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Abstract 

Background  Accurately identifying the risk level of drug combinations is of great significance in investigat‑
ing the mechanisms of combination medication and adverse reactions. Most existing methods can only predict 
whether there is an interaction between two drugs, but cannot directly determine their accurate risk level.

Methods  In this study, we propose a multi-class drug combination risk prediction model named AERGCN-DDI, utilizing 
a relational graph convolutional network with a multi-head attention mechanism. Drug-drug interaction events with varying 
risk levels are modeled as a heterogeneous information graph. Attribute features of drug nodes and links are learned based 
on compound chemical structure information. Finally, the AERGCN-DDI model is proposed to predict drug combination risk 
level based on heterogenous graph neural network and multi-head attention modules.

Results  To evaluate the effectiveness of the proposed method, five-fold cross-validation and ablation study were 
conducted. Furthermore, we compared its predictive performance with baseline models and other state-of-the-art 
methods on two benchmark datasets. Empirical studies demonstrated the superior performances of AERGCN-DDI.

Conclusions  AERGCN-DDI emerges as a valuable tool for predicting the risk levels of drug combinations, thereby 
aiding in clinical medication decision-making, mitigating severe drug side effects, and enhancing patient clinical 
prognosis.
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Background
Human disease is a major obstacle to human health. 
Because of the complexity of the disease and the multi-
ple benefits of combination therapy, combination therapy 

[1] is often used in the treatment of human diseases. 
For example, multi-drug therapy can reduce the dosage 
of drugs and improve the therapeutic effect. However, it 
has been proven that when we take two different drugs 
at the same time, it may lead to drug effects that do not 
belong to either of these drugs, that is, drug-drug inter-
actions (DDIs). In recent years, prediction of DDIs has 
become an important research topic in the field of bioin-
formatics. Zwart et al. found that 28% of all hospitalized 
patients had at least one potential DDI, with a 1.4% inci-
dence of contraindicated or life-threatening interactions 
[2]. Mousavi et al. found that the most common type of 
interaction observed was type C (78.6%), and that this 
type of interaction does not cause any serious and fatal 
consequences, meanwhile, 9.2% of patients had type X 
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interactions, which can be harmful and life-threatening 
[3]. Therefore, there is a practical need to identify the 
exact risk levels of interaction between drugs. Traditional 
in  vitro and in  vivo experiments are time-consuming 
and labour-intensive [4, 5]. Before the advent of high-
throughput technologies [6, 7], one experiment can only 
detect one single kind of drug-drug interactions. With 
abundant types of medications available, it is difficult for 
researchers to one-by-one identifies DDIs through this 
way, which limits the effectiveness of DDI risk identifi-
cation. Therefore, computational methods have gained 
more attention by establishing algorithmic models to 
predict possible DDI events. These methods are roughly 
divided into three categories: matrix-based methods, 
deep learning-based methods, and graph-based methods.

Matrix-based methods typically incorporate 
background information about a drug into a matrix 
decomposition, and then similarly calculate drug-
to-drug interaction events. Zhang et  al. proposed a 
manifold regularization matrix factorization-based 
method to predict potential drug interaction events, 
named MRMF. Manifold regularization based on drug 
characteristics is introduced into matrix decomposition 
[8]. Zhang et  al. use sparse feature learning (SFL) 
method to project multiple drug features into a common 
latent (approximate) interaction matrix, and linear 
neighbourhoods regularization (LNR) based on known 
drug interaction is introduced to predict DDI events 
[9]. Yu et al. designed a novel model (DDINMF) for DDI 
prediction based on Nonnegative Matrix Factorization 
(NMF) [10]. Shi et  al. developed a unified framework 
based on three matrix factorization (TMFUF) for 
predicting DDI events using the side effects of drugs 
[11]. One issue arises which is that the merging of node 
domain characteristics cannot be achieved through 
matrix-based methods.

Over the past few years, deep learning approaches have 
yielded outstanding results and significant progress in 
many fields [12–14]. Karim et al. proposed to use CNN 
and LSTM to predict DDI events [15]. Shukla et  al. 
propose the integration of convolutional neural network, 
recurrent neural network and hybrid density networks 
to predict DDI events [16]. Chen et al. introduce a two-
layer architecture, including cross-over (based on CNN) 
and scalar-level modules that can combine internal 
and external functionality from different granularities 
[17]. Yi et  al. proposed a recurrent neural network 
model featuring multiple attention layers [18]. The deep 
learning-based methods are more used in Euclidean 
space data, which is not entirely applicable to drug 
networks.

On this basis, graph-based model is more suitable for 
non-Euclidean space data. Arnold K. Nyamabo et  al. 

propose a message-passing neural network in which 
edges have learnable weights and study molecular 
structures to predict DDI events [19]. Lin et al. propose 
a knowledge graph neural network (KGNN), an end-to-
end framework, which introduces a knowledge graph to 
predict DDI events by exploring topologies of drugs in 
the knowledge graph [20]. Feng et  al. introduce a deep 
predictor of drug-drug interactions (DPDDI), which 
uses graph convolution networks (GCN) to learn low-
dimensional feature representations and uses a deep 
neural network (DNN) to train the model [21]. Yu et al. 
propose a SumGNN method consisting of different sub-
modules to obtain better aggregate information and 
perform multi-category prediction [22]. Wang et  al. 
proposed a multi-view graphical learning drug embed 
by designing an end-to-end framework called MIRACLE 
that included a key-aware messaging network and a 
GCN encoder [23]. Ma et  al. proposed using graphic 
autoencoders to model heterogeneous correlations 
between different views and target tasks, and adding 
attention mechanisms to improve interpretability [24].

