sect. [14]. In addition, RCC patients with microme-
tastasis in lymph nodes still show poor prognosis [13]. 
Therefore, our DLNM could be a meaningful indicator for 
pathologists to apply serial sections on micrometastasis 
diagnosis.

According to pathological diagnosis guideline, the inva-
sion of micro-lymphatic vessels in RCC should be men-
tioned in the pathological diagnosis reports [5]. Tumor 
cells initially invade mirco-lymphatic vessels in the kid-
ney, transport through peripheral lymphatic vessels and 
eventually erode a whole lymph node [17]. As a result, 
the invasion of micro-lymphatic vessels can be regarded 
as the pre-lymph node involvement and indicated for 
unfavorable prognosis [39, 40]. Shoup et al. found that 
the presence of lymphovascular invasion showed correla-
tion with lymph node involvement [41].

The atypical nuclear appearance, including nuclear 
pleomorphism, abnormal nucleus- to-cytoplasm ratio, 
enlarged nucleoli and pathological mitosis, is a poor 

prognostic indicator [41–44]. The nuclear pleomorphism 
stands for variance in nuclear shape and morphology 
[43]. Studies reveal the correlation between nuclear pleo-
morphism and lymph node involvement [41, 43]. In addi-
tion, Conversano et al. found that the amount of mitosis, 
especially pathological mitosis, was related to lymph 
node involvement [44].

There are some limitations in this study. Firstly, the 
model needs to be further evaluated among RCC patients 
from different hospitals and regions. Secondly, the model 
was based on retrospective studies. As a result, the model 
needs further prospective validation. Thirdly, it is also 
important to integrate the molecular signatures of RCC 
to improve the prediction accuracy of the model.

Conclusions
In conclusion, we developed and verified a deep learning-
based strategy for predicting lymphatic metastasis from 
primary RCC WSIs, which could be applied in frozen-
pathological sections and act as a prognostic factor for 
RCC to distinguished patients with worse survival out-
comes. However, further validation of our DLNM in pro-
spective patient cohorts should also be performed for 
clinical practices.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12967-024-05382-6.

Supplementary Material 1

Acknowledgements
We appreciate the partial image data from Clinical Proteomic Tumor Analysis 
Consortium, the Cancer Genome Atlas, and the Cancer Imaging Archive for 
this study. We also appreciate for the support from the clinical postdoctoral 
program of Renji Hospital, Shanghai Jiao Tong University School of Medicine.

Author contributions
FG and XW developed the idea for the study, contributed the central idea 
and provided suggestions on the project throughout the study. LJ was the 
leading contributor in writing the manuscript. TG was the second leading 
contributor for manuscript preparation and writing. JL and WX conceived the 
idea for the study, provided pathological suggestions and major contributors 
for the revision of the manuscript. LY provided pathological suggestions and 
reviewed WSIs. YH assisted to collect patients’ clinicopathological data. JY 
found out all the pathological slides of SGH. QP scanned all pathological slides 
of SGH. EC checked the quality and resolution of all scanned WSIs. NZ funded 
the research. SC conducted the deep learning analysis and was the leading 
contributor for revising the manuscript. All authors contributed to the revision 
and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
(No.82002665).

Data availability
All data generated or analyzed during this study are included in this published 
article.

https://doi.org/10.1186/s12967-024-05382-6
https://doi.org/10.1186/s12967-024-05382-6


Page 8 of 9Gao et al. Journal of Translational Medicine          (2024) 22:568 

Code availability
All code related to this method was written in Python. Custom code related 
to the deep learning models is available at https://github.com/mahmoodlab/
CLAM.

Declarations

Ethics approval and consent to participate
The study was conducted according to the Helsinki Declaration and was 
approved by the Human Ethics Committee of Shanghai General Hospital. All 
the participated patients were well informed and were consent to be enrolled 
in the study.

Consent for publication
All the authors have read the manuscript and agree to publish.

Competing interests
The authors declare that the research was conducted in the absence of any 
commercial or financial relationships that could be construed as a potential 
conflict of interest.

