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Abstract 

Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell 
lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have 
been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcrip-
tional effectors. The identification of these regulators and their underlying molecular mechanisms provides important 
implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regula-
tors in the development and therapeutic response of NSCLC.
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Introduction
Lung cancer is one of the leading causes of cancer 
death worldwide, of which 80% to 85% is non–small cell 
lung cancer (NSCLC). Lung adenocarcinoma (LUAD) 
accounts for approximately 85% of NSCLC diagnoses, 
with lung squamous cell cancer (LUSC) accounting for 
approximately 15%, based on histological classification 
[1]. The 5-year survival rate for NSCLC is only 26.5% 
because the disease is usually metastatic at diagnosis. 
Metastatic NSCLC is generally incurable, as it almost 
always develops therapeutic resistance after an initial 
response [2].

The Wingless/integrase-1 (Wnt) family is a type of 
secreted glycoproteins which interacts with transmem-
brane receptors and contributes to the development and 
differentiation of multiple organs, including lung [3]. Wnt 
family proteins, of which there are 19 in humans, func-
tion as ligands to conduct a signal from the cell surface 
through the cytoplasm to the nucleus, thereby regulat-
ing expression of a coordinated sets of genes involved 
in multiple biological processes. Based on whether it 
relies on β-catenin for transcription activation, Wnt 
signaling pathways can be divided into the canonical 
pathway, namely Wnt/β-catenin signaling pathway, and 
non-canonical pathways, including Wnt/PCP pathway 
and Wnt/Ca2+ pathway [4]. Abnormal alterations of the 
Wnt/β-catenin pathway by its regulators contribute to 
the development and therapeutic responses of NSCLC 
[5].

β-catenin functions in a dual role, either as the most 
important nuclear effector of Wnt/β-catenin signal-
ing, or as a cytoskeletal junction protein that maintains 
cell adhesion, which is critical for cadherin-based adhe-
rens junctions (AJs). These dual functions are carried 
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out based on the transcriptional pool and the adhesive 
pool of β-catenin [6]. In the transcriptional pool, Wnt 
ligands initiate a Wnt/β-catenin signaling cascade, which 
involves the translocation of β-catenin from cytoplasm 
to nucleus and activation of target genes via T cell fac-
tor (TCF)/lymphoid enhancer-binding factor (LEF) fam-
ily of transcription factors (Fig. 1). In the absence of Wnt 
ligands, pathway signaling is inactivated by a “destruction 
complex” comprised of the tumor suppressor Adenoma-
tous Polyposis Coli (APC), the scaffolding protein AXIN, 
casein kinase 1α (CK1α) and glycogen synthase kinase 3 
β (GSK-3β) [7]. Cytoplasmic β-catenin is sequestered in 
this destruction complex and sequentially phosphoryl-
ated by CK1α at Ser45 and GSK3β at Ser33/Ser37/Thr41, 
respectively [8]. Phosphorylated β-catenin is then recog-
nized by E3 ubiquitin ligase β-Trcp and ubiquitinated for 
proteasomal degradation [7]. Without β-catenin in the 
nucleus, Groucho family transcription repressors bind to 
TCF/LEF transcription factors and inhibit the transcrip-
tion of Wnt target genes. When present, Wnt ligands 
bind to the Frizzled (FZD) receptor family and a member 

of the low-density lipoprotein receptor–related protein 
(LRP) family, LRP5 or LRP6, to form FZD-LRP5/6 com-
plexes. These complexes recruit the signal transducer 
Dishevelled (DVL) to the membrane for phosphorylation 
and oligomerization [9]. Phosphorylated DVL recruits 
AXIN and inhibits its interaction with other components 
of the destruction complex, thereby preventing pro-
teasomal degradation of β-catenin [10]. Thus, the con-
centration of β-catenin will increase in the cytoplasm, 
translocating to the nucleus and forming a co-transcrip-
tional complex with TCF/LEF, which activates the tran-
scription of the downstream target genes which will 
regulate cell fate, migration, and tissue configuration [4]. 

In the adhesive pool, β-catenin acts as the core com-
ponent of the AJs and regulates the aggregation of cad-
herin by directly binding to the cytoplasmic domain 
of E-cadherin and the actin-binding protein α-catenin, 
maintaining cell–cell junctions, tissue structural integ-
rity, and homeostasis [11]. The canonical function of the 
AJs is to initiate and stabilize cell–cell adhesion between 
neighboring cells and to modulate actin dynamics at the 

Fig. 1 An overview of Wnt/β-catenin signaling pathway. a In the absence of the Wnt signal, cytosolic β-catenin is phosphorylated by kinases 
CK1α and GSK3β with the help of scaffolding proteins AXIN and APC. Phosphorylation of β-catenin leads to its ubiquitylation and subsequent 
proteasomal degradation. b Wnt ligands bind FZD and LRP5/6 receptors on the cell surface. Subsequent phosphorylation of LRP5/6 
and recruitment of signal transducers DVL and AXIN to the Wnt-bound receptors facilitate inhibition of GSK3β activity. This inhibition blocks 
phosphorylation and degradation of β-catenin, leading to β-catenin accumulation in the cytoplasm and translocation into the nucleus. In 
the nucleus, β-catenin interacts with TCF/LEF transcription factors to activate Wnt target genes
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cortical level, and dysfunctions of AJs contribute to can-
cer progression [12].

Epithelial-mesenchymal transition (EMT) comprises 
an essential biological process during which cells fail to 
maintain epithelial cell polarity and acquire a mesenchy-
mal phenotype, thus facilitating invasion and metasta-
sis. During the early phase of EMT, loss of apical–basal 
polarity is often the first event to be observed and can 
lead to the destabilization of adhesion complexes, includ-
ing AJs at the lateral membrane [13]. Wnt/β-catenin sign-
aling is one of the most important pathways involved in 
the regulation of EMT. Wnt/β-catenin signaling exerts 
its effect on EMT through targeting and activating EMT-
transcription factors SNAIL, SLUG, and TWIST which 
will regulate the expression of E-cadherin and N-cad-
herin. Wnt/β-catenin signaling can also impact EMT 
through AJs by other Wnt/β-catenin-targeted genes such 
as MMP7 and TIAM1 [14].

Wnt regulators influence Wnt/β-catenin signaling at 
both the transcriptional and translational level, with 
regulators identified that act on ligands, receptors, signal 
transducers and transcriptional effectors. These regula-
tors might be proteins, microRNAs (miRNAs), long non-
coding RNAs (lncRNAs), or circular RNAs (circRNAs) 
[5]. miRNAs contain 20–25 nucleotides which repress 
translation of targeted mRNAs or target mRNA degra-
dation [15]. LncRNAs are RNA transcripts longer than 
200 nucleotides, and most of them do not encode pep-
tides. LncRNAs encompass natural antisense transcripts, 
overlapping transcripts and intronic transcripts, which 
regulate gene expression through a variety of different 
mechanisms, including acting as molecular scaffolds 
that ‘guide’ chromatin-modifying enzymes, competing 
endogenous RNAs (ceRNAs) that ‘sponge’ miRNAs or 
proteins, facilitating or inhibiting long-range chromatin 
interactions, or functioning through the act of transcrip-
tion itself [16]. CircRNAs are a class of single-stranded 
noncoding RNAs in circular form through non-canonical 
splicing or back-splicing manner. CircRNAs can serve as 
miRNA sponge in which circRNAs bind directly to the 
targeted miRNAs to inhibit miRNA activity, or affect 
alternative splicing through RNA-mediated interaction, 
or interact with RNA-binding proteins as protein scaf-
folds or antagonists [17].

Based on functional effect, Wnt regulators can be clas-
sified as positive and negative regulators. The upregu-
lation of positive regulators and downregulation of 
negative regulators will promote the activation of Wnt/
β-catenin signaling pathway. Aberrant Wnt regulator 
expression and signaling have been identified in lung 
cancer cell lines, animal models, and human NSCLC tis-
sues [18–23]. Modulation of these regulators provide 
potential treatment strategies for patients with NSCLC, 

and many agents that suppress Wnt/β-catenin signaling 
also inhibit NSCLC cell lines [24, 25]. In this review, we 
mainly focus on the recent studies of regulators identified 
in Wnt/β-catenin signaling implicated in development 
and therapeutic responses of NSCLC.