In most cases, these methods incorporate known DDI 
networks and multiple biological information, such as 2D 
and 3D molecular structures [25], interaction profiles [25, 
26], targets [9, 15, 25–28], side-effect similarities [15, 25, 
26, 28], drug substructure information [9, 26–28],  drug 
enzyme data [9, 15, 26, 27], drug transporter data [15, 
26, 28], drug pathways [9, 26–28],  SMILES (Simplified 
Molecular-Input Line-Entry System) sequences [23, 29] 
and so on.

Recent research has made significant progress in 
predicting drug-drug interaction events. Systematic 
reviews reveal the critical role of computational methods 
in providing support for judicious drug repurposing, 
extensively applied in the investigation of viral cancers, 
psoriasis, COVID-19, and specific cancer types such as 
HPV-related cervical and endometrial cancers [30–36]. 
Nonetheless, most of these methods still present several 
limitations. Firstly, they often require accumulating 
comprehensive and diverse drug attribute information, 
which can be burdensome for newly emerged drug model 
prediction. Secondly, the behavioural characteristics 
of drug nodes in complex network structures are 
typically underutilized. Most computational models 
only consider the attributes of drugs themselves, which 
are employed for simple classification tasks. Thirdly, 
most existing methods solely aim to predict whether 
there are adverse effects among proved drug pairs, 
ignoring the classification of risk levels within different 
drug combinations. However, it is especially crucial 
to properly classify levels of risk associated with drug 
combinations to assist medical staff in making informed 
drug recommendations.
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In this study, we propose a relational graph convolu-
tional network and multi-head attention-based method 
to predict risk levels of drug combinations, called AER-
GCN-DDI. The workflow of AERGCN-DDI is shown in 
Fig.  1. More specifically, a heterogeneous information 
graph is constructed by treating drugs as nodes, differ-
ent risk levels of drug-drug interaction events as edges. 
Subsequently, the molecule fingerprint generated by the 
RDKit [37] tool is utilized as node features, and link fea-
tures are obtained by connecting the features of nodes on 
both sides. Then, principal component analysis (PCA) is 
employed to reduce the dimension of the primary attrib-
ute features. Finally, a heterogenous graph neural net-
work with multi-head attention modules is proposed to 
predict DDI events. AERGCN-DDI is tested to predict 
the combination risk of both approved drugs and newly 
emerged drug compounds. To evaluate the effectiveness 
of the proposed method, five-fold cross-validation and 
ablation study were further conducted. Experimental 
results demonstrated that AERGCN-DDI can serve as a 
useful tool for predicting the risk levels of drug combina-
tions, which can help guide clinical medication decisions, 
reduce serious drug side effects, and improve patient 
clinical prognosis.

Methods
Benchmark datasets
A hierarchical multi-class drug combination dataset was 
constructed based on the DDinter [38], which contains 
about 0.24M DDI associations among 1833 approved 
drugs. Each drug is annotated with basic chemical and 

pharmacological information and its interaction network. 
Abundant professional annotations are provided for 
DDI entries, including severity, mechanism description, 
strategies for managing potential side effects, alternative 
medications, etc. The drugs that were unable to obtain 
compound SMILES descriptors were removed, 1634 drug 
nodes were ultimately obtained.

The risk level of drug interactions is labeled by sen-
ior pharmacists and divided into four levels, including 
Major, Moderate, Minor, and Unknown. Major represents 
life-threatening interactions requiring medical interven-
tion, Moderate indicates the interactions that causes dis-
ease exacerbation or therapy change, Minor means the 
interactions that limits clinical effects, usually not requir-
ing therapy changes. DDIs lacking mechanism descrip-
tions were classified as ’Unknown’. Finally, we obtained 
221,132 DDI events, of which 47,182 were unknown 
events, 10,861 were minor events, 129,472 were moder-
ate events, and 33,617 were major events, as shown in 
Fig. 2.

The second dataset we used was a large-scale drug-
drug event dataset constructed by Deng et al. [39] from 
DrugBank [40], including 572 drugs and 37,264 pair-wise 
DDIs with DDI types classified into 65 categories. The 
percentages of all events for this dataset are shown in 
Fig. 3.

Construction of heterogeneous information graph
The drug-drug interaction events with different level of 
risks can be modeled as a heterogeneous information 
graph, where each node represents a drug, and edges 

Fig. 1  The workflow of the proposed AERGCN-DDI method
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represent different risk levels between drug nodes. 
Formally, a drug-drug risk rating matrix can be 
defined as Y ∈ (0,1, 2,3)|Nd |×|Nd | , where |Nd | denotes 
the number of drugs. In the matrix, for each entry 
yi,j = X(i, j ∈ Nd , i �= j),where X number represents 
a different risk rating coefficient, and the higher the 
number ofX , the higher the risk rating.

In alternative terminology, we can restructure the 
graph representation of n-array facts from n-array 
F = ((s, r, o), {(ai : vv)}(i = 1)m) as a heterogeneous 
graph G = (V ,E) . Graphs also are referred to as 
networks, which assigns nodes to vertices and 
relationships to E . In DDI risk level networks, there 
are four types of undirected edges between vertices. 
The vertex set V  contains all entities, resulting in 
V = {Vi, i = 1,2, . . . , n} and E is a collection of edges 
over V  , Eij = {

(
Vi,Vj

)
,Vi ∈ V ,Vj ∈ V }.

