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Abstract 

Both cancer and fibrosis are diseases involving dysregulation of cell signaling pathways resulting in an altered cellular 
microenvironment which ultimately leads to progression of the condition. The two disease entities share common 
molecular pathophysiology and recent research has illuminated the how each promotes the other. Multiple imaging 
techniques have been developed to aid in the early and accurate diagnosis of each disease, and given the com-
monalities between the pathophysiology of the conditions, advances in imaging one disease have opened new 
avenues to study the other. Here, we detail the most up-to-date advances in imaging techniques for each disease 
and how they have crossed over to improve detection and monitoring of the other. We explore techniques in posi-
tron emission tomography (PET), magnetic resonance imaging (MRI), second generation harmonic Imaging (SGHI), 
ultrasound (US), radiomics, and artificial intelligence (AI). A new diagnostic imaging tool in PET/computed tomog-
raphy (CT) is the use of radiolabeled fibroblast activation protein inhibitor (FAPI). SGHI uses high-frequency sound 
waves to penetrate deeper into the tissue, providing a more detailed view of the tumor microenvironment. Artificial 
intelligence with the aid of advanced deep learning (DL) algorithms has been highly effective in training computer 
systems to diagnose and classify neoplastic lesions in multiple organs. Ultimately, advancing imaging techniques 
in cancer and fibrosis can lead to significantly more timely and accurate diagnoses of both diseases resulting in better 
patient outcomes.
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Introduction
Uncontrolled inflammation plays a considerable role in 
numerous diseases, including fibrosis and cancer [1]. In 
addition, fibrosis and cancer have common mechanisms, 
risk factors, and cellular connections. The presence of 

fibrosis in specific organs can be a precursor to develop-
ing corresponding malignancies, such as hepatocellular, 
lung, gastric, head and neck, colon, pancreatic, cervical, 
and vulvar cancers [2–4]. Conversely, cancer can cause 
the growth of dense fibrous tissue, known as desmopla-
sia, a critical pathologic feature of tissue injury, most 
notably in the pancreas, liver, and lungs [1, 5]. As such, 
the pathophysiology of both diseases has significant over-
lap, which manifests at both micro and macro scopic lev-
els. Major tumor microenvironment (TME) components 
including stromal cells, immune cells, cancer-associated 
fibroblasts (CAFs), and noncellular components of the 
extracellular matrix (ECM) such as collagen, hyaluronan, 
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and fibronectin, significantly contribute to fibrosis, pro-
moting tumor progression, metastasis, and resistance 
to therapy [6–8]. These cells and cellular mediators also 
play a role in fibrotic diseases of multiple organs. CAFs 
exhibit significant heterogeneity depending on the stage 
of cancer, which may affect treatment outcomes. The 
prevalence of CAF subtypes in a tumor or metastatic site 
varies in response to different states, including inflam-
matory, precancerous, and malignant states, as well as 
therapy [9, 10]. Additionally, they are the main source of 
transforming growth factor β (TGF-β) overproduction 
in cancer [11]. TGF-β is a critical pro-fibrotic cytokine, 
and expression results in fibrosis, or scarring down of 
the tumor area in various organs such as the liver, lung, 
kidney, breast, and others [12, 13]. The effects of TGF-β 
are cell type in context dependent. When normal condi-
tions exist, TGF-β promotes homeostasis, maintaining 
epithelial integrity, and anti-tumor effects such as inhi-
bition of cell proliferation, inhibition of inflammation, 

and induction of apoptosis, however in a disease state it 
stimulates the activation of fibroblasts and subsequently 
triggers inflammation, angiogenesis, fibrosis, and base-
ment membrane invasion [14]. Through inducing the 
expression of collagen which is deposited into the micro-
environment and reducing the expression of extracellu-
lar matrix proteases, TGF-β causes the maintenance and 
continuation of the cycle of progressive fibrosis when 
cellular conditions are promoting a pro-fibrotic state [5] 
Fig. 1.

Computed tomography (CT) scan is a simple and cost-
effective means to diagnose many diseases. CT scanners 
generate cross-sectional images of the internal structures 
by rotating an X-ray source and detector around the body 
and combining advanced computing for image process-
ing. The early CT scans, which were a revolution in med-
ical imaging, had limited image quality, longer scanning 
time, and higher doses of radiation [15]. Improvements in 
nearly all aspects of computer tomography have allowed 

Fig. 1 Normal cells are surrounded by blood vessels, collagen fibers, fibroblasts, and other extracellular matrix components. However, during tumor 
development, CAFs and TGF-β cause ECM alteration, leading to the formation of a stiff fibrotic layer around tumoral cells. This microenvironment 
facilitates the growth, invasiveness, and treatment resistance of tumoral cells
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for widespread access to high-quality cross-sectional 
imaging. The Hounsfield unit (HU) is a measurement 
of radiodensity used in CT imaging. This unit ranges 
from − 1000 HU for air to 3000 HU for dense bone, with 
distilled water (at standard pressure and temperature) 
considered zero Hounsfield units. Dense tissue appears 
brighter because it absorbs more X-rays, and less dense 
tissue appears darker because it absorbs fewer X-rays. 
Fibrosis appears as an area with increased density in the 
target organ due to the high deposition of collagen and 
extracellular matrix components resulting in more radi-
ographic density. Thus, it has a higher Hounsfield unit 
compared to normal tissue [16].

With advances in image acquisition and analysis, vari-
ous techniques have been developed to improve accuracy 
and decrease acquisition time for CT. One of the limita-
tions of CT is soft tissue discrimination, which can limit 
the evaluation of fibrotic tissue from normal regions. To 
overcome this limitation, contrast can be used to enhance 
soft tissue visibility on CT. In fibrotic diseases, collagen 
deposition alters tissue architecture, leading to changes 
in blood flow patterns and vascular remodeling. The con-
trast agents, which are usually based on iodine, reach the 
blood vessels of the target area and increase resolution 
between the blood vessels and the surrounding tissues 
[17]. Additionally, post-processing techniques can also be 
used to improve diagnostic capabilities of traditional CT 
and reduce complications such as contrast reactions and 
excess radiation exposure. One of these post-processing 
techniques is deep learning (DL), which is a sub-branch 
of artificial intelligence (AI) that can automatically ana-
lyze a large amount of data and extract features, dis-
cussed further in the dedicated section [18].

In this review, we explore new ways in which diagnostic 
imaging can enhance our ability to visualize and diagnose 
fibrosis, and how the same modalities can improve our 
diagnosis of cancer. Commonalities at the molecular level 
between these diseases will allow us to employ technolo-
gies developed for one to better diagnose and follow the 
other.

PET imaging
Molecular imaging with positron emission tomography 
(PET) enables in  vivo visualization of functional pro-
cesses within a tissue or organ of interest using targeted 
molecular probes and can add significant value to con-
ventional imaging in both the assessment of cancer and 
fibrosis. It is being increasingly used to assess pulmonary 
fibrosis (PF) in select patients.

Applications for cancer imaging
CT plays an important role in the initial staging of lung 
cancer, however, molecular imaging with positron 

emission tomography (PET)/CT may detect and char-
acterize additional lesions, with the potential to provide 
critical prognostic information and alter management 
[19].

The most ubiquitous radiotracer in PET/CT lung 
cancer imaging is 18-fluorine (18F) fluorodeoxyglucose 
(FDG), with several metabolic parameters used to quan-
tify tumor aggressiveness and assess prognosis, including 
maximum standardized uptake value  (SUVmax), meta-
bolic tumor volume (MTV) and total lesion glycolysis 
(TLG). Higher values of these parameters are predictive 
of a decreased survival in patients with surgical lung can-
cer and advanced lung cancer and may be used for risk 
stratification in disease control and survival. Patients 
with tumors that exhibit intense FDG uptake may be con-
sidered at a high risk of treatment failure and may benefit 
from more aggressive treatment [20–23]. Although FDG 
is the most established radiotracer for evaluating lung 
cancer, it has several limitations, including poor specific-
ity [24].

For this reason, several novel radionuclides have been 
developed for the evaluation of lung cancer patients 
including 18F-fluorothymidine (18F-FLT), 18F-fluoromi-
sonidazole (18F-FMISO), targeted integrin imaging and 
most recently, radiolabeled fibroblast activation protein 
inhibitors (FAPI) [25].