Aberrant alterations of Wnt components in NSCLC
In humans, the complexity and specificity of Wnt signal-
ing is achieved partially through 19 Wnt ligands [4]. The 
aberrant expression of most Wnt ligands have been found 
to closely correlate to the occurrence and progression 
of NSCLC, and are the thus potential biomarkers and 
drug targets for the diagnosis, prognosis, and treatment 
of NSCLC [26]. Overexpression of WNT2B, WNT3A 
and WNT5A has been found to associate with NSCLC 
[27, 28] (Table  1). FZD family members are a type of 
seven-pass transmembrane receptor (FZD1-FZD10) that 
belong to atypical G protein-coupled receptors (GPCRs). 
Specifically, FZD2 expression was found to associate with 
the prognosis of LUAD [29], and promoter CpG methyla-
tion of FZD2 might be related to the prognosis of LUSC 
[30]. Abnormal expression of many FZDs (FZD3, FZD8 
and FZD9) is associated with the development of NSCLC 
[3]. It has been observed that patients with early-stage 
NSCLC carrying the SNP rs10898563 in FZD4 showed 
a significant increase in recurrence and mortality risk 
[31], and FZD4 expression might be associated with the 
prognosis of LUAD [29]. Knockdown of FZD8 by shRNA 
sensitized the lung cancer cells to chemotherapy [32]. 
FZD10 methylation was found to possibly relate to the 
prognosis of patients with LUSC [30] (Table 1).

For LRP5/6 receptor, LRP5 expression has been 
shown to be decreased in LUSC [33]. SNPs in LRP5 
were found to associate with an higher risk of NSCLC 
(SNP rs3736228) and LUSC (SNP rs64843) [34]. SNP 
rs10845498 on LRP6 is associated with a lower risk of 
LUSC, whereas LRP6 rs6488507 is associated with higher 
risk of NSCLC in tobacco smokers [35]. For Dishevelled 
(DVL), upregulated expression of DVL1 and DVL3 was 
found in brain metastases from LUAD [36]. Overexpres-
sion of DVL1 is associated with unfavorable prognosis of 
patients with NSCLC [37] (Table 1).

For components of the destruction complex, AXIN1 
methylation was found to correlate with radiosensitivity 
of lung cancer cells and clinical features of NSCLC [38, 
39] (Table 1). Downregulation of AXIN1 expression was 
found in micropapillary-predominant LUAD, especially 
in cases with lymph node invasion, indicating dimin-
ished AXIN1 expression may affect the invasiveness of 
LUAD [40]. The intronic AXIN2 1712 + 19 variant exhib-
ited increased mortality in Indian LUAD patients with 
GG genotype [41], while the heterozygous (GT) geno-
type showed a decreased risk of mortality [42]. AXIN2 



Page 4 of 26Zhang et al. Journal of Translational Medicine          (2024) 22:565 

148 C/T and 1365 C/T variants might be associated with 
reduced cancer susceptibility in Chinese NSCLC patients 
[43, 44]. Aberrant promoter methylation of AXIN2 was 
observed in NSCLC, and might be related to prognosis 
and histological subtyping of NSCLC [45]. High expres-
sion of CSNK2A1, which encodes CK1α, is an independ-
ent prognostic factor of poor survival for NSCLC patients 
[46] (Table  1). APC and CTNNB1 mutations were also 
found in NSCLC (Fig. 2). In NSCLC, APC mutations are 
mostly loss-of-function truncating mutations which are 
evenly distributed across APC gene (Fig. 2a; Supplemen-
tary Table  1); CTNNB1 mutations are mostly gain-of-
function point mutations that mainly concentrate on the 
GSK3β/CK1α phosphorylation sites (Fig. 2b; Supplemen-
tary Table  2). The mutations on phosphorylation sites 
prevent the phosphorylation of β-catenin and so escape 
from E3 ubiquitin ligase β-Trcp and subsequent protea-
somal degradation, thus leading to the accumulation of 
β-catenin and elevated Wnt/β-catenin signaling [47].

The positive regulators of Wnt/β‑catenin signaling
Many positive regulators have been identified which act 
on Wnt ligands, receptors, transducers, components of 
β-catenin destruction complex, and β-catenin. These reg-
ulators might be overexpressed, amplified, or mutated in 
NSCLC cells.

Wnt ligands
The expression of multiple Wnt ligands have been found 
to be upregulated in NSCLC, including WNT1, WNT2B, 
WNT3A and WNT5A (Table  2). WNT1 transcriptional 
expression was upregulated by PHF8, a histone dem-
ethylase. Higher PHF8 expression was found in NSCLC 
and correlated with poorer overall survival in NSCLC 
patients. Mechanistically, PHF8 increases WNT1 tran-
scription by targeting the promoter region of WNT1 and 
so removing the histone markers there [48]. WNT2B 
expression was upregulated by the RNA helicase DDX56 
[49] and lncRNA RPPH1 [50]. DDX56 overexpression 

Table 1 Wnt components which have been reported to associate with NSCLC

Components Alterations Specimen Clinical relevance References

WNT2B, WNT5A Overexpression NSCLC tissues M2 and M1 tumor-associated macrophages [27]

WNT3A Overexpression LUAD tissues Poorer survival [28]

FZD2 Underexpression NSCLC Prognosis [29]

FZD2 Methylation LUSC Prognosis [30]

FZD3 Overexpression NSCLC Not determined [33]

FZD4 SNP rs10898563 Early-stage NSCLC Recurrence and death risk [31]

Underexpression NSCLC tissue Prognosis [29]

FZD8 Overexpression NSCLC Not determined [32, 255]

Overexpression A549 and A427 cell line Cell proliferation [32, 255]

FZD9 Underexpression NSCLC tissue Not determined [256]

FZD10 Methylation LUSC patients Prognosis [30]

LRP5 Underexpression LUSC Occurrence risk [33]

SNP (rs3736228 and rs64843) LUSC/NSCLC Occurrence risk [34]

LRP6 SNP LUSC/NSCLC Occurrence risk [35]

DVL1 Overexpression Brain metastases from LUAD Poor prognosis [36]

Overexpression NSCLC Clinicopathologic characteristics and poor 
prognosis

[37]

DVL3 Overexpression Brain metastases from LUAD Poor prognosis [36]

AXIN1 DNA methylation H446 and H157 cell line Radiosensitivity [38]

DNA methylation Lung cancer tissue Clinical characteristics [39]

Underexpression Micropapillary-predominant LUAD Invasion [40]

AXIN2 SNP (intronic 1712 + 19 variant, GG) Indian patients with LUAD Increased death risk [41]

SNP (intronic 1712 + 19 variant, GT) Indian patients with LUAD Decreased death risk [42]

rs2240308 (148 C/T) and 1365 C/T Chinese patients with LUAD Decreased cancer susceptibility [43, 44]

DNA methylation NSCLC Prognosis and histological subtyping [45]

CK1α (CSNK1A1) DNA methylation NSCLC Prognosis and histological subtyping [45]

Overexpression NSCLC Poor prognosis [46]

CTNNB1 rs1880481 (AC/AA) NSCLC Decreased risk of bone metastasis, longer 
median progression free survival time

[257]

TCF-4 The 10th exon partial deletion TCGA LUAD Better overall survival [258]
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was found in LUSC and negatively associated with recur-
rence-free survival in LUSC patients. DDX56 increased 
the transcription of the target gene WNT2B through 
the degradation of primary miR-378a [49]. RPPH1 over-
expression was negatively associated with disease pro-
gression and overall survival. Mechanistically, lncRNA 
RPPH1 promoted NSCLC progression through miR-
326/WNT2B axis as WNT2B is a target gene of miR-326 
[50]. Another lncRNA, AL139294.1, promotes WNT5A 
expression and oncogenic activity through suppression 
of miR-204-5p [51]. WNT3A expression was upregulated 
by PITX2 [52], ASPM [53], GOLPH3 [54], ALDOC [55] 
and FAIM2 [56] (Table  2). PITX2 binds directly to the 
promoter of WNT3A and upregulated its transcriptional 
expression. High PITX2 expression was found in LUAD 
and correlated with worse prognosis [52]. GOLPH3 is 
a peripheral membrane protein localized to the trans-
Golgi. High expression of GOLPH3 was found in NSCLC 
tissues and was associated with clinicopathologic charac-
teristics. GOLPH3 interacts with CKAP4 and increases 
the secretion of exosomal WNT3A, leading to a cancer 
stem cell (CSC)-like phenotype and metastasis in NSCLC 
[54]. WNT5A expression was found to be upregulated 

by PTS [57], circVAPA [58], E2F1 [59] and ATF4 [60] 
(Table 2). Higher PTS level was found in LUAD and cor-
related with late clinical stages and poor survival [57]. 
circVAPA acted as a ceRNA to up-regulate WNT5A by 
sponging miR-876-5p and thus activating Wnt/β-catenin 
signaling [58]. Intriguingly and perhaps paradoxically, 
WNT5A has also been reported to inhibit Wnt/β-catenin 
signaling in EGFR-mutant cells. In this scenario, E2F1-
mediated repression of WNT5A expression promotes 
brain metastasis EGFR-mutant NSCLC, and high expres-
sion of E2F1 was negatively correlated with the expres-
sion of WNT5A and associated with poor outcomes in 
NSCLC [59].