Leveraging molecular fingerprints for drug attribute 
learning
In order to minimize the reliance on a substantial amount 
of attribute information, only molecular fingerprint 
sequences will be employed as drug features. This 
facilitated the development of lightweight and user-friendly 
models that align with the practical context of lacking 
detailed information in the initial stages of new drug 
development. It is generally assumed that the physical and 
chemical properties of compounds with similar structures 
are similar, and similar assumptions are made about their 
biological activities. This criterion is called Johnson and 
Maggiora’s Law of similarity [21], this is also the basis for 
computer-aided risk assessment of drug combinations. 
Molecular fingerprint is a numerical method that can 
effectively describe the structural information of drug 
compounds. Previous studies have shown that molecular 
fingerprints can effectively express the molecular structure 
of drug compounds. Therefore, we use RDKit [41] to 
encode of SMILES sequences into Morgan fingerprints 
as attribute features of drug nodes. In the DDIs link 
prediction task, the attributes of two different drug nodes 
with interactive events are concatenated together as edge 
attributes and input into the model as the first part of the 
input. And the entire DDI matrix is used as the second part 
of the input to extract the topology domain information of 
the DDIs graph.

Furthermore, in order to assess the impact of molecular 
fingerprint features of different dimensions on the 
prediction performance, PCA was used to downscale the 
attribute features into different dimensions. PCA is a widely 
used dimensionality reduction method. Its main idea is to 
map n-dimensional features to k-dimension, which is a new 
orthogonal feature also called principal component.

Fig. 2  The different risk levels of DDI events in DDInter dataset

Fig. 3  The statistics of DDI events in DrugBank dataset
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where P is a matrix of N ∗ K  , which is made up of the 
column vectors of K , and when K  is less than n , it is 
dimensionless [42].

Enhancing drug combination risk prediction 
with relational graph convolutional networks
In this section, we introduce a double-layer relational 
graph convolutional network (RGCN) [43] tailored 
to capture intricate topology information within DDI 
graphs. RGCN extends the capabilities of conventional 
Graph Convolutional Networks (GCNs) by discerning 
the characteristics of individual relationship types and 
assigning distinct weight matrices accordingly. Unlike 
GCNs, RGCNs excel in managing heterogeneous graphs, 
making them well-suited for DDI networks [44]. The 
constructed DDI network encompasses four types of edges, 
with varying weights assigned during model training. The 
process of updating each node’s representation in RGCN 
involves aggregating information from neighboring nodes. 
This mechanism enables nodes to glean insights into their 
topological context while preserving their distinctive 
characteristics. The propagation model is as follows:

Here, x1,j and x2,j are the corresponding components of 
the feature vectors of node i and j . Equation (3) utilizes a 
double-loop traversal to integrate features from adjacent 
nodes, thereby fusing them while traversing existing 
relationships. The output feature of the central node is 
produced by adding its feature to the aggregated features 
and applying activation functions. To mitigate overfitting of 
rare relationships, we introduce two separate methods for 
regularizing the weights of RGCN layers:

Basis-decomposition:

where V (l)
b ∈ Rd(l+1)×d(l) with coefficients a(l)rb  such that 

only the coefficients depend on r.
Block-diagonal-decomposition:

where W (l)
r  consists of block-diagonal matrices, with each

(1)Y = X · P

(2)
D = 1

m
YTY = 1

m
(XP)T (XP) = PT 1

m

(
XTX

)
P = PT

∑
P

(3)

X(l+1) = σ

(∑R

r= 1

∑
j∈Nr

i

1

cij
W(l)

r

(
X1,j + X2,j

))

(4)W (l)
r =

∑B

b= 1
a
(l)
rb V

(l)
b

(5)W (l)
r = ⊕B

b=1Q
(l)
br

contributing to diagonal blocks. ForB = d , each Q has 
dimension 1, resulting in Wr becoming a diagonal matrix. 
AERGCN-DDI utilized basis-decomposition and have 
designated the num-bases as multiples of drug pairs risk 
levels.

Leveraging multi‑head attention for drug interaction 
prediction
Prediction of newly emerged drugs differs from proved 
drugs because the former lack interaction information, 
necessitating models with superior field aggregation 
capability and stronger predictive performance. This 
inconsistency prompted us to explore the multi-head 
self-attention mechanism of transformers as a broad 
and potent approach to encode knowledge graphs and 
address the challenge of link prediction.

The update method of the multi-headed attention 
mechanism is as follows:

where x1 and x2 are the original feature vectors of two 
nodes[45].

In our research, we consider unknown relationships 
as one type of interaction between drugs. After 
aggregating node and edge features, we generate a set 
of embedding vectors Z for the predicted edges. We 
apply multi-head attention mechanism to the latent 
representation sequence Z and then score the different 
types of edges in the classification task. The calculation 
formula for layer normalization is as follows:

The implementation of the AERGCN‑DDI model
The AERGCN-DDI model utilizes a multilayer mes-
sage-passing mechanism to capture high-order neigh-
boring information. To enhance the prediction of 
potential DDI events (link prediction), we recalculated 
the information of nodes and edges. Specifically, the 
features of edges were generated by combining the fea-
tures of the edge with those of its two adjacent nodes. 