FAPI molecules have recently been explored as poten-
tial targets in molecular imaging for several cancers. 
Fibroblast activation protein (FAP) is a stroma-specific 
marker and is overexpressed by activated fibroblasts 
including cancer associated fibroblasts (CAFs) and 
fibroblasts occurring in other disease states. CAFs are 
cells found in the tumor stroma and play a crucial role 
in tumor growth and aggressiveness [26]. Therefore, 
radiolabeled FAPI can be utilized as a novel imaging 
tool to visualize fibrosis and the tumor microenviron-
ment architecture. In a head-to-head performance com-
parison of 68Ga-FAPI PET/CT and 18F-FDG PET/CT 
in patients with lung cancer on a lesion-by-lesion basis, 
authors found that 68Ga-FAPI PET/CT demonstrated a 
better staging performance in lung cancer patients with 
different pathological stages, especially those with local-
ized disease [27]. In addition, 68Ga-FAPI has been shown 
to identify more suspected nodal, pleural, osseous, and 
intracranial metastases than 18F-FDG in patients with 
lung cancer imaged with PET/CT and both radiotracers 
[28]. In another study conducted by Chen et  al., 68Ga-
FAPI PET/CT showed better sensitivity and accuracy in 
detecting various types of primary tumors, such as liver 
and nasopharyngeal tumors, etc., as well as in metastatic 
lesions including bone and visceral metastases, and met-
astatic lymph nodes, compared to 18F-FDG PET/CT [29]. 
Also, Kömek et  al. demonstrated that 68Ga-FAPI PET/
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CT had higher  SUVmax values to detect primary breast 
lesions compared to 18F-FDG PET/CT. They reported a 
sensitivity of 100% and specificity of 95.6% for 68Ga-FAPI 
PET/CT, while 18F-FDG PET/CT had a sensitivity of 
78.2% and specificity of 100% [30].

Prostate-specific membrane antigen (PSMA) PET is 
another powerful emerging tool used for primary stag-
ing, recurrence, and advanced disease in prostate cancer. 
68Ga-PSMA-11 and 18F-PSMA-1007 PET/CT are widely 
used in these clinical settings. In head-to-head analy-
ses, 18F-PSMA-1007 showed higher sensitivity (100% vs 
85.7%), accuracy (94.5% vs 93.3%), and lesion  SUVmax 
but lower specificity (90.9% vs 98.2%) compared to 68Ga-
PSMA-11 for detecting dominant lesions. The posi-
tive predictive value was also lower for 18F-PSMA-1007 
(87.5% vs 96.8%), but it had a higher negative predic-
tive value (100% vs 91.5%). Both tracers were effective 
in detecting the dominant lesions, but 18F-PSMA-1007 
showed superior performance in identifying focal lesions 
compared to 68Ga-PSMA-11 [31, 32]. Also, another radi-
otracer, 64Cu-DOTA-AE105, is designed to target the 
human urokinase-type plasminogen activator receptor 
(uPAR) expressed in cancer cells. It is used to improve 
prostate cancer diagnosis, diagnose aggressive cancers, 
and determine cancer aggressiveness [33–35].

In a recent phase 3 clinical trial, the effectiveness of 
89Zr-DFO-girentuximab PET/CT was assessed in 288 
patients with clinical stage T1 (< 7 cm) solid renal masses 
to differentiate ccRCC from other kidney lesions. Par-
ticipants in the study received 89Zr-DFO-girentuximab 
PET/CT and then underwent partial or radical nephrec-
tomy for pathology. The majority of patients had ccRCC 
(67%), followed by papillary RCC (15%), chromophobe 
RCC (8%), and the remaining had benign and malignant 
tumors. The sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and accu-
racy of 89Zr-DFO-girentuximab PET/CT were reported 
as 85.5%, 87%, 93%, 75%, and 86%, respectively, indicating 
promising results [36].

Numerous other PET/CT radiotracers have been used 
in oncology, and our detailed in Table  1. The radioiso-
topes that are used for PET imaging are also shown in this 
table. The shorter-lived isotopes such as 11C, 68Ga, and 
18F are ideal for labeling peptides and other small mol-
ecules, that quickly clear from circulation within minutes 
to hours. As well as, 18F has low positron energy com-
pared with the other nuclides, which provides the highest 
resolution of images obtained [37, 38]. Isotopes such as 
64Cu and 76Br have intermediate half-lives, which 64Cu 
is suitable for many types of molecules [39]. On the other 
hand, longer-lived isotopes like 89Zr and 124I are well-
suited for labeling antibodies, their fragments, and nan-
oparticles, that remain in circulation for hours to days 

to reach their targets. Additionally, 89Zr doesn’t require 
highly enriched targets, has lower production energy, and 
doesn’t cause radioactive uptake in non-targeted organs 
compared with 124I [40].

Applications for fibrosis imaging
While the utility of PET is well-established in lung can-
cer imaging, its role in clinical diagnosis of PF is less well 
defined. Despite the lack of integration into the stand-
ard treatment algorithm, fibrotic changes of the lungs 
are well visualized on FDG and may be seen prior to CT 
changes [41, 42]. Conventional imaging with high reso-
lution (HR) CT can demonstrate advanced disease, as 
characterized by lung honeycombing, reticulation and 
architectural distortion [43, 44], but early disease stages 
remain difficult to identify, especially in the context of 
isolating those who may develop more progressive and 
rapidly fatal forms of PF. Molecular imaging can con-
vey additional benefits as a potential non-invasive early 
biomarker of PF, as obtaining lung tissue carries consid-
erable risk for patients, often precluding its use for inves-
tigational purposes [45].

Several conventional radiotracers as well as novel radi-
olabeled probes that have been evaluated for the purpose 
of assessing PF. The most ubiquitous radiotracer, 18F-
FDG, has shown moderate success in assessing fibrotic 
lung disease, however with limited specificity as uptake 
cannot distinguish between inflammation, fibrosis, and 
malignant cell proliferation [41, 46–51].

In one of the earlier studies evaluating the utility of 18F-
FDG PET/CT in PF, Groves et al. assessed 36 consecutive 
patients and calculated the  SUVmax to assess maximal 
pulmonary FDG metabolism and correlated uptake to 
HRCT lung findings. Increased FDG metabolism was 
seen in all patients and pulmonary FDG uptake predicted 
the measurements of health and lung physiology. Of note, 
FDG avidity was higher when the site of maximal uptake 
corresponded to areas of reticulation or honeycombing 
on HRCT, compared to those with ground-glass patterns 
[46].

Win et al. assessed the reproducibility of 18F-FDG PET/
CT in patients with PF and demonstrated excellent short-
term reproducibility as well as excellent intra-observer 
agreement with some interobserver bias, suggesting that 
a single observer would facilitate optimal imaging follow-
up [47]. Win also investigated the potential of 18F-FDG-
PET/CT to predict mortality in PF, evaluating 113 
patients using several PET parameters including  SUVmax, 
background lung activity  (SUVmin), and target-to-back-
ground  (SUVmax/SUVmin) ratio (TBR). During a mean 
follow-up of almost two and a half years, the authors 
found that a high pulmonary TBR was independently 
associated with increased risk of mortality [47].
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Justet et  al. also evaluated the prognostic impact of 
18F-FDG PET/CT in PF by assessing both metabolic lung 
volume (MLV) and TLG in 27 patients. Increased MLV 
and TLG were independent predictors of death or dis-
ease progression during the 12-month period post scan 
completion, on both univariate and multivariate analy-
sis, suggesting that FDG lung uptake could predict pro-
gression-free survival for patients with PF [41]. Jacquelin 
et al. aimed to evaluate the ability of 18F-FDG PET/CT to 
predict therapeutic response in a cohort of 18 PF patients 
using  SUVmax, FDG uptake extent as a percentage of lung 

volume and HRCT fibrosis scores. Extent of FDG uptake 
was associated with improved pulmonary function under 
treatment, whereas  SUVmax and HRCT fibrosis scores 
were not, with the authors concluding that the quantifi-
cation of FDG uptake extent might be useful to predict 
functional improvement in the post-treatment setting 
[49].

Nobashi et  al. investigated the relationships between 
18F-FDG PET/CT parameters and clinical indicators in 
PF including the interstitial lung disease (ILD)- sex-age-
physiology (GAP) index, by comparing  SUVmean,  SUVTF 

Table 1 PET/CT radiotracers in oncology:

Radionuclide Decay Radiotracer Application FDA 
approved

Fluorine-18 T1/2 = 109.8 m
β+  = 96.7%

18F-FDG Used for diagnosis, staging, and management of various types of cancer *
18F-FLT To diagnose, stage, and assess response to therapy; differentiate tumors 

from inflammation, and report on cell proliferation [198–200]
*

18F-FMISO Tumor prognosis, predict metastasis, and evaluate hypoxia in tumors [201, 202] *
18F-FSPG Diagnosis of primary intracranial tumors and malignancies; measures  Xc

− trans-
porter activity which is overexpressed in different types of tumors [203–206]

–

18F-FBEM Used for insulinoma imaging; detection of malignant lesions with high EGFR 
activity, monitoring of metabolic activity and leukocyte recruitment [53, 207, 208]

–

18F-αvβ6-BP Diagnosis of primary and metastatic lesions including lung, liver, and brain; tar-
geting integrin αvβ6, which is overexpressed in cancer and fibrosis [209, 210]

–

18F-PSMA-1007 Used for diagnosing, monitoring recurrences, and detecting metastases particu-
larly nodal metastases in prostate cancer; prostate-specific-membrane-antigen 
(PSMA)-based radiopharmaceutical [31, 32, 211–213]

*

18F-alfatide Used for detecting breast cancer, predicting the outcome of CCRT in advanced 
NSCLC, and assessing liver fibrosis progression; a tracer which binds to αvβ3 [66, 
214, 215]

–

18F-fluciclovine Diagnosing prostate cancer, breast cancer, liver metastases, brain tumor; 
increased in tumor cells by amino acid transporters [216–219]