Received: 7 December 2023 / Accepted: 8 June 2024

References
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J 

Clin. 2021;71(1):7–33.
2. Chen ST, Zhang N, Jiang LR, Gao F, Shao JL, Wang T, Zhang EC, Yu H, Wang X, 

Zheng JH. Clinical use of a machine learning histopathological image signa-
ture in diagnosis and survival prediction of clear cell renal cell carcinoma. Int 
J Cancer. 2021;148(3):780–90.

3. Chen S, Jiang L, Gao F, Zhang E, Wang T, Zhang N, Wang X, Zheng J. 
Machine learning-based pathomics signature could act as a novel prog-
nostic marker for patients with clear cell renal cell carcinoma. Br J Cancer. 
2022;126(5):771–7.

4. Gu J, He Z, Huang Y, Luan T, Chen Z, Wang J, Ding M. Clinicopathological and 
Prognostic Value of Necroptosis-Associated lncRNA Model in Patients with 
Kidney Renal Clear Cell Carcinoma. Dis Markers 2022, 2022:5204831.

5. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO 
classification of Tumours of the urinary system and male genital organs-Part 
A: renal, Penile, and testicular tumours. Eur Urol. 2016;70(1):93–105.

6. Chen S, Zhang E, Jiang L, Wang T, Guo T, Gao F, Zhang N, Wang X, Zheng J. 
Robust prediction of prognosis and immunotherapeutic response for Clear 
Cell Renal Cell Carcinoma through Deep Learning Algorithm. Front Immunol. 
2022;13:798471.

7. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng 
DY, Larkin J, Ficarra V. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009.

8. Xing XL, Liu Y, Liu J, Zhou H, Zhang H, Zuo Q, Bu P, Duan T, Zhou Y, Xiao Z. 
Comprehensive analysis of ferroptosis- and Immune-Related signatures to 
improve the prognosis and diagnosis of kidney renal clear cell carcinoma. 
Front Immunol. 2022;13:851312.

9. Tang G, Guan H, Du Z, Yuan W. Comprehensive Analysis of the butyrate-
metabolism-related gene signature in Tumor Microenvironment-infiltrating 
Immune cells in Clear Cell Renal Cell Carcinoma. Front Cell Dev Biol. 
2022;10:816024.

10. Courtney KD, Infante JR, Lam ET, Figlin RA, Rini BI, Brugarolas J, Zojwalla NJ, 
Lowe AM, Wang K, Wallace EM, et al. Phase I dose-escalation trial of PT2385, 
a first-in-class hypoxia-inducible Factor-2alpha antagonist in patients with 
previously treated Advanced Clear Cell Renal Cell Carcinoma. J Clin Oncol. 
2018;36(9):867–74.

11. Chao X, Wang P, Ma X, Li Z, Xia Y, Guo Y, Ge L, Tian L, Zheng H, Du Y, et al. 
Comprehensive analysis of lncRNAs as biomarkers for diagnosis, prognosis, 
and treatment response in clear cell renal cell carcinoma. Mol Ther Oncolyt-
ics. 2021;22:209–18.

12. Kaldany A, Leopold ZR, Kim JE, Patel HV, Srivastava A, Tabakin AL, Singer EA. 
Dissecting the role of lymphadenectomy in the management of renal cell 
carcinoma: past, present, and future. Kidney Cancer J. 2020;18(4):103–8.

13. Kuusk T, Klatte T, Zondervan P, Lagerveld B, Graafland N, Hendricksen K, Capi-
tanio U, Minervini A, Stewart GD, Ljungberg B, et al. Outcome after resection 

of occult and non-occult lymph node metastases at the time of nephrec-
tomy. World J Urol. 2021;39(9):3377–83.

14. Niikura H, Okamoto S, Yoshinaga K, Nagase S, Takano T, Ito K, Yaegashi N. 
Detection of micrometastases in the sentinel lymph nodes of patients with 
endometrial cancer. Gynecol Oncol. 2007;105(3):683–6.