(6)
Q
(l)
br ∈ R

(
d(l+1)/

B

)
×
(
d(l)

/
B

)

(7)

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
(x1 + x2)

(8)LayerNorm(X) = X − E[X]√
Var[X]+ ε

⊙ γ + β
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The entire model can be descripted as Algorithm  1 
below.

Algorithm 1  The proposed AERGCN-DDI model.

Let G(v, ε) be a graph with nodes v and edges ε . The 
feature for node v , and edge (u, e, v)2 are represented by 
xv ∈ Rd1 and we ∈ Rd2 , respectively. At step t + 1 , the 
message passing paradigm encompasses node-wise and 
edge-wise computation [46]:

Here, ∅ is a message function defined on each edge; 
The function ψ updates node features by aggregating 
incoming messages through the reduce function ρ.Two-
layer RGCN and a multi-head self-attention mechanism 
are employed to better integrate different types of neigh-
borhood information and capture network structure. 
Additionally, we utilize AdamW optimizer [47] to train 

(9)
Edge− wise : m(t+ 1)

e = ∅
(
x(t)v , x(t)u ,W (t)

e

)
, (u, e, v) ∈ ε.

(10)
Node− wise : x(t + 1)

v = ψ

(
x(t)v , ρ

({
m(t+ 1)

e : (u, e, v) ∈ ε}
))

the models by optimizing the cross entropy loss function. 
The formula of cross-entropy loss is shown as:

where y is the object, ŷ is the probability of being the 
object, and m is the number of objects.

Baseline methods
The graph model achieves network embeddedness 
by mapping high-dimensional graph data to low-
dimensional vectors. To demonstrate the performance 
and robustness of the proposed AERGCN-DDI, we 
benchmark a variety of state-of-the-art GNN models, 
including GCN [48], GAT and GraphSAGE [49], which 
rely on local domain aggregation of nodes and can be 
used for link prediction.

GCN. The essential purpose of GCN is to extract 
spatial features of topological graphs. Meanwhile, GCN 

(11)J = −1/m
∑

m

y log ŷ
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is a type of neural network layer that operates through 
inter-layer propagation.

where Ã = A+ IN,I is the identity matrix. D̃ is the degree 
matrix of Ã,while H is the hidden features of nodes l th 
layer. σ is an activation function that passes information 
from one layer to the next layer [44].

GAT. GAT utilizes a self-attention mechanism to 
aggregate neighbor nodes, achieving adaptive matching 
of weights for different neighbors and increasing model 
accuracy. To make coefficients easily comparable across 
different nodes, and normalize them across all choices of 
j using the softmax function:

The attention mechanism is a feedforward neural 
network with a single layer. Its coefficients can be 
represented as:

GraphSAGE. In the GraphSAGE algorithm, each node 
only samples a portion of its own neighbors to iteratively 
update its own features. GraphSAGE can use either 
unsupervised or supervised training. Unsupervised 
training uses a negative sampling algorithm with the 
following formula:

Aggregators include: LSTM aggregator, mean 
aggregator, pooling aggregator, GCN convolution 
aggregator:

LSTM aggregator: LSTM has better feature extraction 
capabilities, but because there is no obvious sequential 
relationship between nodes, it is shuffled into the LSTM.

Mean aggregator: when aggregating node V, compute 
the average of node V and domain eigenvectors:

Pooling aggregator: In this way, the feature vectors of 
all the neighbor nodes are passed into a fully connected 
layer, and then max-pooling aggregation is used:

(12)H (l+1) = σ

(
D̃− 1

2 ÃD̃− 1
2HlW l

)

(13)aij = softmaxj
(
eij
)
= exp

(
eij
)

∑
k∈Ni

exp (eik)

(14)

aij =
exp

(
LeakyReLU

(
�aT

[
W �hi||W

−→
h
]))

∑
k∈Ni

exp
(
LeakyReLU

(
�aT

[
W �hi||W �h

]))

(15)
JG(Zu) = − log

(
σ

(
ZT
u ZV

))
− Q · Evn∼Pn(v) log

(
σ

(
−ZT

u ZVn

))

(16)
hkv ← σ(W ·MEAN

({
hk−1
v

}
∪
{
hk−1
u ,∀µ ∈ N (v)

})

DEML [50]. Wang et  al. proposed an ensemble-
based multi-task neural network, for the simultaneous 
optimization of five synergy regression prediction tasks, 
synergy classification, and DDI classification tasks. 
DEML uses chemical and transcriptomics information 
as inputs. DEML adapts the novel hybrid ensemble layer 
structure to construct higher order representation using 
different perspectives. The task-specific fusion layer of 
DEML joins representations for each task using a gating 
mechanism.

DDIMDL [39]. Deng et al. proposed a multimodal deep 
learning framework that combines diverse drug features 
with deep learning to build a model for predicting DDI-
associated events. DDIMDL first constructs deep neural 
network (DNN)-based sub-models, respectively, using 
four types of drug features: chemical substructures, 
targets, enzymes and pathways, and then adopts a joint 
DNN framework to combine the sub-models to learn 
cross-modality representations of drug–drug pairs and 
predict DDI events.

DPSP [51]. Masumshah et  al. introduced a deep 
learning framework for predicting multiple drug side 
effects, divided into two steps. Firstly, it collects various 
drug information that may affect Drug-Drug Interactions 
(DDIs), such as individual drug side effects, targets, 
enzymes, chemical substructures, and pathways, to 
construct novel features. Then, predictions of 65, 100, 
and 185 categories of DDI events in DS1, DS2, and DS3 
are executed through a deep multimodal framework.