*

Gallium-68 T1/2 = 67.8 m
β+  = 88.9%

68Ga-PSMA-11 Diagnosis and staging of prostate cancer and occult biochemical recurrence [31, 
220, 221]

*

68Ga-FAPI Diagnosing pancreatic cancer, for detecting primary gastric cancer, post-treat-
ment recurrence and metastasis, lung cancer and fibrosis [27, 222, 223]

*

68Ga-ABY-025 For diagnosis of breast cancer and metastasis; evaluation of HER2 expression 
(224, 225)

–

Iodine-124 T1/2 = 4.2 d
β+  = 23%

124I-girentuximab Detection of Renal Cell Carcinoma [226] –

Bromine-76 T1/2 = 16.2 h
β+  = 57%

2-76Br-BAMP Detection of various tumors such as lung and brain tumors, lymphomas, 
and melanomas [227]

–

Zirconium 89 T1/2 = 3.27 d
β+  = 23%

89Zr-bevacizumab Recurrent glioblastoma, Breast cancer diagnosis and lymph node metastasis; 
VEGF-A overexpression [228, 229]

*

89Zr-DFO-girentuximab Renal cell carcinoma diagnosis, differentiation between ccRCC and non-ccRCC 
lesions; Carbonic anhydrase IX antigen which is overexpressed in ccRCC [36, 230]

–

89Zr-rituximab B Cell Lymphoma; targeting CD20 [231] –

Carbon-11 T1/2 = 20.4 m
β+  = 99.8%

11C-acetate Bladder cancer, Prostate cancer diagnosis, recurrence prognosis, and detection 
of metastasis; hepatocellular carcinoma diagnosis; an indicator used to track 
cytoplasmic lipid synthesis which increased in tumors [232–236]

–

11C-choline Detection of prostate cancer and recurrence [237, 238] *

Copper-64 T1/2 = 12.7 h
β+  = 17.5%
β− = 39%

64Cu-DOTA-AE105 Prostate cancer diagnosis, cancer invasion prognosis, a tracer for urokinase-type 
plasminogen activator receptor expression level (uPAR) [33–35]

–

64Cu-PSMA Prostate cancer diagnosis [239] –
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(defined as corrected  SUVmean by using tissue fraction 
(TF) and mean computed tomography density on PET/
CT), and  CTmean in 90 ILD patients versus 15 controls. 
The authors found that PET parameters were signifi-
cantly higher in ILD patients than in healthy controls 
and that a higher  SUVmean indicated a poorer prognosis, 
especially in patients with moderate risk based on ILD-
GAP index, providing independent prognostic informa-
tion in patients with PF [50]. Subsequently, Bondue et al. 
determined whether quantitative assessment of FDG 
uptake in the lung post initiation of anti-fibrotic treat-
ments pirfenidone or nintedanib could be used as a bio-
marker to evaluate prognostic significance in a murine 
model of pulmonary fibrosis. In PF patients, no signifi-
cant decrease in FDG lung uptake before and 3 months 
after treatment or at one year of follow up was observed, 
leading the authors to conclude that there was no util-
ity in clinical practice to assess an early response of PF 
patients to treatment [51].

More recently, Fraioli et al. investigated the combined 
performance of quantitative CT (qCT) following a com-
puter algorithm analysis to assess survival in 113 PF 
patients who consecutively underwent 18F-FDG PET/
CT imaging and HRCT imaging at a single institution 
with the authors concluding that both 18F-FDG PET 
and qCT were independent and synergistic indicators in 
predicting mortality [52]. Bondue et al. also investigated 
the contribution of inflammation relative to fibrosis by 
evaluating the pulmonary uptake of FDG on PET/CT in 
bleomycin-induced PF in murine models. To assess the 
contribution of inflammatory uptake, the authors com-
paratively evaluated the signal contribution as a result 
of leukocyte recruitment in the lung parenchyma using 
concomitant 18F-4-fluorobenzamido-N-ethylamino-
maleimide (18F-FBEM)-labeled leukocytes. The relation-
ship between different doses of bleomycin, changes in 
lung collagen content, and level of 18F-FDG uptake were 
analyzed, with the authors noting that lung mean stand-
ardized uptake values correlated with bleomycin doses, 
histologic score of fibrosis, lung hydroxyproline content, 
and weight loss. The authors concluded that both 18F-
FDG- and 18F-FBEM-labeled leukocyte PET/CT enabled 
monitoring of metabolic activity and leukocyte recruit-
ment in a mouse model of PF [53, 54].

Another target in both cancer and fibrosis is the 
chemokine receptor 2 (CCR2). Monocyte and intersti-
tial macrophages that express CCR2 are active in pul-
monary fibrosis and can be non-invasively tracked with 
PET using 64Cu-DOTA-ECL1i, as has been shown in 
mice with bleomycin- or radiation-induced PF as well as 
in human subjects with PF. Mouse models established 
that increased 64Cu-DOTA-ECL1i PET uptake in the 
lung correlated with CCR2 + cell infiltration associated 

with fibrosis and in therapeutic models, while medication 
related inhibition of fibrosis reduced CCR2 + macrophage 
accumulation and uptake of the radiotracer in mouse 
lungs. Human imaging revealed a relative paucity of pul-
monary uptake in healthy volunteers, whereas patients 
with PF demonstrated radiotracer uptake in areas of 
fibrosis. Brody et  al. concluded that these findings sup-
ported the potential role for imaging CCR2 + cells in PF 
to potentially provide a molecular target for both therapy 
and treatment-response monitoring [55].

Increased deposition of ECM fibers such as collagen, 
fibronectin, and fibrinogen occur at the onset and during 
the progression of pulmonary fibrosis and so the target-
ing of these ECM components using novel radiotracers 
represent a unique opportunity to identify early disease 
development. Platelet glycoprotein VI (GPVI) fusion 
protein plays a critical part in platelet aggregation dur-
ing wound repair due to its high affinity after dimeriza-
tion for ECM fibers [56]. GPVI-Fc, an antibody complex 
protein with an affinity for GPVI dimers can be imaged 
following radiolabeling with 64Cu-NOTA (64Cu-GPVI-
Fc) [57]. Isser et  al. used this 64Cu-GPVI-Fc radiotracer 
targeting ECM fibers on PET to observe longitudinal 
remodeling in a bleomycin-induced PF mouse model 
noninvasively to study the potential of the approach 
in comparison to 18F-FDG PET imaging of PF. Of note, 
64Cu-GPVI-Fc showed significant uptake in fibrotic 
lungs, matching histology results and in comparison, to 
18F-FDG PET uptake, 64Cu-GPVI-Fc avidity was associ-
ated with tissue fibrosis only, and not inflammation [58].

Activated fibroblasts play a pivotal role in the patho-
genesis of pulmonary fibrosis by contributing to fibrosis 
and inflammation following expression of FAP, which 
is selectively expressed on activated stromal fibroblasts 
during tissue remodeling and is associated with PF [59, 
60]. In addition to the elevated uptake of FAPI tracers 
in various malignant entities, it can also occur in benign 
processes, including fibrotic lesions [61, 62].

Rosenkrans et  al. determined the utility of FAPI for 
PET imaging in a mouse model of PF. Following induc-
tion of PF via administration of bleomycin, 68Ga-FAPI-46 
PET/CT imaging was at 7 days and 14 days following 
disease induction. 68Ga-FAPI-46 uptake quantification 
was recorded, as well as lung CT density in Hounsfield 
units and histologic examination of PF. While CT only 
detected differences in the fibrotic response at 14 days 
post-bleomycin administration, 68Ga-FAPI-46 pulmo-
nary uptake was significantly higher in the bleomycin 
group than in control subjects at both 7 days and 14 days. 
These findings were consistent with an increase in both 
fibrinogenesis and FAP expression as seen in histology. 
The authors concluded that the ability of FAPI PET to 
detect both the presence and activity of lung fibrogenesis, 
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made it a promising tool for assessing early disease activ-
ity in lung fibrosis patients [63].

In other studies, Pirasteh et al. found a strong correla-
tion between 68Ga-FAPI-46 uptake in the liver across F2 
and F3/F4 fibrosis stages in a preclinical swine model. 
However, they did not observe a significant difference 
in the uptake of the baseline liver and the liver classi-
fied as F0/F1 [64]. Also, in a preclinical study, Varasteh 
et al. induced myocardial infarction by coronary ligation 
in a murine model. They used 68Ga-FAPI-04 PET imag-
ing to demonstrate fibroblast activation and observed 
significant radiotracer accumulation in the infarct zone, 
particularly in the border of the ischemic area. The 
maximum accumulation occurred 6 days after MI and 
gradually receded to baseline by 2 weeks. Subsequently, 
autoradiography and hematoxylin–eosin staining con-
firmed that the PET signals correlated with FAP-positive 
myofibroblasts in the infarct border zones [65].