Wnt receptors
Many positive regulators act on Wnt receptors by mul-
tiple mechanisms in NSCLC. FZD1 expression is 
upregulated by LINC00942 in LUAD (Table  2). Higher 
expression of LINC00942 was found in LUAD tissues 
and associated with poorer survival. Mechanically, 
LINC00942 functioned as a ceRNA which targets miR-
5006-5p and increases the expression of its direct tar-
get FZD1 [61]. FZD4 expression was found upregulated 
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β-catenin Binding and Downregulation Axin Binding Sites
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Fig. 2 APC and CTNNB1 mutations identified in NSCLC from GENIE datasets (GENIE 14.0-public, n = 26,473). a The recurrent truncating APC 
mutations (n ≥ 2) in NSCLC were shown on the schematic structure. The truncating mutations include nonsense mutations and frameshift 
mutations. b The recurrent CTNNB1 mutations (n ≥ 2) were shown on the schematic structure. β-catenin is sequestered in the destruction complex 
and sequentially phosphorylated by CK1α at Ser45 and GSK3β at Ser33/Ser37/Thr41, respectively. The truncating mutations were not included 
in this study
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by circRNA hsa_circ_0017109. Upregulation of this 
circRNA was found in NSCLC tumor and cell lines. 
Circ_0017109 regulated FZD4 expression by targeting 
miR-671-5p and finally activated Wnt/β-catenin signal-
ing [62].

The phosphorylation of LRP5/6 recruits AXIN and 
GSK3β to its phosphorylated sites, leading to the disas-
sembly of β-catenin destruction complex. As a result, 
β-catenin accumulate in cytoplasm which finally 
translocate to the nucleus and enhance the transcrip-
tion of targeted genes [63]. LRP5/6 phosphorylation is 
upregulated by ENO1 [19] (Table  2), which is a meta-
bolic enzyme involved in the synthesis of pyruvate. 
ENO1 also decreased GSK3β activity, inactivated the 
β-catenin destruction complex and ultimately upregu-
lated β-catenin. Higher expression of ENO1 was found 
in metastatic lung cancer cell lines and patients, and 
associated with worse overall survival of patients with 
NSCLC [19]. LRP6 can directly interact with TRIP13 [64] 
and NINJ1 [65] (Table 2). TRIP13 is an ATPase which is 
highly expressed in NSCLC, correlating with advanced 
tumor stage and poor patient survival. TRIP13 promotes 
NSCLC cell proliferation and invasion through activating 
Wnt/β-catenin signaling [64]. NINJ1 is a 17-kDa homo-
philic cell adhesion molecule located in the cell mem-
brane. NINJ1 overexpression was found to associate with 
poor prognosis in patients with NSCLC. Mechanistically, 
NINJ1 forms an assembly with LRP6 and FZD2, result-
ing in transcriptional upregulation of Wnt downstream 
target genes [65]. CD248 inhibits the interaction between 
LRP6 and Wnt repressors IGFBP4 and LGALS3BP, 
increasing Wnt/β-catenin signaling in pericytes to pro-
mote angiogenesis and tumor growth in lung cancer 
[66]. Ubiquitylation also participate into the regulation 
of LRP6. USP46 is a deubiquitylase which form complex 
with the catalytic USP46 and the WDR40-repeat pro-
teins, WDR20 and UAF1. This complex increases the 
steady-state level of cell surface LRP6 and facilitates the 
assembly of LRP6 into signalosomes through the removal 
of sterically hindering ubiquitin chains. Alterations in 
USP46 mostly consisted of amplification and were com-
monly observed in LUSC [67].

SFRP family contains 5 members (SFRP1-5) and nega-
tively regulate Wnt/β-catenin signaling by competing 
with FZD receptors to bind Wnt ligands extracellularly 
[68]. Dickkopf (DKK) family contains 3 members (DKK1-
3) which negatively regulate Wnt/β-catenin signaling by 
preventing the interaction of Wnt ligands with LRP5/6 
[68]. Inhibition of these negative regulators can promote 
the activation of Wnt/β-catenin signaling. Expression was 
found to be downregulated by miR-1254 [69], Rab37 [70] 
and exosomal-miR-1260b [71] (Table  2). miR-1254 sup-
presses SFRP1 expression through binding to its 3′ UTR. 

miR-1254 was upregulated in lung cancer tissues and 
promoted lung cancer cell proliferation [69]. Exosomal-
miR-1260b was highly expressed in plasma of patients 
with LUAD and potentiated Wnt/β-catenin signaling by 
suppressing SFRP1 expression [71]. N6-methyladeno-
sine (m6A) methylation is a key regulatory mechanism 
for gene expression and involved in multiple biologi-
cal processes including cancer development [72]. SFRP2 
expression was found to be regulated by m6A methyla-
tion through m6A reader HNRNPA2B1 [73] and writer 
METTL3 [74] (Table  2). HNRNPA2B1 regulates the 
maturing of miR-106b-5p through m6A methylation, so 
that miR-106b-5p targeted and suppressed SFRP2, acti-
vating Wnt/β-catenin signaling, and thus to aggravate the 
stemness and progression of LUAD [73]. SFRP2 expres-
sion was found to be negatively regulated by METTL3, 
which subsequently activated the Wnt/β-catenin signal-
ing pathway in NSCLC [74]. DKK1 expression was found 
to be downregulated by RYR2 [75] and LINC00467 [76] 
(Table  2). RYR2 mutation prolongs survival of NSCLC 
patients via down-regulation of DKK1 expression [75]. 
LINC00467 promotes the development of LUAD by epi-
genetically silence of DKK1 [76].

Wnt transducers
The expression of signal transducer DVLs have been 
found to be upregulated by CtBP2 [77], TMEM88 [78], 
PWP1 [79] and lncRNA LINC00673-v4 [80] (Table  2). 
CtBP2 directly interacts with DVL1 and activates 
Wnt/β-catenin signaling in NSCLC cells [77]. Cytoplas-
mic TMEM88, rather than the membrane-localized 
TMEM88, promotes invasion and metastasis in NSCLC 
cells by binding DVLs. Higher expression of cytoplas-
mic TMEM88 was found to significantly associate with 
poorer clinical characteristics and inferior survival in 
patients with NSCLC [78]. PWP1 interacts with DVL2 
and activates Wnt/β-catenin signaling pathway. PWP1 
overexpression was found in NSCLC and correlates with 
poor clinical features [79]. LINC00673-v4 overexpression 
was associated with adverse clinical outcome. Mechani-
cally, LINC00673-v4 enhanced the interaction between 
DDX3 and CK1ε and thus upregulated the phosphoryla-
tion of DVLs [80].