15. Wessels F, Schmitt M, Krieghoff-Henning E, Jutzi T, Worst TS, Waldbillig F, 
Neuberger M, Maron RC, Steeg M, Gaiser T, et al. Deep learning approach to 
predict lymph node metastasis directly from primary tumour histology in 
prostate cancer. BJU Int. 2021;128(3):352–60.

16. Brockmoeller S, Echle A, Ghaffari Laleh N, Eiholm S, Malmstrom ML, Plato 
Kuhlmann T, Levic K, Grabsch HI, West NP, Saldanha OL, et al. Deep learning 
identifies inflamed fat as a risk factor for lymph node metastasis in early 
colorectal cancer. J Pathol. 2022;256(3):269–81.

17. Wang X, Chen Y, Gao Y, Zhang H, Guan Z, Dong Z, Zheng Y, Jiang J, Yang H, 
Wang L, et al. Predicting gastric cancer outcome from resected lymph node 
histopathology images using deep learning. Nat Commun. 2021;12(1):1637.

18. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips 
S, Maffitt D, Pringle M, et al. The Cancer Imaging Archive (TCIA): main-
taining and operating a public information repository. J Digit Imaging. 
2013;26(6):1045–57.

19. Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y, da Veiga Leprevost 
F, Reva B, Lih TM, Chang HY, et al. Integr Proteogenomic Charact Clear Cell 
Ren Cell Carcinoma Cell. 2019;179(4):964–e983931.

20. Lu MY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-
efficient and weakly supervised computational pathology on whole-slide 
images. Nat Biomed Eng. 2021;5(6):555–70.

21. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recogni-
tion. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR): 2016; 2016.

22. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, 
Khosla A, Bernstein M. ImageNet large scale visual recognition challenge. Int 
J Comput Vision 2014:1–42.

23. Lu MY, Chen TY, Williamson DFK, Zhao M, Shady M, Lipkova J, Mahmood F. 
AI-based pathology predicts origins for cancers of unknown primary. Nature. 
2021;594(7861):106–10.

24. Ilse M, Tomczak JM, Welling M. Attention-based Deep Multiple Instance 
Learning. 2018.

25. Sun X, Xu W. Fast implementation of DeLong’s Algorithm for comparing the 
areas under correlated receiver operating characteristic curves. IEEE Signal 
Process Lett. 2014;21(11):1389–93.

26. Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, Kuczyk 
MA, Lam T, Marconi L, Merseburger AS, et al. EAU guidelines on renal cell 
carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24.

27. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen 
G, Gharib TG, Thomas DG, et al. Gene-expression profiles predict survival of 
patients with lung adenocarcinoma. Nat Med. 2002;8(8):816–24.

28. Jiang LR, Zhang N, Chen ST, He J, Liu YH, Han YQ, Shi XQ, Yang JJ, Mu DY, Fu 
GH, et al. PD-1-Positive Tumor-Associated macrophages define poor clinical 
outcomes in patients with muscle invasive bladder Cancer through potential 
CD68/PD-1 complex interactions. Front Oncol. 2021;11:679928.

29. Wang W, Cao K, Jin S, Zhu X, Ding J, Peng W. Differentiation of renal cell 
carcinoma subtypes through MRI-based radiomics analysis. Eur Radiol. 
2020;30(10):5738–47.

30. Chen S, Jiang L, Zheng X, Shao J, Wang T, Zhang E, Gao F, Wang X, Zheng J. 
Clinical use of machine learning-based pathomics signature for diagnosis 
and survival prediction of bladder cancer. Cancer Sci. 2021;112(7):2905–14.

31. Kim K, Zhou Q, Christie A, Stevens C, Ma Y, Onabolu O, Chintalapati S, McK-
enzie T, Tcheuyap VT, Woolford L, et al. Determinants of renal cell carcinoma 
invasion and metastatic competence. Nat Commun. 2021;12(1):5760.

32. Yi X, Xiao Q, Zeng F, Yin H, Li Z, Qian C, Wang C, Lei G, Xu Q, Li C, et al. Com-
puted Tomography Radiomics for Predicting Pathological Grade of Renal Cell 
Carcinoma. Front Oncol. 2020;10:570396.