In another study conducted by Shao et  al. focused 
on investigating the expression and function of inte-
grin αvβ3 on activated hepatic stellate cells (HSCs) in 
the injured liver. Integrin αvβ3, known as a vitronectin 
receptor, is responsible for triggering the fibrogenic acti-
vation of HSCs. The expression of integrin αvβ3 protein 
increases as fibrosis progresses in human tissue, and it 
is predominantly located on activated HSCs. The study 
demonstrated that 18F-alfatide PET imaging exhibits high 
affinity and specificity towards integrin αvβ3 in both ani-
mal liver fibrotic models and human fibrotic liver tissue 
[66].

Cross‑application of PET imaging between cancer 
and fibrosis
Based on Rosenkrans et  al. pre-clinical models [63], 
it was hypothesized that 68Ga-FAPI PET/CT may be 
a useful imaging and diagnostic tool for PF in humans, 
not just to assess cancer. Röhrich et  al. aimed to evalu-
ate the imaging properties of 68Ga-FAPI PET/CT in PF 
and to confirm FAP expression in fibrotic lesions via 
biopsy and immunohistochemistry of human samples 
and in lung sections of genetically engineered mice with 
an idiopathic pulmonary fibrosis (IPF)-like lung disease. 
Röhrich et  al. evaluated 15 patients with pulmonary 
fibrosis and suspected lung cancer using 68Ga-FAPI-46 
PET/CT. The authors recorded the  SUVmax and  SUVmean 
of fibrotic lesions and lung neoplasms in addition to 
CT-density and TBR. PET imaging was correlated with 
CT-based fibrosis scores. Fibrotic lesions as well as pul-
monary neoplasms showed markedly elevated 68Ga-FAPI 
uptake and high TBR. 68Ga-FAPI uptake showed a posi-
tive correlation with the CT-based fibrosis index. The 
authors concluded that 68Ga-FAPI PET/CT imaging is a 
promising new imaging modality for both PF and lung 

cancers [67]. In another study conducted by Bergmann 
et al., 21 patients with systemic sclerosis-associated ILD 
underwent 68Ga-FAPI PET/CT, and the results revealed 
that FAP imaging can indicate fibrotic activity. The study 
found that the intensity of FAPi-uptake is associated 
with pulmonary disease progression, regardless of the 
extent of involvement in CT scans and lung function at 
the beginning. Additionally, they observed a reduction in 
68Ga-FAPI uptake after antifibrotic treatment [68].

Both 18F-FDG and 68Ga-FAPI-46 have been used for 
the assessment of cancer and PF in isolation, with fur-
ther instances where their use has shown the potential to 
impact management in patients with PF and co-existing 
lung cancer, especially in the context of acute exacerba-
tions (AE) of PF following treatment. For example, Fuku-
naga et al. investigated whether 18F-FDG accumulation in 
normal or less-affected lungs with PF increased in 36 lung 
cancer patients with postoperative AE of PF, compared to 
50 patients without PF on pre-operative PET/CT evalua-
tion. 18F-FDG-PET/CT demonstrated increased  SUVmean 
as well as elevated  SUVTF in normal or less-affected lungs 
for lung cancer patients with AE potentially reflecting 
regional fibrosis and inflammatory change [69]. Yamam-
ichi et  al. aimed to investigate whether the  SUVmax was 
useful in assessing the postoperative risk of AE and 
severe respiratory adverse events in patients with lung 
cancer after surgical resection, including a subset of 120 
patients with PF.  SUVmax of the main tumor and that of 
the non-malignant lung areas were independently associ-
ated with both AE and severe respiratory adverse events 
on multivariable analysis, in both all patients and in the 
120 patients with PF [70].

Akaike et al. examined whether 18F-FDG PET/CT per-
formed before chemotherapy could predict the onset of 
an AE of PF in patients with lung cancer and PF treated 
with chemotherapy. The authors developed a predic-
tion model for AE using logistic regression analyses for 
the  SUVmax, with univariable analyses showed that the 
 SUVmax of contralateral interstitial lesions might be of 
potential use for predicting the onset of AE in patients 
with lung cancer and PF in the post treatment setting 
[71]. The evaluation of two patients with dyspnea using 
FDG PET/CT has been shown in Figs. 2, 3.

Ultrasound with second generation harmonic 
imaging
Medical ultrasound (US) has many advantages over 
other types of imaging, including that it is inexpensive 
and quick to perform; it can often be done at the bedside 
with portable machines, with the newest US probes able 
to connect directly to smartphones. Further, US does not 
use ionizing radiation and is noninvasive. US also has the 
advantage that it can be used for therapeutic purposes, 
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delivering energy to break down nephroliths and throm-
bosis, accelerate drug absorption through skin, and even 
ablate tumors [72].

Utilizing different modes of ultrasound and differ-
ent frequencies can provide a plethora of information 
and imaging to contribute to patients diagnosis and 
treatment planning [73]. Second Generation Harmonic 
Imaging (SGHI) is an offshoot of ultrasound imaging 

which allows for improved visualization and resolution 
of microscopic structures without the need for agents 
used in fluorescence microscopy [74]. This technique 
has been used to study the tumor microenvironment 
of breast, ovarian, and skin cancers [74]. By better vis-
ualizing and understanding the protein ultrastructure 
surrounding cancers, biopsy and delivery of chemo- or 
immunotherapy agents can be optimized.

Fig. 2 69-year-old man with worsening dyspnea. Maximum intensity projection (MIP), axial CT image and fused axial FDG PET/CT demonstrating 
heterogeneous FDG uptake corresponding to reticular and linear opacities and areas of honeycombing corresponding to pulmonary fibrosis 
with focal intense left perihilar FDG uptake corresponding to mass on CT, subsequently biopsied and consistent with adenocarcinoma. Multiple 
additional FDG avid vertebral lesions were consistent with metastases and CT occult on prior conventional imaging. Low level FDG uptake 
in the periphery correlates with areas of fibrosis on CT

Fig. 3 72-year-old man with pulmonary fibrosis and dyspnea on exertion. Axial CT image and fused axial FDG PET/CT demonstrating areas 
of bilateral heterogeneous FDG uptake, corresponding to honeycombing and reticular opacities
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Applications for cancer imaging
Thoracic US can provide a quick and low-cost means 
of examining pulmonary structures, though it is not as 
widely used as abdominal US because normally aerated 
lung parenchyma is not visualized well on ultrasound. 
While US might not surpass CT as the gold stand-
ard for detection of lung cancer, US can still be a useful 
supplement.

US can reliably visualize the pleurae, lymph nodes, 
diaphragm, and anterosuperior mediastinum, making it 
superior to CT for detecting tumor invasion of the pleu-
rae and thoracic wall, including metastasis to ribs and 
chest wall, and assessing adjacent lymphadenopathy [75, 
76]. US guidance is frequently used for percutaneous 
biopsy of peripheral lung lesions, with equal reliability 
and less risk of post-procedural pneumothorax than CT 
[77].

To enhance the ability of ultrasound to visualize aber-
rant tissue architecture, polarimetric-SGHI has been 
used to analyze collagen ultrastructure in multiple malig-
nancies, including lung cancers. Analyses of non-small 
cell lung cancer under SHG have produced an attenuated 
SHG signal, indicating disorganization of collagen ultras-
tructure and potential tumor extracellular matrix; hence, 
large-area scans of the lung can be conducted to allow for 
detection and determination of tumors in SHG micros-
copy [78, 79]. Detection of higher deposition and lower 
organization of collagen by SGHI has been associated 
with advanced tumor progression and metastasis [80]. 
Castor et  al. conducted a study using SHG microscopy 
to compare the collagen fibers in normal tissue, vulvar 
intraepithelial neoplasia, and vulvar squamous cell car-
cinoma. The study revealed that organization, uniform-
ity and quantity, of collagen fibers were reduced in both 
preneoplastic lesions and squamous carcinoma as com-
pared to normal tissue, Though, the difference between 
preneoplastic lesions and squamous carcinoma was 
not notable. On the other hand, the presence of distant 
metastasis correlated with increased collagen uniform-
ity and quantity compared to VSCC without metastasis 
[81]. SH microscopy can identify three tumor-associated 
collagen signatures (TACS) at different stages of tumor 
progression. TACS-1 represents dense collagen with no 
particular arrangement surrounding early-stage tumors. 
As the tumor progresses, TACS-2 appears, with collagen 
fibers wrapping around tumors parallel to the tumor-
stromal barrier. TACS-3 emerges in later stages, with 
fibers placed perpendicularly to the stromal barrier and 
aligning with cell invasion direction [82].

Applications for fibrosis imaging
Ultrasound is a useful tool for diagnosing IPF, owing 
to its capacity for visualizing pleural effusion or lung 

consolidation [83]. US physics also allow for the detec-
tion of altered parenchyma density from loss alveolar air 
or increased interstitial fluids [83]. However, Yan et  al. 
found in 2021 that US is not as reliable a screening tool 
for lung fibrosis as CT; they found that lung US had 93% 
sensitivity and 73% specificity, whereas chest CT had 
100% sensitivity and 82% specificity [84]. Meta-analyses 
suggest that lung US may be more sensitive than radio-
graphs for detecting pleural effusion, pneumonia, and 
pneumothorax [85]. Thus, US could serve as a potential 
screening tool in patients with suspected interstitial lung 
disease or its complications, owing to its non-invasive 
and properties and lack of ionizing radiation.