β‑Catenin destruction complex
The β-catenin destruction complex consists of GSK-3β, 
APC, AXIN and two CK1α. GSK3B transcription 
was downregulated by AQP3 (Table  2), which is one 
member of the aquaporin (AQP) family and can pro-
mote the membrane exchange of water and regulate 
the osmotic balance [81]. The mRNA level of GSK3B 
is downregulated by many miRNAs through directly 
targeting 3’UTR of GSK3B, such as miR-19a/19b [82], 
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miR-1246 [83], miR-1275 [84] and miR-582-3p [85] 
(Table 2). The protein levels of GSK3β is downregulated 
by lncRNA JPX [86] and PHLDA3 [87] and ARHGEF40 
[88] (Table 2). JPX upregulated Twist1 by competitively 
sponging miR-33a-5p and subsequently induced EMT 
by activating Wnt/β-catenin signaling [86]. PHLDA3 
encodes a small 127 amino acid protein. PHLDA3 is 
highly expressed in LUAD and is correlated with poor 
outcomes. PHLDA3 activates Wnt/β-catenin signaling 
through binding to GSK3β and promotes the onco-
genic properties of NSCLC cells [87]. Ser 9 of GSK3β 
is the phosphorylation site for AKT, and the phospho-
rylation of this residue inactivates GSK3β. Recently, it 
was demonstrated that the scaffold protein AXIN allos-
terically protects GSK3β from phosphorylation at Ser9 
by upstream kinases, which prevents accumulation 
of GSK3β phosphorylation (Ser9) in the Axin/GSK3β 
complex [89]. Thus, Ser9 phosphorylation of GSK3β 
does not affect Wnt/β-catenin signaling.

AXIN is another component of β-catenin destruction 
complex and contains two family members—AXIN1 
and AXIN2. AXIN1 expression was found to be down-
regulated in NSCLC by Zbed3 [90], GTPBP2 [91], 
YTHDF2 [23], APEX1 [92] and RIF1 [93] (Table  2). 
Zbed3 belongs to the family of BED‐zinc finger pro-
teins and is overexpressed in NSCLC. Zbed3 enhances 
lung cancer development partially by inhibiting AXIN/
GSK3β-mediated downregulation of β-catenin levels 
[90]. YTHDF2 is a reader of N6-methyladenosine (m6A) 
on RNA. AXIN1 was a direct target of YTHDF2, which 
promoted AXIN1 mRNA decay and subsequently acti-
vated the Wnt/β-catenin signaling [23]. APEX1 regulates 
aberrant alternative splicing of AXIN1. APEX1 expres-
sion was upregulated in NSCLC samples and reduced 
cell proliferation and induce apoptosis of NSCLC cells 
[92]. RIF1 promoted development and CSC-like proper-
ties of NSCLC through enhancing PP1-AXIN interac-
tion and thereby activating Wnt/β-catenin signaling [93]. 
AXIN2 expression was downregulated by a short peptide 
encoded by lncRNA DLX6-AS1, which is able to activate 
Wnt/β-catenin pathway in NSCLC cells [94]. MicroRNAs 
which downregulated APC expression include miR-4326 
[95], miR-3607 [96] and miR-4739 [97] (Table 2). At the 
protein level, APC can be ubiquitinated by RNF115 and 
undergoes proteasomal degradation [98]. β-TrCP1 is an 
E3 ubiquitin ligase and one of the crucial components 
of β-catenin destruction complex. PKMYT1AR/miR-
485-5p/PKMYT1 axis inhibited β-TrCP1 mediated ubiq-
uitin degradation of β-catenin proteins, which in turn 
promote CSC maintenance and enhances tumorigenesis 
[99].

β‑Catenin
In NSCLC, β-catenin is found to be regulated at the 
transcriptional level, translational level, and through 
subcellular translocation. The mRNA expression level 
of CTNNB1 can be upregulated by FLVCR1-AS1 [100], 
LINC01006 [101], lncRNA SNHG11 [102], TET [103], 
eIF3a [104], WSB2 [105], CIRP [106] and miR-214 [107] 
(Table  2). LINC01006 and lncRNA SNHG11 activate 
the Wnt/β-catenin pathway in LUAD cells by acting as 
sponges for miRNAs and elevating CTNNB1 mRNA level 
[101, 102]. The TET family of DNA hydroxylases medi-
ates the final DNA demethylation through sequential 
oxidation reactions, thus are key executors for maintain-
ing a hypomethylated genome state [108]. Loss of TET 
reprograms Wnt/β-catenin signaling through impaired 
demethylation of Wnt antagonizing genes (e.g., LRP4, 
CTNNBIP1, DACT1, and TMEM88) to promote the 
development of NSCLC [103]. eIF3a and WSB2 regulate 
the transcription of CTNNB1 [104, 105] (Table 2). CIRP 
(cold-inducible RNA binding protein) regulates CTNNB1 
mRNA expression level by binding its mRNA [106]. miR-
214 directly targets 3′-UTR of CTNNB1 to inhibit Wnt/
β-catenin signaling in NSCLC cells [107].

The protein level of β-catenin in NSCLC cells is upreg-
ulated by LINC00514 [109], lncRNA ITGB1-DT [110], 
lncRNA UPLA1 [21], RNASEH1-AS1 [111], circEIF3I 
[112], circZSWIM4 [113], KDM2B [114], SETD1A 
[115], EHD1 [116], TRIM27 [117] and HORMAD1 [118] 
(Table 2). Of them, lncRNA ITGB1-DT facilitates LUAD 
progression through forming a positive feedback loop 
with ITGB1/Wnt/β-Catenin/MYC axis [110]. Desmo-
plakin has been found to inhibit Wnt/β-catenin signal-
ing pathway in NSCLC [119]. LncRNA UPLA1 promoted 
Wnt/β-catenin signaling by binding to desmoplakin [21]. 
RNASEH1-AS1 exacerbated the progression of NSCLC 
by regulating the miR-516a-5p/FOXK1/β-catenin axis 
[111]. Circ-EIF3I could sponge miR-1253, which targets 
NOVA2 and promotes Wnt/β-catenin signaling [112]. 
CircZSWIM4 promotes the development of LUAD 
by targeting miR-370-3p and miR-873-5p to regulate 
FOXM1/β-catenin axis [113]. As the most well-charac-
terized member of the mammalian C-terminal Eps15 
homology (EH) domain-containing protein (EHD) fam-
ily, EHD1 has been implicated in the resistance to EGFR-
TKI in NSCLC through activation of PTEN/PI3K/AKT 
signaling [120]. Moreover, EHD1 activates a 14-3-3ζ/β-
catenin/c-Myc regulatory circuit that synergistically pro-
motes aerobic glycolysis in NSCLC [116].

The deubiquitination is closely related to Wnt/β-
catenin pathway and that many regulators have been 
found to mediate the ubiquitination level of β-catenin, 
including lncRNA PKMYT1AR [99], FABP7 [121], 
and USP5 [122] (Table  2). Of them, the PKMYT1AR/
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miR-485-5p/PKMYT1 axis inhibits ubiquitin-mediated 
degradation of β-catenin, which in turn promotes CSC 
maintenance and enhances tumorigenesis in NSCLC 
[99]. FABP7 (fatty acid binding protein 7) is a cytoplasmic 
protein which is essential for lipid metabolism. FABP7 
competitively inhibits the interaction between β-catenin 
and the components of its cytoplasmic destruction com-
plex, thereby repressing the ubiquitination-mediated 
degradation of β-catenin [121]. USP5 encodes ubiquitin-
specific peptidase 5, one of the deubiquitinating enzymes 
remove ubiquitin from target proteins. USP5 directly 
interacts with β-catenin, leading to deubiquitination, sta-
bilization of β-catenin in NSCLC cells [122].

β-Catenin protein expression is also upregulated by 
FOXH1 [123], LRP8 [124], CBX4 [125], SMEK1 [126], 
JAML [127], ERCC6L [128], NOVA1 [129], SETDB1 
[130], HMGB1 [131] and DEPDC1B [132] (Table  2), 
though the underlying molecular mechanism remains 
elusive. Additional regulators specifically mediate the 
level of active (i.e., unphosphorylated at Ser33/Ser37/
Thr41) β‐catenin. Serine phosphorylation is necessary 
for recognition by the E3 ubiquitin ligase β-Trcp and 
subsequent proteasomal degradation. The active form of 
β-catenin is upregulated by MORC2 [133], PLAC8 [134], 
CCDC85B [135], KIF26B [136], TMED3 [137], ARH-
GEF40 [88] and tumor-intrinsic PD-L1 [138], with most 
of them modulated by AKT. Phosphorylation at Ser552 
is able to regulate β-catenin activity. S100A4 is found to 
promote NSCLC tumor development through Wnt/β-
catenin pathway-mediated autophagy inhibition. In this 
situation, S100A4 activates the Wnt/β-catenin pathway 
by the upregulation of the phosphorylation at Ser552 
[139].