GADNN [52]. Nejati M et  al. proposed a method to 
predict DDIs by considering the influence of different 
drug-related features. Their approach consists of two 
stages. In the first stage, four basic drug datasets are used 
to generate embedding vectors for each drug separately. 
Next, a new graph attention mechanism dynamically 
calculates the contribution coefficient of each dataset, 
and the weighted combination of these vectors is used 
to predict drug-drug interactions probability through a 
dense neural network.

Experiment setup and evaluation metrics
To evaluate the performance of the proposed method, 
five-fold cross-validation is first conducted. The whole 
benchmark dataset is randomly divided into five sub-
sets, one-fold is employed as test set each time, while 
the remaining four sets are employed as training data, 
cycle five times and take the average result as final result. 
To accomplish the task of predicting DDIs between 
unknown (newly emerged) drugs, we adopt a new data 
partitioning method. We divided the dataset into two 

(17)hkv ← max
({

σ

(
Wpoolh

k
ui
+ b

)
,∀µi ∈ N (v)

})
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major groups: confirmed (proved) drug categories and 
novel (newly emerged) drug categories. The latter refers 
to drugs that lack any prior data and thus, any relevant 
relationships were removed from the dataset. Based on 
the partitioned dataset, we divide the corresponding DDI 
dataset into between confirmed drug pairs, confirmed 
drug-novel drug pairs, and novel drug pairs. Our model 
is trained on confirmed drug pairs dataset and performs 
prediction tasks on confirmed drug pairs (Task 1), con-
firmed drug-novel drug pairs (Task 2), and novel drug 
pairs (Task 3), respectively. The final average results of 
these operations can explain the stability of the proposed 
model.

Six indicators are adopted to measure the multi clas-
sification performance of the model, including accuracy 
(Acc), Area Under the Precision-Recall Curve (AUPR), 
Area Under the Receiver Operating Characteristic Curve 
(AUC), F1 score, Precision and Recall with AUPR and F1 
are more sensitive to severe imbalances data. Micro met-
rics are used for AUPR and AUC, while macro metrics 
are used for other measurements. The definitions of these 
indicators can be described as follows:

(18)Acc = TP + TN

TN + TP + FN + FP

where the TN, PN, FN and FP denote the number of cor-
rectly predicted positive and negative samples, wrongly 
predicted positive and negative samples, respectively. In 
addition, we use the Micro mode to calculate AUC and 
Recall, which treats each element of the label indicator 
matrix as a label. In contrast, F1 calculates each label in a 
Macro mode and finds their unweighted average.

Results and discussion
To evaluate the performance of the AERGCN model, we 
conducted extensive experiments on three tasks, com-
paring AERGCN with seven state-of-the-art methods 
under fivefold cross-validation. Tables  1, 2, 3, Figs.  4, 5, 
and 6 present the performance of the comparison mod-
els, including GCN-DDI, GAT-DDI, SAGE-DDI, DEML, 
DDIMDL, DPSP, GADNN, and AERGCN-DDI.