Because lung fibrosis occurs in part because of sig-
nificant changes to the ECM collagen, SGHI is poised to 
offer unique insight by molecular structural changes in 
the matrix. It can image collagens I, III, and V, the key 
molecular players in usual interstitial pneumonia (UIP) 
and cryptogenic organizing pneumonia (COP), and 
analyze their macroscopic properties (fiber density and 
arrangement), and microscopic properties (diameter and 
density of collagen fibrils) [86, 87]. There are discrete dif-
ferences between collagen arrangement in UIP and COP. 
SGHI has found both have elevated collagen I protein, 
with collagen I being significantly higher in UIP and col-
lagen III more prominent in COP [88]. Future studies of 
the alterations to the collagen ultrastructure may provide 
better insight into differences of prognosis and therapy in 
lung fibrotic diseases.

In another study, Matsuzaki et  al. performed a study 
to investigate fibrosis caused by alcoholic liver injury 
using SHG microscopy in human postmortem tissue. The 
study revealed that SHG microscopy effectively identified 
liver fibrosis and demonstrated a significant association 
between the SHG images and the fibrosis stage as deter-
mined by Sirius Red staining [89].

Cross‑application of US and SGHI between cancer 
and fibrosis
There is substantial value for applying the principles of 
US and SGHI of lung cancer to lung fibrosis, and vice-
versa. Persistent pulmonary fibrosis increases the risk of 
developing lung cancer, especially squamous cell carci-
noma; treating lung cancer in the setting of lung fibrosis 
also raises the risk of exacerbating the fibrosis [90]. Addi-
tionally, lung cancer stage is affected by the degree of 
fibrosis progression, likely due to them sharing signaling 
pathways and cellular microenvironments [91].

US provides good visualization of the chest wall and 
pleurae and can be convenient for monitoring the poten-
tial carcinogenesis in patients with lung fibrosis. Should 
cancerous lesions develop in fibrosis patients, US can also 
be used to guide management of thoracic malignancy 
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symptoms such as pleural effusion and thoracentesis. 
Similarly, SHG microscopy can be used to scan regions 
of abnormal, fibrotic lung tissue for collagen alterations 
that may signal the genesis of primary lung cancer, or 
the seeding of metastases permitted by lung fibrosis [92]. 
Table  2 shows further advantages and limitations of US 
and SGHI.

The TME is recognized as an influential, yet poorly-
understood factor in cancer formation and development; 
it influences angiogenesis, metastasis, and the degree of 
penetration of therapeutic agents used to treat tumors. 
The principles of SGHI can be used to better characterize 
the ultrastructure of the TME, including the arrangement 
and density of collagen fibers, and how they differ from 
both fibrotic and healthy parenchyma. Further studies 
might characterize the TME’s role in the transformation 
of fibrotic tissue to malignancies, in organs and cancers 
beyond the lungs, including the liver, kidneys, and bone 
marrow. Technology is also advancing at a rapid pace; 
while SGHI instrumentation is commercially available in 
microscope kits, progress is being made on micro-endo-
scopic devices incorporating SGHI in the hopes of apply-
ing it to laparoscopy and colonoscopy [97].

MRI imaging (Elastography)
In recent decades, MRI has become increasingly impor-
tant in cancer diagnosis due to its superior soft tis-
sue contrast and its ability to provide multi-directional, 
multi-angle, and multi-parameter imaging. The develop-
ment of fast-sequence MRI has made it possible to obtain 
high-resolution images for lesion localization and quali-
tative diagnosis without ionizing radiation. This versatile 
imaging modality also plays a crucial role in diagnosing 
and monitoring the progression of fibrosis in multiple 
organs. Techniques developed for diagnosing fibrosis 
within organs can also be used to identify tumors.

Applications for fibrosis imaging
Magnetic Resonance (MR) strain imaging is a technique 
in echocardiography for measuring the deformation of 
the heart muscle during the cardiac cycle [98]. It helps 
identify weakened areas and diastolic dysfunction caused 

by myocardial ischemia or infarction. It also detects 
regional heterogeneity in systolic function, as can be seen 
in bundle branch block [99, 100]. By using strain rate 
imaging, simultaneous function of different heart regions 
can be measured and displayed which can indicate the 
presence and severity of fibrosis.

Cardiac late gadolinium contrast-enhanced magnetic 
resonance imaging (cMRI LGE), also known as Car-
diac LGE CMR, is a specialized method of imaging the 
heart that employs a gadolinium-based contrast agent 
during MRI to identify areas of abnormal myocardium 
which retain contrast to a greater degree than normal 
tissue [101]. For assessing and measuring myocardial 
replacement fibrosis and scar tissue, late gadolinium con-
trast-enhanced CMR stands as the widely accepted and 
unrivaled benchmark [102].

The utilization of collagen-specific contrast agents in 
molecular magnetic resonance imaging (mMRI) repre-
sents an innovative experimental approach for evaluating 
myocardial fibrosis. These recently developed contrast 
agents have demonstrated enhanced visualization capa-
bilities for scar identification and detection of perfusion 
defects in animal models of myocardial infarction [103, 
104]. One of these promising contrast agents is EP-3600, 
which is a hybrid compound consisting of a small peptide 
and gadolinium. EP-3600 exhibits the ability to selectively 
bind to the myocardium, facilitating prolonged, high-
contrast, and high-spatial-resolution visualization of 
perfusion defects in the myocardium [104]. EP-3600 dif-
fuses rapidly into the healthy myocardium and produces 
a bright MRI signal. In areas with poor blood flow, such 
as a perfusion defect, diffusion takes longer resulting in 
a darker MRI signal [104]. EP-3600 achieves reversible 
binding to myocardial collagen, enabling the differentia-
tion of stress-induced variations in perfusion. This dif-
ferentiation is accomplished through the myocardium’s 
distinct signal enhancement patterns on subsequent MRI 
scans, attributable to the differential T1 shortening effect 
induced by EP-3600 [105].

Perfusion MRI also known as perfusion-weighted 
imaging, involves utilizing T2- or T2*-weighted MR 
images sequence to conduct perfusion scans [106]. The 

Table 2 Advantages and limitations of US and SGHI

Ultrasound Second generation harmonic imaging

Advantages Noninvasive Can be easily integrated with other microscopies (fluorescence, H/E staining)

Nonionizing radiation Does not require contrast agents for in vivo imaging

Rapid and cost-effective Excellent resolution of protein ultrastructures

Limitations Limited visualization of deep lung parenchyma Microscopy is currently limited to collagen, myosin, and tubulin

Requires skilled technician Limited field of view and penetration into thicker tissue samples

Decreased sensitivity versus CT [93] [94–96]



Page 11 of 23Baniasadi et al. Journal of Translational Medicine          (2024) 22:567  

resulting data is subsequently processed to generate 
perfusion maps that provide information about various 
parameters, including blood volume (BV), blood flow 
(BF), mean transit time (MTT), and time to peak (TTP). 
These maps offer valuable insights into the perfusion 
characteristics of tissues and help in assessing blood flow 
patterns and potential abnormalities, as can occur with a 
tumor classification and fibrotic tissue [107, 108].

Ultrashort echo time (UTE)-MRI is used to image tis-
sues with very short T2 relaxation times, such as lungs, 
to enhance tissue signals [109]. This is valuable tool for 
detecting small inflammatory and fibrotic lesions in the 
lungs, which are often missed by conventional proton 
MRI due to signal loss caused by magnetic susceptibil-
ity gradients at the air-tissue interface [110]. UTE-MRI 
offers the advantage of shorter acquisition times com-
pared to conventional proton MRI [111, 112]. UTE-MRI 
can also be used for tumor diagnosis due to the specific 
cellular components that cause a reduction in their T2 
relaxation time [113].

Respiratory-gated MRI and self-gated MRI are spe-
cialized techniques employed to address the challenges 
posed by respiratory motion during image acquisition. 
Both methods are aimed at enhancing image quality and 
minimizing motion artifacts in areas of the body affected 
by respiratory motion, such as the lungs and abdomen 
[114]. Respiratory-gated MRI involves synchronizing 
the timing of image capture with the patient’s respira-
tory cycle. By controlling breathing during the recovery 
period after data acquisition, it effectively reduces respir-
atory motion artifacts [115]. Self-gated MRI, also known 
as motion-corrected or motion-resolved MRI, does not 
rely on external monitoring systems to track respiratory 
motion. Instead, it corrects motion artifacts based on 
variations in MRI signal intensity [116]. Both respiratory-
gated and self-gated MRI techniques have demonstrated 
their efficacy in providing more accurate visualization 
and quantification of lung fibrosis progression in mice 
treated with bleomycin [117]. AcidoCEST MRI, is a tech-
nique that uses a contrast agent to visualize pH changes 
in tissue, has been adapted for respiratory-gated imaging 
to measure extracellular pH in lung lesions of IPF [118].