The nuclear accumulation of β-catenin is upregu-
lated by lncRNA CBR3-AS1 [140], LINC00669 [141], 
MEF2D [142], ASNS [143], SRPK1 [144], Pygo2 [145], 
WDR74 [146], DSTN [147] and SOX9 [148] (Table 2). Of 
them, lncRNA CBR3-AS1 could physically interact with 
β-catenin and facilitate the activation of Wnt/β-catenin 
signaling thought promoting nuclear accumulation of 
β-catenin [140].

The complex of nuclear β-catenin and TCF4 transcrip-
tion factor was upregulated by nuclear E-cadherin [149], 
Pygo1 [150], FOXP3 [151] and TRIB3 [152] (Table  2). 
β-catenin/TCF4 interaction was abolished by E-cadherin 
and was correlated with its nuclear localization, and 
consequently decreased β-catenin/TCF4 transcriptional 
activity. Subsequently, nuclear E-cadherin was a nega-
tive regulator of Wnt/β-catenin-elicited promotion of 
lung CSC phenotype [149]. FOXP3 can physically inter-
act with TCF4 and β-catenin in the nucleus. High level of 
FOXP3 had a significant decrease in overall survival and 
recurrence free survival NSCLC patients [151].

The negative regulators of Wnt/β‑catenin signaling
Many negative regulators have been identified which 
act on Wnt ligands, receptors, components of β-catenin 
destruction complex, and β-catenin. The expression of 
these regulators might be achieved by aberrant expres-
sion, mutation, methylation, and histone modifications in 
NSCLC cells.

Wnt ligands
Numerous negative regulators increase the transcrip-
tional or protein level of multiple Wnt ligands, including 
WNT1 [153–155], WNT2B [156], WNT3A [157–159], 
WNT5A [160, 161], WNT5B [162] and WNT8B [160] 
(Table  3). WNT1 expression was increased by miR-383 
[153], miR-924 [155] and TMEM100 [154] (Table  3), 
whose expression was significantly decreased in NSCLC 
tissues and cells. MiR-383 regulates NSCLC cell pro-
liferation by directly targeting WNT1 [153]. MiR-
924 blocked the progression of NSCLC by inhibiting 
RHBDD1/WNT1/β-catenin axis [155]. WNT2B was tar-
geted by miR-577, which inactivated the Wnt/β-catenin 
pathway in NSCLC cells [156]. WNT3A expression was 
negatively regulated by circCCT3 [157], GPC5 [158] and 
GRIK3 [159] (Table  3). The expression of WNT5A and 
WNT8B was increased by miR-4757-3p in NSCLC cell 
lines [160]. The long isoform of WNT5A was targeted by 
miR-1253, which inhibited the proliferation and metasta-
sis of NSCLC cells [161]. Likewise, WNT5B is negatively 
regulated by miR-5587-3p through binding to its 3′-UTR 
[162]. Taken together, these studies point to several miR-
NAs that function as tumor suppressors through inhibi-
tion of Wnt signaling.

Wnt receptors
Many negative regulators have been found to increase 
the expression or phosphorylation of Wnt receptors, 
including FZD4 [163], FZD7 [164], FZD8 [165] and LRP6 
[166] (Table 3). miR-3127-5p increases the expression of 
FZD4, which promotes EMT and Wnt/β-catenin signal-
ing in NSCLC [163]. MITF targets FZD7 promoter, and 
silencing MITF can promote tumor cell migration, inva-
sion and colony formation in LUAD cells [164]. LncRNA 
AK126698 targets FZD8, and downregulation of lncRNA 
AK126698 promotes the proliferation and migration of 
NSCLC cells through Wnt/β-catenin pathway [165]. For 
LRP5/6, the phosphorylation of LRP6 was decreased by 
RASSF10, and downregulation of RASSF10 promotes 
lung cancer proliferation and invasion [166]. SFRP1, 
highlighted above as a negative regulator of FZD family 
members, is itself negatively regulated by LINC01089 
[167] and miR-26a-5p [168], and downregulation of 
LINC01089 and miR-26a-5p was found in NSCLC. 
Dysregulated Rab37-SFRP1 pathway confers NSCLC 
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Table 3 Negative Wnt regulators recently reported to involve in NSCLC

Name Alterations Target Specimen Clinical relevance References

miR-383 Underexpression WNT1 NSCLC tissues and cell 
lines

Unknown [153]

miR-924 Underexpression RHBDD1/Wnt1/β-catenin NSCLC tissues and cell 
lines

TNM stage and lymph 
node metastasis

[155]

TMEM100 Histone deacetylase 
6-mediated downregula-
tion

WNT1/β-catenin LUAD and LUSC 
from TCGA 

Clinicopathological char-
acteristics and poor OS

[154]

miR-577 Underexpression 3’-UTR of WNT2B NSCLC tissues and cell 
lines

Tumor size and lymph 
node metastasis

[156]

circCCT3 N.D 3’-UTR of WNT3A A549 cells Unknown [157]

GPC5 Promoter CpG methyla-
tion

Binding to WNT3A LUAD tissues and cell 
lines

Poor prognosis [158]

GRIK3 Underexpression UBE2C and CDK1/
WNT3A/β-catenin

NSCLC tissues Poor prognosis [159]

miR-4757-3p Underexpression 3’-UTR of WNT5A 
and WNT8B

A549 cells Unknown [160]

miR-1253 Underexpression 3’-UTR of WNT5A (long 
isoform)

NSCLC tissues TNM stages, Lymph node 
metastasis and poor OS

[161]

miR-5587-3p N.D WNT5B LUAD tissues Unknown [162]

miR-3127-5p Underexpression FZD4 NSCLC metastatic tissues Unknown [163]

MITF Overexpression FZD7 promoter NSCLC tissues Better OS and disease-
free survival

[164]

lncRNA AK126698 Underexpression FZD8 NSCLC tissues and cell 
lines

Tumor size and TNM 
stage

[165]

RASSF10 Underexpression LRP6 Lung cancer specimens Clinicopathologic 
characteristics and poor 
prognosis

[166]

LINC01089 Underexpression miR-27a/SFRP1/β-catenin 
Axis

NSCLC samples Clinicopathologic charac-
teristics

[167]

miR-26a-5p Underexpression DNMT3A-Mediated SFRP1 
Methylation

NSCLC tumor tissues No significance in survival [168]

Rab37 Underexpression SFRP1-Wnt axis NSCLC tissues Clinicopathological 
characteristics and poor 
prognosis

[70]

hsa_circ_0006427 Underexpression miR-6783-3p/DKK1 axis LUAD tissues and cell 
lines

Clinicopathological 
characteristics and poor 
prognosis

[169]

hsa_circ_0018414 Underexpression miR-6807-3p/DKK1 axis LUAD tissues and cell 
lines

Poor prognosis [22]

PCBP1 Underexpression Stabilizing DKK1 mRNA LUAD tissues Poor prognosis [170]

CNN1 Underexpression DKK1 LUSC tissues Unknown [171]

LINC00326 Underexpression miR-657/DKK2 axis NSCLC tissues and cell 
lines

Clinicopathological 
characteristics and poor 
prognosis

[172]

ARHGAP9 Underexpression Transcription of DKK2 LUAD tissues Poor prognosis [173]

WWC3 Underexpression DVL NSCLC tissues and cell 
lines

Clinicopathologic 
characteristics and poor 
prognosis

[174]

circ-GSK3B (hsa_
circ_0066903)

Underexpression GSK3B LUAD tissues Unknown [175]

HOXA4 Underexpression Transcription of GSK3B lung cancer tissues Clinicopathologic 
characteristics and poor 
prognosis

[176]

DBH-AS1 Underexpression miR-155/AXIN1 axis NSCLC tissues and cell 
lines

Unknown [178]
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Table 3 (continued)

Name Alterations Target Specimen Clinical relevance References

RBM47 Underexpression AXIN1 mRNA stability 
via 3’-UTR binding

NSCLC tissues Clinicopathologic 
characteristics and poor 
prognosis

[179]

LKB1 Mutation Interacting with APC N.D N.D [180]

FOXS1 Underexpression APC LUSC tissues Unknown [181]

miR-4429 Underexpression CTNNB1 LUAD cells Unknown [182]

TMEM196 Underexpression CTNNB1 promoter NSCLC tissues Poor prognosis [183]

SOX30 Underexpression Transcription of CTNNB1 LUAD and LUSC tissues Metastasis and poor 
prognosis