(19)precision = TP

TP + FP

(20)Recall = TP

TP + FN

(21)F1 = 2× precision× recall

precision+ recall

Table 1  The performance of AERGCN-DDI on Task 1 of the DDInter dataset

Bold indicates the method that performs best on this indicator

Method ACC​ AUPR AUC​ F1 Precision Recall

GCN-DDI 0.8477 ± 0.0274 0.7969 ± 0.0213 0.9213 ± 0.0065 0.7742 ± 0.049 0.8263 ± 0.0299 0.7396 ± 0.0553

GAT-DDI 0.8421 ± 0.0276 0.8166 ± 0.0342 0.9274 ± 0.0111 0.7689 ± 0.0508 0.7935 ± 0.0212 0.7531 ± 0.067

SAGE-DDI 0.9102 ± 0.0461 0.8812 ± 0.0328 0.9547 ± 0.0123 0.8715 ± 0.0689 0.8945 ± 0.066 0.8522 ± 0.0704

DEML 0.5866 ± 0.008 0.2501 ± 0.0002 0.7244 ± 0.0053 0.192 ± 0.0056 0.2502 ± 0.0005 0.1889 ± 0.023

DDIMDL 0.9003 ± 0.0081 0.9625 ± 0.006 0.9855 ± 0.0023 0.8593 ± 0.0109 0.9074 ± 0.0069 0.8236 ± 0.0141

DPSP 0.8687 ± 0.003 0.9364 ± 0.0011 0.9752 ± 0.0006 0.803 ± 0.0033 0.8788 ± 0.0036 0.756 ± 0.0035

GADNN 0.8963 ± 0.001 0.9362 ± 0.0021 0.9743 ± 0.0009 0.8524 ± 0.0021 0.8964 ± 0.0024 0.8184 ± 0.0025

AERGCN-DDI 0.9381 ± 0.015 0.901 ± 0.0047 0.9615 ± 0.0011 0.9148 ± 0.0209 0.9317 ± 0.0286 0.9004 ± 0.0141

Table 2  The performance of AERGCN-DDI on Task 2 of the DDInter dataset

Bold indicates the method that performs best on this indicator

Method ACC​ AUPR AUC​ F1 Precision Recall

GCN-DDI 0.6391 ± 0.0072 0.6095 ± 0.0114 0.8328 ± 0.0078 0.4168 ± 0.0183 0.5326 ± 0.0193 0.3986 ± 0.0151

GAT-DDI 0.6319 ± 0.0067 0.6131 ± 0.0063 0.8332 ± 0.0043 0.3957 ± 0.0156 0.5334 ± 0.0186 0.3809 ± 0.0124

SAGE-DDI 0.643 ± 0.01 0.6241 ± 0.0269 0.8362 ± 0.0172 0.4473 ± 0.0371 0.5335 ± 0.013 0.4251 ± 0.0293

DEML 0.5829 ± 0.0138 0.25 ± 0.0002 0.7219 ± 0.0092 0.1886 ± 0.0073 0.2501 ± 0.0005 0.178 ± 0.028

DDIMDL 0.7092 ± 0.0113 0.739 ± 0.0162 0.8866 ± 0.0077 0.5806 ± 0.0214 0.6608 ± 0.0324 0.5418 ± 0.0221

DPSP 0.6866 ± 0.0153 0.7214 ± 0.0253 0.8783 ± 0.0107 0.535 ± 0.0262 0.6202 ± 0.0352 0.4992 ± 0.0241

GADNN 0.6954 ± 0.0107 0.7081 ± 0.0056 0.8557 ± 0.005 0.5478 ± 0.0101 0.6174 ± 0.0268 0.52 ± 0.0089

AERGCN-DDI 0.8493 ± 0.0029 0.8893 ± 0.0111 0.9573 ± 0.0027 0.7596 ± 0.0088 0.8086 ± 0.0096 0.7286 ± 0.0148
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Comparison of AERGCN‑DDI and comparative methods 
on Task 1
To evaluate the effectiveness of our method for drug-
drug interaction extraction in a hot-start environment 
(Task 1), we compared the comparative effectiveness 
of AERGCN with seven other state-of-the-art mod-
els. The experimental results are shown in Table  1. 
From the experimental results, we conclude that the 

AERGCN-DDI model achieves the best performance in 
predicting proven drug-drug interaction events under 
warm-start conditions, and its performances on ACC, 
AUPR, AUC, F1, Precision, and Recall are 93.81%, 90.1%, 
96.15%, 91.48%, respectively, 93.17%, and 90.04%. Of 
these, ACC, F1, Precision, and Recall all achieved optimal 
performance, improving over the suboptimal methods by 
2.79%, 4.33%, 3.53%, and 4.82%, respectively. To examine 

Table 3  The performance of AERGCN-DDI on Task 3 of the DDInter dataset

Bold indicates the method that performs best on this indicator

Method ACC​ AUPR AUC​ F1 Precision Recall

GCN-DDI 0.5586 ± 0.0205 0.5146 ± 0.0138 0.7716 ± 0.0123 0.2726 ± 0.0344 0.371 ± 0.1327 0.2937 ± 0.0184

GAT-DDI 0.5364 ± 0.0265 0.4811 ± 0.0291 0.7404 ± 0.0215 0.2861 ± 0.0241 0.352 ± 0.0432 0.2944 ± 0.0138

SAGE-DDI 0.5614 ± 0.0136 0.5248 ± 0.026 0.7818 ± 0.0136 0.2073 ± 0.0343 0.307 ± 0.0636 0.2629 ± 0.0187

DEML 0.5661 ± 0.0163 0.2502 ± 0.0002 0.7107 ± 0.0109 0.19 ± 0.0074 0.2504 ± 0.0006 0.1976 ± 0.0431

DDIMDL 0.5512 ± 0.0317 0.5297 ± 0.0467 0.7655 ± 0.0263 0.3403 ± 0.0347 0.4045 ± 0.0394 0.3388 ± 0.0301

DPSP 0.5398 ± 0.0159 0.5221 ± 0.0367 0.7608 ± 0.0211 0.3266 ± 0.036 0.375 ± 0.0269 0.3251 ± 0.0279

GADNN 0.5729 ± 0.0212 0.5286 ± 0.0369 0.751 ± 0.0242 0.2691 ± 0.0508 0.3224 ± 0.1184 0.2954 ± 0.0264

AERGCN-DDI 0.7266 ± 0.317 0.7566 ± 0.0211 0.9012 ± 0.0102 0.5686 ± 0.0531 0.687 ± 0.0455 0.5396 ± 0.0597

Fig. 4  The ACC, AUPR, AUC, F1, Precision and Recall of compared methods on Task 1 of the DDInter dataset

Fig. 5  The ACC, AUPR, AUC, F1, Precision and Recall of compared methods on Task 2 of the DDInter dataset
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the overall effectiveness of the various methods in more 
detail, we present in Fig.  4 the performance of all the 
baseline models for all the events in ACC, AUPR, AUC, 
F1, Precision, and Recall statistical boxplots. These results 
demonstrate the excellent performance of the AERGCN-
DDI method in the task of drug interaction prediction. 
Relatively speaking, our proposed AERGCN-DDI model 
performs the best in predicting the interactions between 
proved drugs in terms of their effectiveness.

The performance of AERGCN‑DDI on Task 2 and Task 3 
under five‑fold cross‑validation
To validate the experimental performance of the pro-
posed model in a cold-start environment, we simulated 
the scenario of new drug emergence and performed a 
five-fold cross-validation. In Task 2, we simulated the 
interaction prediction of old and new drugs, and in Task 
3, we simulated the interaction prediction of new and 
new drugs. The complete and detailed experimental 
results are shown in Tables 2 and 3, while Figs. 5 and 6 
provide a visual presentation of the relevant data.