33. Delahunt B, Cheville JC, Martignoni G, Humphrey PA, Magi-Galluzzi C, McKen-
ney J, Egevad L, Algaba F, Moch H, Grignon DJ, et al. The International Society 
of Urological Pathology (ISUP) grading system for renal cell carcinoma and 
other prognostic parameters. Am J Surg Pathol. 2013;37(10):1490–504.

34. Pan C, Schoppe O, Parra-Damas A, Cai R, Todorov MI, Gondi G, von Neubeck 
B, Böğürcü-Seidel N, Seidel S, Sleiman K, et al. Deep learning reveals Cancer 
Metastasis and therapeutic antibody targeting in the entire body. Cell. 
2019;179(7):1661–e16761619.

35. Powles T. clinicalguidelines@esmo.org EGCEa: recent eUpdate to the ESMO 
Clinical Practice guidelines on renal cell carcinoma on cabozantinib and 

https://github.com/mahmoodlab/CLAM
https://github.com/mahmoodlab/CLAM


Page 9 of 9Gao et al. Journal of Translational Medicine          (2024) 22:568 

nivolumab for first-line clear cell renal cancer: renal cell carcinoma: ESMO 
Clinical Practice guidelines for diagnosis, treatment and follow-up. Ann 
Oncol. 2021;32(3):422–3.

36. Capitanio U, Montorsi F. Renal cancer. Lancet. 2016;387(10021):894–906.
37. Radadia KD, Rivera-Nunez Z, Kim S, Farber NJ, Sterling J, Falkiewicz M, Modi 

PK, Goyal S, Parikh R, Weiss RE, et al. Accuracy of clinical nodal staging and 
factors associated with receipt of lymph node dissection at the time of 
surgery for nonmetastatic renal cell carcinoma. Urol Oncol. 2019;37(9):577. 
e517-577 e525.

38. Mao X, Mei R, Yu S, Shou L, Zhang W, Li K, Qiu Z, Xie T, Sui X. Emerging tech-
nologies for the detection of Cancer Micrometastasis. Technol Cancer Res 
Treat. 2022;21:15330338221100355.

39. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphan-
giogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer. 
2014;14(3):159–72.

40. Petrova TV, Koh GY. Biological functions of lymphatic vessels. Science 2020, 
369(6500).

41. Shoup M, Malinzak L, Weisenberger J, Aranha GV. Predictors of axillary lymph 
node metastasis in T1 breast carcinoma. Am Surg. 1999;65(8):748–52. discus-
sion 752 – 743.

42. Cohen JN, Yeh I, Jordan RC, Wolsky RJ, Horvai AE, McCalmont TH, LeBoit PE. 
Cutaneous non-neural Granular Cell Tumors Harbor recurrent ALK gene 
fusions. Am J Surg Pathol. 2018;42(9):1133–42.

43. Lu C, Romo-Bucheli D, Wang X, Janowczyk A, Ganesan S, Gilmore H, Rimm 
D, Madabhushi A. Nuclear shape and orientation features from H&E images 
predict survival in early-stage estrogen receptor-positive breast cancers. Lab 
Invest. 2018;98(11):1438–48.

44. Conversano A, Abbaci M, Karimi M, Mathieu MC, de Leeuw F, Michiels S, 
Laplace-Builhe C, Mazouni C. Axillary reverse mapping using near-infrared 
fluorescence imaging in invasive breast cancer (ARMONIC study). Eur J Surg 
Oncol 2022.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Deep learning-based pathological prediction of lymph node metastasis for patient with renal cell carcinoma from primary whole slide images
	Abstract
	Background
	Materials and methods
	Data sources
	SGH cohort
	TCGA cohort
	CPTAC cohort
	Image pre-processing
	Deep learning strategy based on multiple instance learning
	Evaluation of the deep learning-based model

	Results
	Overall performance of the DLNM
	Validation on the external cohort
	Application of DLNM in frozen-pathological sections
	Prognosis prediction of patients with RCC through DLNM

	Discussion
	Conclusions
	References