[184]

ARHGAP25 Underexpression Transcription of CTNNB1 LUAD from TCGA Tumor size and lymph 
node metastasis

[188]

EHMT2 Underexpression Transcriptional activity 
of chromatin-bound 
CTNNB1

Mouse lung Improved prognosis [185]

LHX6 Underexpression Transcriptionally silencing 
of CTNNB1

LUAD tissues Clinicopathologic charac-
teristics and poor OS

[186]

C/EBPα Underexpression Transcription of CTNNB1 LUAD tissues Unknown [187]

miR-214-3p Underexpression 3’ UTR of FGFR1/β-catenin FGFR1-amplified NSCLC 
from TCGA 

Poor OS [189]

miR-708-5p Overexpression DNMT3A/CDH1/β-
catenin

NSCLC tissues Better OS and lower 
recurrence

[260]

miR-520a Underexpression RRM2/β-catenin NSCLC tissues Poor prognosis [190]

miR-34c-5p Underexpression TBL1XR1/β-catenin [191]

miR-100 Underexpression HOXA1/β-catenin NSCLC tissues Clinicopathologic 
characteristics and poor 
prognosis

[261]

miR-590 Underexpression β-catenin NSCLC tissues Clinicopathologic charac-
teristics and poor OS

[192]

circ-ITCH Underexpression β-catenin Lung cancer tissues TNM stages [193]

circ-ZNF124 Overexpression miR-498/YES/β-catenin 
axis

NSCLC tissues and cell 
lines

Unknown [194]

DSTYK Underexpression N-terminal domain 
of β-catenin

Lung cancer tissues Poor OS [195]

EPB41 Underexpression ALDOC/ β-catenin NSCLC tissues Poor prognosis [196]

PJA1 Underexpression FOXR2/ β-catenin LUAD from TCGA Poor OS [197]

ZNF671 Underexpression β-catenin NSCLC tissues and cell 
lines

Poor prognosis [198]

Shisa3 Underexpression β-catenin degradation NSCLC tissues and cell 
lines

Poor OS and progression-
free survival

[200]

miR-489-3p Underexpression USP48/Ubiquitination 
of β-catenin

LUSC Poor prognosis [199]

ING5 N.A Phosphorylation 
of β-catenin (Ser33/37)

A549 cells Unknown [201]

miR-147b Underexpression RPS15A/active β-catenin 
axis

NSCLC tissues Unknown [202]

EXT1 DNA methylation Active β-catenin NSCLC from TCGA Better prognosis [203]

KCTD11 Underexpression Accumulation of nuclear 
β-catenin

NSCLC tissues Clinicopathologic 
characteristics and poor 
prognosis

[204]

Fibulin-3 Underexpression Nuclear β-catenin NSCLC tissues and cell 
lines

Unknown [205]

MARVELD3 Underexpression Nuclear β-catenin NSCLC tissues Metastasis [206]

RBM10 Underexpression Nuclear β-catenin LUAD tissues Poor prognosis [207]

SOX30 Underexpression Competing with TCF 
for binding to β-catenin

Metastatic NSCLC tumors Favorable independent 
prognostic biomarker

[208]
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stemness via the activation of Wnt/β-catenin signal-
ing. Rab37 expression positively correlates with SFRP1 
level in NSCLC patients and negatively correlated with 
tumor stage of NSCLC [70]. Expression of DKK1, previ-
ously discussed as a negative regulator of LRP5/6 core-
ceptors, was upregulated by hsa_circ_0006427 [169], 
hsa_circ_0018414 [22], PCBP1 [170] and CNN1 [171] 
(Table  3). DKK2 expression was found to be increased 
by LINC00326 [172] and ARHGAP9 [173]. Signal trans-
ducer DVLs were negatively regulated by the scaffold-
ing protein WWC3 [174]. WWC3 interacts with DVLs, 
prevents casein kinase 1ϵ from phosphorylating DVLs, 
and inhibits the nuclear translocation of β-catenin, and 
downregulation of WWC3 was found in NSCLC [174].

β‑Catenin destruction complex
Many negative regulators exert their inhibitory effects 
on components of the β-catenin destruction complex by 
regulating transcriptional activity, mRNA stability, and 
protein expression. GSK3β expression can be increased 
by circ-GSK3B [175] and HOXA4 [176] (Table  3). circ-
GSK3B competitively sponges miR-3681-3p and miR-
3909, leading to elevated GSK3B expression [175]. 
HOXA4 belongs to the Homeobox (HOX) gene family, 
which encode transcription factors that control cell dif-
ferentiation and embryonic development [177]. HOXA4 
significantly increased GSK3B expression by binding its 
promoter region and promoting its transcription [176]. 
AXIN1 expression was regulated by lncDBH-AS1 [178] 
and RBM47 [179] (Table  3). Silence of lncDBH-AS1 
enhances proliferation of NSCLC cells by activating Wnt 
signaling pathway via the miR-155/AXIN1 axis [178]. 
The RNA-binding protein RBM47 inhibits the metastasis 
of NSCLC through modulation of AXIN1 mRNA stabil-
ity [179]. APC was regulated by LKB1 [180] and FOXS1 
[181] (Table  3). LKB1 binds to APC to suppress the 
Wnt/β-catenin signaling pathway [180]. FOXS1 inhib-
its Wnt/β-catenin signaling pathway by increasing APC 
expression in LUSC cells [181].

β‑Catenin
Multiple negative regulators act on β-catenin by repress-
ing its transcriptional expression, protein level, and 

nuclear accumulation. The mRNA expression level of 
CTNNB1 was found to be suppressed by miR-4429 [182], 
TMEM196 [183], SOX30 [184], EHMT2 [185], LHX6 
[186], C/EBPα [187] and ARHGAP25 [188] (Table 3). The 
downregulation of these negative regulators was found in 
NSCLC tissues and cell lines (Table 2). LHX6 suppressed 
the Wnt/β-catenin pathway through silencing the tran-
scriptional expression of CTNNB1. LHX6 expression was 
found to be a favorable independent prognostic factor for 
overall survival (OS) of LUAD patients and clinical char-
acteristics [186].

The protein level of β-catenin was negatively regulated 
by miR-214-3p [189], miR-708-5p, miR-520a [190], miR-
34c-5p [191], miR-100, miR-590 [192], cir-ITCH [193], 
circ-ZNF124 [194], DSTYK [195], EPB41 [196], PJA1 
[197] and ZNF671 [198] (Table  3), and downregula-
tion of these regulators was found in NSCLC. MiR-590 
was down-regulated in NSCLC tissues and cell lines, 
and inhibited the Wnt/β-catenin pathway in NSCLC 
cells [192]. Interestingly, it was also found that miR-590 
was negatively correlated with YAP1 expression NSCLC 
tumor tissues, and miR-590 suppressed YAP1 expres-
sion by targeting its 3’ UTR in NSCLC cells [192]. circ-
ZNF124 regulated YES1 expression by acting as a sponge 
of miR-498, thus restraining NSCLC development by 
suppressing Wnt/β-catenin signaling pathway [194]. 
DSTYK encodes dual serine/threonine and tyrosine pro-
tein kinase which phosphorylated the N-terminal domain 
of β-catenin and inhibited Wnt/β-catenin signaling, lead-
ing to the inhibition of tumorigenesis in a LUAD mouse 
model [195]. EPB41 forms a complex with ALDOC, lead-
ing to disassociation of the β-catenin destruction com-
plex, reduced proteasomal degradation of β-catenin, 
elevated cytoplasmic accumulation, and nuclear translo-
cation of β-catenin [196].

Multiple regulators inhibit Wnt/β-catenin signaling 
through regulating the ubiquitination-mediated degra-
dation of β-catenin, including miR-489-3p [199], Shisa3 
[200] and ING5 [201] (Table  3). miR-489-3p hampers 
the progression of NSCLC through targeting USP48 to 
increase the ubiquitination of β-catenin [199]. Shisa3 
accelerates the degradation of β-catenin through decreas-
ing the availability of FZDs [200]. ING5 overexpression 

Table 3 (continued)

Name Alterations Target Specimen Clinical relevance References

MYPT1 Underexpression β-catenin/TCF4 complex NSCLC tissues Clinicopathologic 
characteristics and poor 
prognosis

[209]

IRF8 Promoter CpG methyla-
tion

TCF/LEF promoter NSCLC tissues Poor OS [211]

SCID CB.17 severe combined immunodeficient-beige mice, OS overall survival
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promotes phosphorylation of β‐catenin at Ser33/37, lead-
ing to a decreased β‐catenin protein level [201]. The pro-
tein level of β‐catenin could also be manifested as active 
β‐catenin (unphosphorylated at Ser33/Ser37/Thr41), 
which is negatively regulated by miR-147b [202], and 
EXT1 [203].