Magnetic resonance elastography (MRE) is an inno-
vative and promising MR imaging technique that offers 
a noninvasive means of quantifying tissue stiffness in 
various organs, including the liver. It achieves this by 
analyzing the propagation of mechanical waves through 
the tissue [119, 120]. MRE plays a pivotal role in identi-
fying the progressive stiffening of the liver and pancreas 
that can be attributed to inflammation, fibrosis, and 
cancer [121]. Wang et  al. investigated pancreatic paren-
chymal stiffness on MRE and found a positive correla-
tion between the severity of chronic pancreatitis and an 

increase in stiffness. The results indicated that the pan-
creas stiffness in healthy people had an average of − 1.21 
kPa. Compared to healthy individuals, mean stiffness 
values were higher in patients with mild and moder-
ate/severe pancreatitis with 1.5 and 1.9 kPa respectively 
[122]. In another study, Higuchi et al. found a direct cor-
relation between HCC risk and liver stiffness increase 
measured by MRE in 2373 individuals with chronic liver 
disease [123].

The most promising functional MRI approaches for 
assessing kidney fibrosis are diffusion weighted (DW)-
MRI and blood oxygen level-dependent (BOLD)-MRI 
[124]. These methods eliminate the need for gadolin-
ium-based contrast agents, which have been linked 
to the development of nephrogenic systemic fibrosis. 
BOLD-MRI is used to assess hypoxia, an important fac-
tor in renal fibrosis and chronic kidney disease (CKD) 
progression. In a CKD patient with glomerulonephritis, 
T2*-based BOLD-MRI revealed significant reductions 
in oxygenated hemoglobin levels in the renal cortex and 
medulla, which correlated with the estimated glomerular 
filtration rate, a measure of overall kidney function [17]. 
Also, in a rabbit model of unilateral ureteral obstruction 
(UUO), Woo et al. observed a strong correlation between 
T2* and the degree of renal fibrosis [125].

Application of MRI in cancer
Spin echo MRI, is a pulse sequence extensively used in 
MRI to generate high-quality images with excellent tissue 
contrast. It represents one of the earliest and most widely 
employed MRI techniques. When comparing lung fibro-
sis with lung cancer, studies have revealed that spin echo 
MRI, particularly T1-weighted spin echo MRI, exhibits 
higher apparent diffusion coefficient (ADC) values and 
more hypointense appearances in patients with progres-
sive massive fibrosis compared to those with lung cancer 
[126].

Diffusion weighted imaging (DWI) and ADC val-
ues derived from ADC maps have proven effective in 
diagnosing lung cancers, as cancerous lesions typically 
impede diffusion due to hypercellularity [127]. Also, 
these values play a crucial role in distinguishing between 
benign and malignant lung lesions, correlating with the 
cancer grade, and monitoring tumor progression [128, 
129].

Dias et  al. investigated the diagnostic performance of 
DW-MRI compared to 18F-FDG PET/CT on 4463 lesions 
for differentiation of malignant and benign pulmonary 
lesions. DW-MRI had better pooled sensitivity and 
specificity with 83%, 91% compared to 18F-FDG PET/CT 
with sensitivity and specificity of 78% and 81% respec-
tively [130]. In another study reported by Ogihara et al. 
lung cancer exhibited a higher signal intensity compared 
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to progressive massive fibrosis lesions, particularly on 
T2-weighted imaging [131].

Another technique to improve diagnosis of liver lesions 
is the use of gadolinium-ethoxybenzyl-diethylenetri-
amine-pentaacetic acid (Gd-EOB-DTPA) is a specific 
MRI contrast agent of liver and bile that is formed by 
adding fat-soluble ethoxybenzyl (EOB) [132]. Gd-EOB-
DTPA shortens T1 relaxation time in normal liver cells 
causing hyperintensity on T1WI; on the other hand, 
HCC cells result in relative hypointensity [133]. It can 
evaluate blood supply and liver cell function of HCC 
lesions through dynamic enhanced scanning and signal 
changes in the hepatobiliary phase that can be helpful in 
HCC diagnosis. Evaluating 570 patients in 10 studies, Wu 
et  al. showed that Gd-EOB-DTPA-enhanced MRI had 
a sensitivity of 0.95 and specificity of 0.89 for detecting 
liver cancer under 2.0  cm in patients with chronic liver 
disease [134].

Cross‑application of MRI techniques between cancer 
and fibrosis
Techniques developed to visualize cancer can be applied 
to visualize fibrosis, and vice versa. Shin et  al. utilized 
DW-MRI to differentiate between locally recurrent 
tumors and postsurgical fibrosis after pancreatic ductal 
adenocarcinoma resection. In this study, DW-MRI was 
used to evaluate 66 patients who had pancreatic ductal 
adenocarcinoma resection and postoperative CT show-
ing a soft-tissue lesion. They found higher accuracy and 
sensitivity for diagnosing locally recurrent tumors in 
DW-MRI compared to conventional MRI differentiation 
[135]. In another study, Wang et al. compared DW-MRI 
with Dynamic Contrast Enhanced MRI to differentiate 
recurrence or tumor residue from postoperative fibrosis 
in 11 bladder carcinoma patients. The study found that 
DW-MRI demonstrated higher reliable diagnostic effi-
ciency, with 100% sensitivity, 81.8% specificity, 92.6% 
accuracy, and a positive predictive value (PPV) of 88.9% 
[136].

Radiomics
Radiomics has been proven to be helpful in early detec-
tion and screening of different cancers [137], including 
lung cancer [138], pancreatic cancer [139], liver cancer 
[140], breast cancer [141], and other organ cancers. For 
common cancers such as breast cancer, radiomics can 
be valuable in risk prediction, even in screening imag-
ing [142]. After diagnosis, radiomics can be helpful in the 
assessment of tumor grade [143, 144], nodal involvement 
[145, 146], and distant metastasis [147]. Cancer survival 
outcomes and treatment responses are also predict-
able using radiomics [148–150]. Radiomics can also pre-
dict metastasis or cancer recurrence by identification of 

specific textural features of cancer stem cells, which are 
thought to play a critical role in cancer recurrence and 
metastasis [151].

Applications for cancer imaging
Radiomics can be used at various stages of the screening 
and diagnosis process. Torres et al. developed a radiomic 
method for lung cancer screening. They studied chest 
CT of 60 patients with a single pulmonary nodule (SPN) 
sized 8–30  mm and a non-small cell lung carcinoma 
diagnosis. To identify features correlated with malig-
nancy, they defined a region of interest (ROI) and Otsu 
threshold using the segmentation method, extracted 
radiomics features such as shape and textural features, 
and used PyRadiomics to identify the features signifi-
cantly correlated to malignancy evaluated by T-test. They 
then entered chosen features as an input of feedforward 
neural network. Sensitivity, specificity, and slice diagnos-
tic index were evaluated for each model, and the model 
with the highest sensitivity, specificity, and slice diagnos-
tic index were chosen. For an independent set of patients, 
the best model had 100% sensitivity, 83% specificity, and 
area under the curve (AUC) of 0.94 for malignancy detec-
tion [152].

La Forgia et al. developed a radiomic approach to pre-
dict the histological outcome of breast cancer using con-
trast-enhanced breast cancer mammography (CESM). 
They used the CESM image features and molecu-
lar parameters of 68 breast lesions extracted from 52 
patients. Ultrasound-guided biopsy sampling was per-
formed for lesions to assess the expression of estrogen 
receptor (ER), progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2). They seg-
mented the tumors, extracted radiomic features, and 
evaluated the statistical correlation between each radi-
omic feature and histological outcome (e.g., ER, PR, 
HER2). This study revealed that breast tumor histological 
outcome and molecular subtypes can be differentiated 
using features extracted from CESM [153].

Given that chronic fibrosis might lead to cancer, espe-
cially in the lung and liver [3, 154], identifying fibrotic 
texture can indicate a precancerous lesion. Fibrotic tissue 
might be detected as a texture with increased heteroge-
neity and reduced correlation with neighboring pixels 
[155, 156]. These features can be recognized by radiomics 
developed for texture analysis [157, 158]. In addition to 
detection, radiomics is practical in fibrosis staging [159], 
monitoring of disease progression, and prognosis predic-
tion [160].

Applications for fibrosis imaging
Studies have evaluated the performance of radiomic 
assessment of fibrosis. Park et al. developed and verified 
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a radiomic-based method for fibrosis staging using MRI. 
This study included 436 patients with pathology-proven 
liver fibrosis referred for gadoxetic acid-enhanced hepa-
tobiliary phase imaging. Serum fibrosis tests were also 
done for patients to assess the aspartate transaminase–
to-platelet ratio index (APRI) and the fibrosis-4 index. 
These non-invasive diagnostic tests are potential alter-
natives in liver biopsy for diagnosing and managing liver 
fibrosis and cirrhosis. First, the liver and spleen were 
manually segmented by ROI drawing. Then, histogram 
and textural features were extracted from ROIs, and 
finally significantly relevant features were chosen for 
modeling using logistic regression with elastic net regu-
larization. The final model in this study was a binary clas-
sification model for differentiating F0–F2 and F3–F4. The 
diagnostic performance of the model for fibrosis staging 
in clinically significant fibrosis, advanced fibrosis, and 
cirrhosis was assessed, revealing that its sensitivity was 
between 80.3 and 87, specificity was 73.8–84.5, and accu-
racy was 80.9–82.1 [161].