In Task 2 and Task 3, AERGCN-DDI showed significant 
advantages in all evaluation metrics. In Task 2, it 
outperforms the suboptimal method by 14.01%, 16.79%, 
7.07%, 17.9%, 14.78%, and 18.68% in terms of ACC, 
AUPR, AUC, F1, Precision, and Recall, respectively. In 
Task 3, AERGCN-DDI outperforms the suboptimal 
method by 15.37%, 22.69%, 11.94%, 22.83%, 28.25% 
and 20.08%. This indicates that AERGCN has stronger 
predictive ability and generalization when facing the 
scenario of emergence of new drugs, and is more suitable 
for potential relationship mining of unknown drugs, 
which provides strong support for further research and 
application in the field of drug interaction prediction.

To verify the effect of different embedding dimen-
sions on the experimental results, we introduce PCA 
to generate 100, 150, 200, 250, and 300 dimensional 

feature dimensions and input them into the AERGCN-
DDI Model (Task 1), the experiment results show that 
the 300-dimensional feature can obtain the best value. 
Figure  7 shows the results of AERGCN-DDI with vari-
ous numbers of embedding dimensions, Notably, as we 
increase the number of embedding dimensions, the eval-
uation indicators of the training and testing sets steadily 
increase, so the feature dimension is set to 300.

Comparison of AERGCN‑DDI and other state‑of‑the‑art 
methods on the DrugBank dataset
To further validate the effectiveness of AERGCN-
DDI in the multi-classification scenario of DDI events, 
we utilized DrugBank dataset which consists of 65 
classes and is characterized by imbalanced data. To 
highlight the outstanding performance of our model, 
we compared AERGCN with the following state-of-the-
art DDI prediction methods. Of note, the data for our 
comparative models are derived from the experimental 
results presented in the MSEDDI article:

DeepDDI [53] consists of SSP and DNN. It takes 
chemical structures and drug names as inputs and 
generates human-readable sentences that describe the 
DDI types.

Lee’s method [54] proposed employs autoencoders 
and a deep feed-forward network, which are trained 
with SSP, GSP, and TSP of known drug pairs, to predict 
the pharmacological effects of DDIs.

DDIMDL [39] employs four drug features: chemical 
substructures, targets, enzymes, and pathways. It uses 
a joint DNN framework to combine the sub-models, 
learn cross-modality representations of drug pairs, and 
predict DDI events.

MDF-SA-DDI [55] combines two drugs in four dif-
ferent ways and inputs the resulting drug features into 
four different drug fusion networks (Siamese network, 

Fig. 6  The ACC, AUPR, AUC, F1, Precision and Recall of compared methods on Task 3 of the DDInter dataset
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convolutional neural network, and two autoencoders) 
to obtain potential feature vectors for drug pairs. Then, 
potential feature fusion is performed using self-atten-
tion mechanisms.

MSEDDI [56] designs three-channel networks 
to handle biomedical network-based knowledge 
graph embedding, SMILES sequence-based notation 
embedding, and molecular graph-based chemical 
structure embedding. These channels’ output features 
are then combined through a self-attention mechanism.

As shown in Table  4, on DrugBank dataset, our 
method is superior to contrast methods. AERGCN-
DDI achieves the best performance with a high 
accuracy of 58.34%, and improved the accuracy by 
13.83%, the AUPR by13.88%, the AUC by 0.76% than 
Suboptimal method. The comparison with other state-
of-the-art methods on the dataset 2 further reveals 
the advantages of our proposed AERGCN-DDI in 

predicting muti-types DDI events. The evaluation 
results comprehensively demonstrate the promising 
performance and broad prospects of AERGCN-DDI.

Ablation study
To validate the effectiveness of using drug fingerprints 
as node attributes and to verify the efficiency of 
different components in AERGCN-DDI, including the 
multi-head attention mechanism and edge propagation 
module, we performed ablation experiments. The 
following are the different variants utilized for ablation 
experiments:
AERGCNw/oFP : This is a variant of the AERGCN-DDI 

model that does not use the node fingerprint feature, but 
only the topology information in the DDI network.
AERGCNw/oAT : It is the original AERGCN-DDI 

model without the addition of the multi-head attention 
component.
AERGCNw/oEP : It is the original AERGCN-DDI 

model without the addition of the edge propagation 
component.

According to the analysis in Table  5, AERGCN-DDI 
performs significantly better than the other variant mod-
els on all tasks and assessment metrics. On the contrary, 
the variant model without the fingerprint feature exhib-
ited the significantly lowest performance. Specifically, 
AERGCNw/oFP with the molecular fingerprint removed 
showed the most significant decrease in effectiveness 

Fig. 7  The performance of AERGCN-DDI under different feature dimensions

Table 4  The performance of all methods on DrugBank dataset

Bold indicates the method that performs best on this indicator

Method ACC​ AUPR AUC​ F1

DeepDDI 0.3602 0.2781 0.9059 0.1373

Lee’s method 0.4097 0.3184 0.8302 0.2022

DDIMDL 0.4075 0.3635 0.9512 0.1590

MDF-SA-DDI 0.4378 0.3810 0.8675 0.2326
MSEDDI 0.4451 0.3999 0.9543 0.1691

AERGCN-DDI 0.5834 0.5387 0.9619 0.0911
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in Task 1, with decreases in ACC, AUPR, AUC, and 
F1 of 0.3454, 0.3946, 0.1994, and 0.7522, respectively, 
and AERGCNw/oEP , with the side propagation module 
removed, also performed only better than AERGCNw/oFP 
in Tasks 2 and 3. In Task 3, AERGCNw/oAT ’s ACC 
(0.7362) was slightly higher than ACC of AERGCN-DDI 
(0.7266), but the performance on AUPR, AUC, and F1 
was reduced by 0.2087, 0.0889, and 0.0062. In conclusion, 
the model performance can be made better by effectively 
integrating and utilizing different modules, including 
drug fingerprinting, multi-attention mechanism, and 
edge propagation components.