The accumulation of nuclear β-catenin is negatively 
regulated by KCTD11 [204], Fibulin-3 [205], MAR-
VELD3 [206] and RBM10 [207] (Table  3), and under-
expression of these regulators was found in NSCLC. 
KCTD11 inhibits progression of lung cancer by binding 
to β-catenin [204]. MARVELD3 (MAL and relevant pro-
teins for vesicle trafficking and membrane link domain 3) 
is a tight junction protein which influences EMT. Lower 
protein levels of MARVELD3 were observed in NSCLC 
samples, and associated with tumor metastasis. Mecha-
nistically, MARVELD3 inhibits TGF-β1 induced EMT 
by suppressing Wnt/β-catenin signaling in NSCLC cells 
[206].

The interaction between nuclear β-catenin and TCF4 
transcription factor was suppressed by SOX30 [208] 
and MYPT1 [209] (Table  3). SOX30 attenuates Wnt/β-
catenin signaling via directly repressing the transcription 
of β-catenin or competitively binding to β-catenin [208]. 
SOX30 also suppresses Wnt/β-catenin signaling pathway 
through upregulation of desmosomal genes including 
DSP and JUP [210]. The TCF/LEF transcription factor 
was regulated by IRF8, which repressed β-catenin nuclear 
translocation and its activation [211].

Wnt/β‑catenin signaling impacts therapeutic 
sensitivity and resistance of NSCLC
The abnormal activation of Wnt components and reg-
ulators influences response to several therapies for 
NSCLC, including targeted therapy, radiotherapy and 
chemotherapy.

Targeted therapy
In EGFR-mutant NSCLC, FOXM1 rs3742076_G 
(rs3742076) was found to confer gefitinib resistance by 
increasing FOXM1 protein stability through activating 
Wnt/β-catenin signaling pathway [20] (Table  4). Wnt 
inhibitory factor-1 (WIF1) is a secreted antagonist of 
Wnt/β-catenin signaling and binds to Wnt ligands extra-
cellularly [68]. The status of WIF1 methylation is asso-
ciated with progression free survival [212] and gefitinib 
response [213], possibly through regulation of this Wnt-
FOXM1 axis. FLNA and ANXA2 cooperatively promotes 
the activation of the Wnt/β-catenin pathway, which con-
tributes to gefitinib resistance [214]. DCLK1 expression 
confers EGFR-TKI resistance to LUAD through regulat-
ing Wnt/β-catenin activity [215]. Lower LHX6 expres-
sion was detected in HCC827/ER cells and re-expression 
of LHX6 increased erlotinib sensitivity through activat-
ing Wnt/β-catenin signaling [216]. The neurotransmit-
ter acetylcholine (ACh) was specifically accumulated 
in drug-tolerant persister (DTP) cells. The upregulated 
ACh metabolism mediated EGFR-TKI sensitivity par-
tially through activating Wnt/β-catenin signaling [217]. 

Table 4 Wnt regulators recently reported to associate with the therapeutic sensitivity and resistance of NSCLC

CAFs cancer-associated fibroblasts, PFS progression-free survival

Name Alterations Target Treatment Specimen Clinical effect References

SRPK1 Overexpression β-catenin/EGFR Gefitinib Advanced NSCLC Poor PFS [262]

FOXM1 rs3742076_G Nuclear β-catenin Gefitinib NSCLC patients Poor prognosis [20]

FLNA and ANXA2 Overexpression β-catenin Gefitinib PC-9, HCC827 
and H3255

Resistance [214]

DCLK1 Overexpression Cytoplasmic β-catenin Gefitinib, osimertinib LUAD tissues Poor prognosis [215]

LHX6 Underexpression Nuclear β-catenin Erlotinib HCC827 and HCC827/
ER cells

Resistance [216]

ACh Overexpression Wnt ligands Osimetinib NSCLC patients Worse drug response [217]

circFBXW7 Underexpression β-catenin Osimertinib HCC827 and H1975 
cells

Resistance [218]

Exosomal TPX2 Overexpression β-catenin Docetaxel NSCLC patients Poor prognosis [225]

RRM2 Overexpression β-catenin Cisplatin Cisplatin-resistant 
A549/DDP cell line

Clinicopathologic 
characteristics 
and poor prognosis

[223]

miR-32 and miR-548a Underexpression ROBO1/nuclear 
β-catenin

Cisplatin DDP-resistant NSCLC 
tissues

Poor prognosis [226]

miR-181c Overexpression WIF1 Cisplatin NSCLC tissues DDP sensitivity [227]

CAFs NA HK2/β-catenin Radiation NSCLC patients Radioresistance [230]

UBE2T Overexpression FOXO1/GSK3β/β-
catenin

Radiation NSCLC tissues Radiation resistance [232]
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Multiple negative regulators were found to promote 
the activation of Wnt/β-catenin signaling in NSCLC. 
The expression of circFBXW7 was found to signifi-
cantly downregulated in osimertinib-resistant cell lines 
(Table 4). circFBXW7 resensitizes resistant LUAD cells to 
osimertinib. Mechanistically, circFBXW7 encodes a short 
polypeptide, which directly interacts with β-catenin. 
This interaction leads to reduced stability of β-catenin 
by inducing ubiquitination, thereby attenuates Wnt/β-
catenin signaling [218]. Other targeted therapies may 
also be susceptible to Wnt signaling. For example, case-
level data exists showing a secondary CTNNB1 mutation 
correlating with failure of ALK TKIs [219].

Chemotherapy
Cisplatin (DDP) is the most widely used chemothera-
peutic agent for NSCLC [220, 221]. DVL2 overexpres-
sion was found in DDP-resistant NSCLC A549 (A549/
DDP) cells compared to the parental A549 cells (Table 4). 
Inhibition of DVL2 resensitizes DDP-resistant NSCLC 
cells through downregulating Wnt/β-catenin signaling 
[222]. RRM2 is a component of ribonucleotide reductase. 
Higher levels of RRM2 expression was found in A549/
DDP cells. Knockdown OF RRM2 promoted the sensitiv-
ity of A549/DDP cells to cisplatin through Wnt/β-catenin 
signaling pathway [223]. TPX2 is a microtubule-related 
protein in mobile mitosis and spindle assembly [224]. 
Transmission of exosomal TPX2 promotes the resist-
ance of NSCLC cells to docetaxel through increasing 
the protein level of β-catenin [225]. Many miRNAs have 
been found to involve in chemotherapy of NSCLC. miR-
32 and miR-548a were poorly expressed in DDP-resist-
ant NSCLC, re-expression of miR-32 and miRNA-548a 
promotes the sensitivity of NSCLC cells to cisplatin by 
targeting ROBO1/β-catenin axis [226]. miR-181c expres-
sion was upregulated in DDP-resistant NSCLC cells, and 
miR-181c negatively regulated WIF1 expression through 
directly binding to WIF1 (Table 4) [227].

Radiotherapy
Wnt/β-catenin signaling has been found to associate with 
radiotherapeutic sensitivity and resistance of NSCLC. 
WNT5A expression is often upregulated in radiation-
resistant NSCLC cells (Table  4). Mechanistic investiga-
tion indicated that altered WNT5A expression affects 
radiosensitivity of NSCLC via Wnt/β-catenin pathway 
[228]. Disabled-2 (Dab2) is known as a tumor suppres-
sor and Wnt pathway inhibitor. It has been found that 
promoter de-methylation of Dab2 gene enhances X-Ray 
irradiation sensitivity of NSCLC cells [229]. Cancer-
associated fibroblasts (CAFs), one main component of 
the tumor microenvironment, regulated DNA dam-
age response of NSCLC cells following irradiation. 