Refaee et al. developed a radiomic-based, DL approach 
to differentiate IPF from non-IPF disease using HRCT 
of 474 patients. A team of specialists confirmed each 
patient’s diagnosis, and a biopsy was performed for ILD 
inconsistent with IPF. An automated whole lung seg-
mentation was performed followed by radiomic feature 
extraction, then significantly relevant features were used 
for radiomic modeling using a random forest classifier. 
DL was also performed. The accuracy of the radiomic 
model (76.2 ± 6.8%), DL model (77.9 ± 4.6%), and ensem-
ble radiomic-DL model (85.2 ± 2.7%) were assessed [162].

Cross‑application of radiomics between cancer and fibrosis
Fibrosis is a hallmark of cancer [1, 154]; both affect tis-
sue architecture, and they differ in the tissue texture is 
affected. Therefore, the assessment of textural radiomic 
features in both can be helpful in diagnosis of each and 
differentiation between the two. Radiomic machine 
learning (ML) algorithms for fibrosis texture analysis 
can also be applied for cancer analysis, highlighting the 
potential for cross-disease application of radiomics tech-
niques. Liang et al. aimed to evaluate the ability of lung 
CT texture analysis to predict lung cancer risk stratifica-
tion in a cohort of 116 IPF patients. The study included 
a training cohort of 92 patients with both cancerous and 
non-cancerous conditions and a validation cohort of 24 
patients with the same conditions. The selected radiom-
ics features were energy and kurtosis, which respectively 
measure the intensity of voxel values in the image and 
the degree of cellularity within a tumor. The authors also 
performed risk factors such as gender, age, smoking, and 
emphysema. They found that radiomics features based on 
texture can distinguish between IPF patients who have 

developed cancer and those who have not. Combining 
radiomics features with risk factors can improve diagnos-
tic accuracy [163].

Artificial intelligence
AI technology is an example of sophisticated computa-
tional science that utilizes advanced analytical and pre-
dictive capabilities to manage challenges across various 
fields of medicine and has been applied to both the study 
of fibrosis and cancer research [164]. ML and DL are two 
fields within the larger scope of AI. ML is known as a 
subfield of AI that utilizes datasets to acquire knowledge 
on how to execute a specified task, so as to construct data 
models and algorithms that can be applied to subsequent 
cases, used in many tasks such as analysis, classifica-
tion, prediction, etc. [165–167]. DL is a subtype of ML 
that leverages neural networks to process vast amounts 
of data and make intricate decisions [168, 169]. Neural 
networks resemble the nervous system, with intercon-
nected neuron nodes forming the network that consists 
of input, hidden, and output layers [170]. As the data 
flows through this network, they are processed through 
the layers of neurons by using mathematical operations 
that enable the network to learn [171]. DL has multiple 
layers that take training data as input and perform vari-
ous tasks such as feature extraction and classification 
[172, 173]. Convolutional-neural-networks (CNNs) and 
recurrent-neural-networks (RNNs) are two popular DL 
architectures widely used for analyzing different types 
of data. CNNs include three layers: (1) convolutional for 
extraction of feature map from an image, (2) pooling for 
performing filters on features map and down-sampling 
to reduce the size of this, and (3) fully connected layers 
for classification or regression, thus frequently used for 
image analysis and classification; while RNNs due to their 
internal memory can remember their previous input and 
use this memory to process a sequence of inputs, so often 
used for text analysis, process time series, and sequential 
data for prediction of an outcome [174–176]. The rela-
tionship is shown in Fig. 4.

Recently, attention has been paid to the potential ben-
efits of AI in different fields, including prediction, early 
diagnosis, tumor staging, prognosis, treatment, and more 
[177–179] Table 3. Radiologists can utilize AI as a com-
plementary tool to aid their work. Here, we will explore 
how AI-based models can assist in detecting and manag-
ing cancer and fibrosis, both individually and as interre-
lated pathologies.

Applications for cancer imaging
One of the most exciting opportunities to employ AI to 
improve healthcare is for improved detection and diag-
nosis of precancerous and early cancerous lesions. For 
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example, early detection of pulmonary nodules is nec-
essary to reduce lung cancer-associated mortality [180, 
181]. Multiple groups have employed AI to enhance 
pulmonary nodule detection. For example, Yoo et  al. 
utilized an AI algorithm called Lunit INSIGHT CXR to 
analyze chest radiographs. The algorithm used a deep 

convolutional neural network (DCNN) based on the 
ResNet-34 architecture. The training data for the algo-
rithm included both digital and computed radiographs 
of 12,408 abnormal images that were read by experienced 
radiologists and 72,704 normal images that were col-
lected from multiple centers in South Korea. A subset of 

Fig. 4 Relationship between artificial intelligence, machine learning, and deep learning

Table 3 Summary of the use of AI in the fields of cancer and fibrosis

Interest Images Models Results

Yoo et al. [182] Pulmonary nodules Chest radiographs DCNN based on ResNet-34 For nodule diagnosis, the AI had 
better sensitivity 96% and speci-
ficity 93.2% compared to radiolo-
gists

Khan et al. [185] Pulmonary nodules CT images AdaBoost-SNMV-CNN 
with LIDC-IDRI and ELCAP

Lung nodules detection on LIDC-
IDRI had 93% sensitivity, and 92% 
specificity; on ELCAP, it achieved 
100% sensitivity with 98% 
specificity

Yang et al. [186] Focal liver lesions B-mode ultrasonography DCNN-US based on ResNet-
CNN

Had higher sensitivity and speci-
ficity in identifying FLLs com-
pared to radiologists in identify-
ing FLLs

H-T Hu et al. [187] Focal liver lesions Contrast-enhanced 
ultrasound images

CEUS based ResNet Showed 91% accuracy compared 
to radiologists for differentiation 
between benign and malignant 
FLLs

Cao SE et al. [188] Liver lesions DCE-CT images MP-CDN Showed an acceptable perfor-
mance with mean accuracy 
of 81.3% in classifying various 
types of FLLs

Hamm et al. [189] Liver lesions MR images CNN model Demonstrated 92% sensitivity, 
and 98% specificity compared 
with radiologists

Nishikiori et al. [191] Chronic fibrosing in ILDs Chest radiograph images DCNN and using DenseNet121 
architecture

Showed 0.979 AUC to identify 
chronic-fibrosing ILDs

Furukawa et al. [192] IPF HRCT images combination of deep fully-
convolutional-neural-network 
FCN-Alexnet and SVM

Had accuracy of 83.6% to identify 
IPF from ILDs

Pawar and Talbar [193] Classifying into six ILD classes HRCT images Combination of c-GAN, 
ResNet50 and SVM

Had accuracy of 89.39% to clas-
sifying ILD

Xie et al. [195] Liver fibrosis US images CNN models GoogLeNet had the better 
performance with an accuracy 
of 95.29% to identify fibrosis 
on liver
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577 participants out of 5485 were chosen for the nodule 
dataset. Within one year, 48 out of 5485 participants were 
diagnosed with cancer. Of those, 34 had visible malignant 
nodules and 14 had no visible lesions. In addition, 3 of 
the 48 diagnosed with cancer had other manifestations 
of lung cancer on their chest images. The results showed 
that the AI algorithm outperformed radiologists for the 
detection of noncalcified and malignant pulmonary 
nodules on digital radiographs. For nodule diagnosis, 
the AI in the nodule data set exhibited better sensitivity 
(96% vs 88%) and specificity (93.2% vs 82.8%) compared 
to radiologists. On the other hand, for malignant diag-
nosis in the full data set, the AI had better performance 
with 100% sensitivity vs 94.1% for radiologists, while the 
specificity was 90.9% vs 91% respectively [182]. Chen 
developed an improved 3D U-Net model by combining 
CNN, RNN, and long short-term memory (LSTM), an 
improved RNN variant with memory blocks that better 
preserve long-range dependencies and enhances previ-
ous data recall for CT images to diagnose lung nodules 
[183]. The detection rate of this model was 100% com-
pared with radiologists with detection of 99.99%. Com-
pared to improved 3D U-net model output to two-person 
readings of H&E-stained slices from 652 patients’ lung 
lesions, the system achieved an accuracy rate of 92.3% for 
predicting malignant lung nodules and 82.8% for benign 
lung nodules [184]. Khan et al. used an Adaptive Boost-
ing Self-Normalized Multiview Convolution Neural 
Network (AdaBoost-SNMV-CNN) to detect lung can-
cer nodules in CT scans. It has been trained and tested 
with LIDC-IDRI (Lung Image Database Consortium and 
Image Database Resource Initiative) and ELCAP (Early 
Lung Cancer Action Program) datasets. On LIDC-IDRI 
dataset, this model was able to detect lung nodules with 
92% accuracy, 93% sensitivity, and 92% specificity; on 
ELCAP, it achieved 99% accuracy and 100% sensitivity 
with 98% specificity compared to other models that were 
used in similar previous study [185].