The experimental results show that drug fingerprints 
as node properties are most important features 
of AERGCN-DDI. Drug fingerprints provide rich 
information about the structure and properties of drug 
molecules, which helps the model to better understand 
drug interactions and effects. The experimental results 
show that the performance of the variant model lacking 
drug fingerprint features is significantly reduced, further 
validating the importance of drug fingerprints in the 
model.

Furthermore, the edge propagation module is one 
of the key components of the AERGCN-DDI model, 
which helps the model to better utilize the edge 
attribute information, including the mode of action 
and effects of drug combinations. The results of the 
ablation experiments show that the performance of 
the variant model with the edge propagation module 
removed significantly decreases, further confirming 
the importance of the edge propagation module in the 
model.

Lastly, the multiple attention mechanism is another key 
component of the AERGCN-DDI model. This mecha-
nism allows the model to simultaneously focus on differ-
ent drug interaction features, thus improving the model’s 
ability to capture complex interactions. In the ablation 

experiments, the performance of the variant model with 
the multi-head attention mechanism removed decreased 
in Task 2 and Task 3, indicating that the multi-head 
attention mechanism plays an important role in enhanc-
ing the model performance.

In summary, the drug fingerprint as a node attribute, 
edge propagation module, and multi-head attention 
mechanism are key components of the predictive 
performance of AERGCN-DDI. Their effective 
integration and utilization enable the AERGCN-DDI 
model to predict drug-drug interactions more accurately, 
providing important support for drug development and 
clinical applications.

Conclusions
In this work, we proposed a novel approach, the AER-
GCN-DDI model, which leverages relational graph 
convolutional networks (RGCN) and multi-head atten-
tion mechanisms to predict the specific risk levels 
associated with drug combinations. Our model utilizes 
RGCN to comprehend the topological and semantic 
characteristics of drug nodes, distinguishing between 
four distinct risk levels and aggregating diverse domain 
information. Additionally, the incorporation of multi-
attention mechanisms enhances our model’s capability 
to capture multi-level topology information effectively. 
In contrast to conventional experimental setups, we 
conducted experiments tailored to simulate the emer-
gence of new drugs in real-world scenarios, where these 
drugs have no prior interactions with existing ones. 
Our DDI prediction task achieved remarkable accu-
racy rates, with 93.81% for established drugs, 84.93% for 
newly introduced drugs, and 72.66% when both drugs 
were novel. This shows that our model exhibits excel-
lent performance in both warm-start and cold-start 
environments. In addition, we performed cross-dataset 
validation, especially after using the DrugBank dataset 

Table 5  The ablation performance of AERGCN-DDI on different tasks

Bold indicates the method that performs best on this indicator

Task Method ACC​ AUPR AUC​ F1 RECALL

Task1 AERGCN − DDI 0.9381 0.901 0.9615 0.9148 0.9004
AERGCNw/oFP 0.5927 0.5064 0.7621 0.1861 0.1482

Task2 AERGCN − DDI 0.8493 0.8893 0.9573 0.7596 0.7286

AERGCNw/oFP 0.5678 0.6193 0.7446 0.1811 0.2500

AERGCNw/oAE 0.8295 0.7309 0.9117 0.6914 0.7717

AERGCNw/oEP 0.7189 0.6517 0.8759 0.5596 0.6931

Task3 AERGCN − DDI 0.7266 0.7566 0.9012 0.5686 0.5396

AERGCNw/oFP 0.5615 0.5710 0.6801 0.1798 0.1404

AERGCNw/oAT 0.7362 0.5479 0.8123 0.5624 0.6060

AERGCNw/oEP 0.5606 0.4790 0.7432 0.2586 0.5409
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for validation, to further validate the reliability and 
applicability of our model. Also, we conducted ablation 
experiments to validate the importance of each compo-
nent module in the model. The limitation of the model 
is that the dataset of the proposed model may be biased 
towards common drug interactions, while the ability to 
generalize to rare drug interactions is limited. In future 
work, in order to enhance the applicability and robust-
ness of the AERGCN-DDI model, it is recommended to 
integrate more drug features such as molecular struc-
ture or pharmacokinetics. Also, exploring different 
graph structures or incorporating temporal information 
into the model architecture may improve its perfor-
mance. In addition, applying the model to predict inter-
actions other than drug-drug interactions (DDIs), such 
as drug-disease interactions or drug-food interactions, 
could help to extend its application in clinical practice. 
The proposed AERGCN-DDI model has proved to be an 
efficient and competitive drug combination risk predic-
tion tool, to aid in medical decision-making, drug devel-
opment, and disease treatment, yielding better and safer 
medical interventions and services.
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