Mechanistically, CAFs up-regulate and stabilize c-Myc, 
leading to the transcription activation of HK2 kinase, a 
key rate-limiting enzyme in glycolysis by activating Wnt/
β-catenin pathway [230]. Therefore, CAFs contribute to 
the radioresistance of NSCLC cells by promoting the gly-
colysis in a Wnt/β-catenin signaling-dependent manner. 
UBE2T has been found to promote NSCLC progression 
[231]. Recently, it was found that UBE2T promotes radi-
oresistance in NSCLC (Table 4). Mechanistically, UBE2T 
promotes EMT partially through Wnt/β-catenin signal-
ing activation [232]. Therefore, Wnt/β-catenin signaling 
might be a potential target for enhancing radiotherapy 
sensitivity.

Immunotherapy
Aberrant activation of Wnt/β-catenin signaling promotes 
the escape of cancer cells from immune surveillance, 
inhibits T-cell infiltration, and mediates the response 
to immunotherapy [233, 234]. It has been shown that 
WNT1 silences chemokine genes in dendritic cells and 
induces adaptive immune resistance in LUAD [235]. 
Tumor β-catenin expression is associated with immune 
evasion in NSCLC with high tumor mutation burden 
[236]. By bioinformatic analysis, DKK1 was identified as a 
candidate gene related to composition of tumor immune 
microenvironment and response to immunotherapy in 
LUAD patients [237]. Therefore, Wnt/β-catenin pathway 
might be a potential mechanism involved in the regula-
tion of response to immunotherapy.

Potential NSCLC treatments through suppression 
of Wnt/β‑catenin signaling
Multiple small molecules exist which inhibit positive 
Wnt regulators, providing an avenue to suppress Wnt/
β-catenin signaling in NSCLC. Porcupine protein, a 
membrane bound O-acetyltransferase, regulates the bio-
genesis of Wnt ligands. The Porcupine inhibitor LGK-974 
functions by binding to Porcupine and competing with 
acyl-CoA, thus blocking Wnt acetylation by Porcupine 
and inhibiting Wnt/β-catenin signaling [238] (Table  5). 
LGK-974 modifies tumor-associated macrophages result-
ing in inhibition of NSCLC cells [239], with one Phase 1 
study still active (NCT01351103).

Similarly, NCT-80 is an Hsp90 inhibitor which upregu-
lates the transcription of Wnt ligands through Akt- and 
ERK-mediated activation of STAT3 (Table  5). NCT-80 
effectively overcomes acquired resistance to chemother-
apy and EGFR targeting anticancer therapy by induc-
ing apoptosis and inhibiting EMT [240]. USP5 has also 
been found to be a positive regulator of Wnt/β-catenin 
signaling in NSCLC. Targeting USP5 with the small mol-
ecule WP1130 induced the degradation of β-catenin, and 
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showed markedly inhibitory effects on tumor growth and 
metastasis [122].

Many natural compounds inhibit the development 
of NSCLC through targeting Wnt/β-catenin signaling. 
Triptolide is a natural component extracted from Trip-
terygium wilfordii, a Chinese plant (Table  5). Triptolide 
inhibits EMT phenotype in both gefitinib-resistant 
[241] and taxol-resistant LUAD [242], possibly through 
the p70S6k/GSK3β/β-catenin signaling pathway [242], 
though its clinical applications are limited by severe 
hepatotoxicity [243]. Similarly, the triptolide derivative 
MRx102 significantly inhibited NSCLC proliferation 
through upregulating WIF1, a well-recognized negative 
regulator targeting Wnt ligands (Table 5) [244].

Many chemicals can inhibit the development and 
therapeutic resistance of NSCLC by targeting Wnt/β-
catenin signaling. Ethacrynic acid, a loop diuretic, sup-
presses EMT of A549 cells via blocking of NDP-induced 
Wnt signaling [245] (Table  5). IMU1003 is an atrarate 
derivative which dramatically decreased the emergence 
of osimertinib-resistant colonies through inhibiting the 
nuclear localization of β-catenin [246] (Table 5).

FZD receptors are perhaps the best-validated Wnt 
regulators as therapeutic targets. Preclinically, SHH002-
hu1 is an FZD7-targeting antibody which specifi-
cally binds FZD7-expressing NSCLC tissues and cells 
(Table 5). SHH002-hu1 effectively inhibits the migration 
and invasion of NSCLC cells by suppressing the activa-
tion of Wnt/β-catenin signaling [247, 248]. Three anti-
FZD agents—OTSA101, vantictumab (OMP-185R), and 
ipafricept (OMB-54F28)—have entered clinical study. 

OTSA101 is an anti-FZD10 monoclonal antibody, and 
is radiolabeled to achieve an antiproliferative effect. 
OTSA101 has been studied clinically with indium 111 
and yttrium 90 (NCT04176016 and NCT01469975) 
[249], and with actinium 225 preclinically [250]. Van-
tictumab is likewise a monoclonal antibody, binding to 
FZD1, 2, 5, 7, and 8, and has been studied clinically for a 
variety of cancers, including lung cancer (NCT01973309, 
NCT01957007, and NCT02005315) [251]. Lastly, ipafri-
cept is a FZD8 “decoy” receptor, a truncated FZD8 pro-
tein fused to the Fc region of human IgG1 [252]. This 
decoy presumably functions by sequestering Wnt ligand, 
thus dampening canonical Wnt signaling. A total of four 
clinical studies of ipafricept have been completed with 
no results posted yet (NCT02069145, NCT02092363, 
NCT02050178, and NCT01608867).

Antisense oligonucleotide (ASO) drugs have been 
reported to be effective at inhibiting tumor growth both 
in vitro and in vivo (Table 5) [253]. LncRNA PKMYT1AR 
promotes CSC maintenance in NSCLC via activating 
Wnt signaling pathway. PKMYT1AR targeting ASO was 
found to dramatically inhibit tumor growth in vivo [99].

Nanoparticle formulations can improve the efficacy 
of existing drugs. Berberine, an isoquinoline alkaloid 
known for its anti-cancer and anti-inflammatory prop-
erties, shows low solubility and bioavailability (Table 5). 
The physiochemical functions of berberine can be largely 
improved by being encapsulated into liquid crystalline 
nanoparticles. Berberine liquid crystalline nanoparticles 
significantly suppresses the expression of β-catenin at 
both transcription and translation level [254].

Table 5 Agents recently reported to inhibit the development and therapeutic response of NSCLC through regulating Wnt/β-catenin 
signaling

Name Target Phenotype Models References

LGK-974 Porcupine Tumor-associated macrophages A549 and H1299 cells [239]

NCT-80 Akt/ERK/STAT3/Wnt ligands Viability and migration LLC-Luc allograft model [240]

WP1130 USP5/β-catenin Sphere formation, migration, 
and invasion

CL1-5 cells and LIJ cells [122]

Triptolide Wnt inhibitory factors 
(WIF1, FRZB, SFRP1, ENY2, 
and DKK1)

Tumor growth and metastasis A549, H460 cell lines and CDX 
mouse model

[263]

Triptolide p70S6k/GSK3β/β-catenin EMT Taxol-resistant A549 cells and CDX 
mouse model

[242]

Triptolide derivative MRx102 WIF1 Tumor formation and metastasis PDX mouse model [244]

Ethacrynic acid p-LRP6/nuclear β-catenin Antitumor effects of afatinib EGFR L858R/T790M-mutated NSCLC 
cells

[245]

IMU1003 β-catenin GR cell viability Gefitinib-resistant PC-9 cells (GR 
cells)

[246]

SHH002-hu1 Fzd7 Migration and invasion Fzd7 + NSCLC tissues and cell lines 
(A549 and H1975)

[247]

Berberine nanostructures β-catenin Unknown A549 cells [254]
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Conclusions
Recent identification of multiple Wnt regulators, and 
their dysregulation in NSCLC, emphasize the impor-
tance of Wnt/β-catenin signaling in NSCLC development 
and therapeutic response. These regulators act on Wnt 
ligands, receptors, signal transducers, and transcriptional 
effectors, as well as those well-known regulators. Dys-
regulation of these Wnt regulators can be either genetic 
or epigenetic, resulting in overexpression, underexpres-
sion, or gain of function and loss of function. Multiple 
circRNAs and micropeptides have been found to regulate 
Wnt/β-catenin signaling in NSCLC. Continued study of 
these regulators improves our understanding of NSCLC 
biology and may open avenues to novel therapies through 
the direct targeting of Wnt/β-catenin signaling.
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