Similarly, AI has been applied to the field of liver cancer 
to assist radiologists in diagnosis. Yang et  al. developed 
DCNN of US (DCNN-US) models based on ResNet-
CNN architecture that were trained using manually seg-
mented planar regions of interest from images of liver 
background or lesion. These models have been used 
in B-mode ultrasonography to identify malignant and 
benign focal liver lesions (FLLs). This study suggested 
that DCNN-US has higher sensitivity and specificity in 
identifying FLLs compared to skilled radiologists and is 
comparable to detection rates with contrast-enhanced 
CT [186]. In another study, H-T Hu et al. used contrast-
enhanced ultrasound (CEUS)-based ResNet architecture 
for differentiation between benign and malignant FLLs. 
This model shows 91% accuracy compared to radiologists 

with 82% to 86.7% accuracy. It can help radiologists to 
improve their performance [187]. An automated mul-
tiphase-convolutional-dense-network (MP-CDN) devel-
oped by Cao SE et al. was utilized to classify liver lesion 
images obtained from multiphase dynamic contrast-
enhanced CT (DCE-CT). Training and testing included 
410 (105 abscesses, 128 benign non-inflammatory FLLs, 
89 metastases, 88 hepatocellular carcinomas (HCCs) 
and 107 FLLs (and 27 abscesses, 34 benign non-inflam-
matory FLLs, 23 metastases and 23 HCCs), respectively. 
The model had an acceptable performance with mean 
accuracy of 81.3% in classifying various types of FLLs, 
including abscesses, hemangiomas, focal nodular hyper-
plasia, adenomas, HCC, and metastases. The accuracy, 
specificity, and sensitivity of differentiating each category 
were as follows: abscesses (0.925, 0.963, 0.815), benign 
non-inflammatory FLLs (0.86, 0.918, 0.735), metastases 
(0.925, 0.905, 1.0), and HCC (0.916, 0.964, 0.739) [188].

Similarly, a CNN model was developed by Hamm et al. 
for the classification of six types of liver lesions using 
imaging characteristics from multiphasic MRI. This study 
was trained with 434 and tested with 60 liver lesions of 
MR images. The types of lesions included cyst, heman-
gioma, focal nodular hyperplasia, intrahepatic cholan-
giocarcinoma, HCC, and colorectal metastasis. This 
study showed an accuracy of 92%, sensitivity of 92%, and 
specificity of 98% of this model compared with radiolo-
gists’ reads, which had an average sensitivity of 82.5% and 
specificity of 96.5% [189].

Applications for fibrosis imaging
Similar methods can be applied to study fibrosis of organs 
and improve outcomes for patients. Classically, PF is fol-
lowed radiographically. Given the importance of progres-
sive disease in patients with PF, assessment by AI may 
give a more accurate quantification of change over time 
and therefore patients’ progress than visual assessment 
[190]. Nishikiori et  al. utilized an algorithm developed 
by DCNN and using DenseNet121 architecture to iden-
tify chronic-fibrosing ILDs in chest radiograph images. 
The algorithm demonstrated a 0.979 AUC and was com-
parable with radiologists’ and pulmonologists’ reads 
[191]. Furukawa et al. used a combination of deep fully-
convolutional-neural-network FCN-Alexnet and sup-
port vector machine (SVM) to construct their algorithm 
to identify IPF from ILDs on HRCT images. The result 
was an accuracy of 83.6% [192]. In a similar study, Pawar 
and Talbar developed an algorithm that used the com-
bination of conditional generative adversarial network 
(c-GAN) for segmentation of HRCT images to remove 
the unnecessary background of images and ResNet50 
architecture and SVM for classifying result images into 
six ILD classes, including normal, fibrosis, micronodules, 
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emphysema, ground glass, and consolidation. This algo-
rithm yielded an accuracy rate of 89.39%, better than the 
previous study [193].

If liver fibrosis diagnosis occurs in the early stage, it can 
be reversible with treatment, so it is crucial to diagnose 
fibrosis in real-time [194]. Compared to other imaging 
methods, ultrasonography is more available and cost-
effective for screening and follow-up of liver fibrosis, and 
it is safe given the lack of ionizing radiation. Xie et  al. 
used GoogLeNet, AlexNet, GG-16, and VGG-19 archi-
tectures to develop a CNN model to identify fibrosis 
on liver US images. Out of these four network models, 
GoogLeNet had the best performance with an accuracy 
of 95.29% compared to the other architectures to clas-
sify and analyze liver US images, and the accuracy of the 
remaining three models was 38.95%, 67.28%, and 86.76%, 
respectively [195].

Cross‑application of artificial intelligence between cancer 
and fibrosis
As mentioned before, AI applications in medicine are 
advancing rapidly. Although AI algorithms, especially 
ML, need a large number of medical images for training 
and better performance [172], it has been demonstrated 
that they apply as a supplement tool in the field of both 
fibrosis and cancer.

For instance, an AI technology initially developed for 
assessing fibrosis has been effectively used to diagnose 
and track cancer. Gómez-Zuleta et al. used liver fibrosis 
index (LFI) measured during endoscopic ultrasonogra-
phy, which was improved by AI and validated for liver 
fibrosis diagnosis, to evaluate whether the LFI can dif-
ferentiate three types of pancreatic tissues: endoscopi-
cally normal, fatty pancreas, and patients diagnosed with 
pancreatic cancer confirmed by cytology. They found that 
the LFI was effective in differentiating these three types 
of pancreatic tissues non-invasively [196]. Vuppalanchi 
et al. evaluated 152 patients with primary sclerosing chol-
angitis (PSC), which may lead to cholangiocarcinoma 
and liver failure, for an average of three years. As a retro-
spective study,102 patients were enrolled in the training 
cohort with an additional 50 in the validation group, and 
finally, 34 patients experienced liver transplantation and 
death. In this study, they used three predictive criteria 
including MRCP + , which is a new post-processing tech-
nique based on AI, that allows quantification of magnetic 
resonance cholangiopancreatography (MRCP) data, and 
two serum markers including total bilirubin and aspar-
tate aminotransferase. They generated MRCP + metrics, 
that is ratio of the bile ducts have a diameter between 
3 and 5, with total bilirubin and aspartate aminotrans-
ferase (M + BA) composite risk score to predict survival 
in PSC patients. Patients with a high probability of liver 

transplantation and death were identified with the area 
under the receiver operator curve (AUROC) of 0.86 
by M + BA compared to the current blood-based risk 
score (Mayo risk score) [197]. However, more research 
is needed to identify if these patients would also be at a 
higher risk of malignancy based on AI models.

Conclusion
The imaging modalities described above comprise a com-
prehensive set of tools for clinicians and researchers to be 
able to diagnose and monitor the progression of diseases 
that result from enhanced fibrogenesis, including cancer. 
While clinically these imaging modalities may appear in 
opposition with each other, given that the ACR appropri-
ateness criteria ranks imaging modalities from most to 
least appropriate, giving the appearance of “better” and 
“worse” choices, the truth is that the present problem-
solving tools to advance the study of a given disease in 
different contexts with different strengths and weak-
nesses. CT can be obtained easily and nearly universally, 
often providing the first insight into an individual’s dis-
ease process. PET can enhance the imaforation obtained 
by CT by providing functional information based on the 
tracer administered. Where both of these techniques fail 
in soft tissue discrimination which may be an important 
characteristics in the diagnosis of cancer and fibrotic 
diseases, MRI is excellent in providing this information. 
Ultrasound is more easily obtained, and while resolu-
tion may be decreased compared to other modalities, the 
benefit of repeated monitoring and the used of advanced 
ultrasonographic techniques may provide enhanced 
information based on tissue characteristics, leading cli-
nicians toward one diagnosis versus another. Finally, the 
application of radiomic and artificial intelligence tech-
niques to each of these has the potential to extract more 
information from the images obtained and therefore 
provide better diagnostic clarity. In contrary to being in 
opposition, these multiple techniques represent a com-
plimentary set of tools to move toward early and accurate 
diagnosis of diseases characterized by fibrogenesis.

In order to best diagnose diseases with fibrotic patho-
physiology, these techniques have been employed and 
continue to advance the field. Here, we have reviewed 
them and how techniques originally developed for each 
can advance the diagnosis of the other. These advanced 
methods can improve the screening process, enable 
early diagnosis, increase accuracy and rate of diagnosis, 
have better staging performance, predict tumor pro-
gression and metastasis, forecast mortality and survival 
rates in fibrosis and cancer, may provide a better means 
for both therapy and treatment-response monitoring, 
and reduce complications. While fibrotic disease may 
be most easily recognized in the lungs and liver, there 
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is increasing recognition that other organs such as the 
breasts and thyroid may have similar pathophysiologic 
cross-over between cancerous and fibrotic disease states. 
As research advances in other organ sites, this relation-
ship is becoming increasingly recognized as a major pillar 
of both diseases. Despite these advances, further studies 
are needed to confirm the results in broader populations 
and implement these novel diagnostic techniques more 
universally. By understanding the commonalities of these 
conditions and developing novel imaging technologies 
for each in parallel, we can improve diagnosis and treat-
ment of cancer and fibrosis resulting in better outcomes 
for patients.
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