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Abstract
Background  Infectious meningitis/encephalitis (IM) is a severe neurological disease that can be caused by bacterial, 
viral, and fungal pathogens. IM suffers high morbidity, mortality, and sequelae in childhood. Metagenomic next-
generation sequencing (mNGS) can potentially improve IM outcomes by sequencing both pathogen and host 
responses and increasing the diagnosis accuracy.

Methods  Here we developed an optimized mNGS pipeline named comprehensive mNGS (c-mNGS) to monitor 
DNA/RNA pathogens and host responses simultaneously and applied it to 142 cerebrospinal fluid samples. According 
to retrospective diagnosis, these samples were classified into three categories: confirmed infectious meningitis/
encephalitis (CIM), suspected infectious meningitis/encephalitis (SIM), and noninfectious controls (CTRL).

Results  Our pipeline outperformed conventional methods and identified RNA viruses such as Echovirus E30 and 
etiologic pathogens such as HHV-7, which would not be clinically identified via conventional methods. Based on the 
results of the c-mNGS pipeline, we successfully detected antibiotic resistance genes related to common antibiotics 
for treating Escherichia coli, Acinetobacter baumannii, and Group B Streptococcus. Further, we identified differentially 
expressed genes in hosts of bacterial meningitis (BM) and viral meningitis/encephalitis (VM). We used these genes to 
build a machine-learning model to pinpoint sample contaminations. Similarly, we also built a model to predict poor 
prognosis in BM.

Conclusions  This study developed an mNGS-based pipeline for IM which measures both DNA/RNA pathogens and 
host gene expression in a single assay. The pipeline allows detecting more viruses, predicting antibiotic resistance, 
pinpointing contaminations, and evaluating prognosis. Given the comparable cost to conventional mNGS, our 
pipeline can become a routine test for IM.
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Introduction
Infectious meningitis/encephalitis syndromes (IM) are 
severe neurological infectious diseases caused by bacte-
rial, viral, and fungal pathogens, with higher diagnos-
tic error and high morbidity, mortality, and sequelae in 
childhood. IM mainly included bacterial meningitis (BM) 
and viral meningitis/encephalitis (VM) [1]. BM is one of 
the common infectious diseases in children, especially 
newborns, and 20–50% of newborn survivors may have 
sequelae [2]. Most clinical symptoms of IM are not spe-
cific. In the absence of etiological diagnosis, noninfec-
tious syndromes that resemble IM further complicate 
diagnosis and confound targeted treatment. Accurate 
detection of pathogens in IM patients and identifying 
patients with poor prognoses is crucial for prompt and 
adequate targeted treatment [3].

However, laboratory microbiologic detections are 
limited by available microbiologic tests because cere-
brospinal fluid (CSF) culture is less sensitive and time-
consuming, and CSF PCR can only target several 
pre-defined microbes, which will lead to the empirical 
use of broad-spectrum antibiotics, which highlights the 
need for less restricted methods, such as metagenomic 
sequencing (mNGS). The mNGS can enable unbiased 
detections of all potential pathogens and especially per-
forms well in identifying difficult-to-culture, rare and 
novel pathogens [4]. Some studies have used mNGS to 
diagnose infectious central nervous system (CNS) dis-
eases [5, 6]. However, routine mNGS pipelines are mainly 
developed for DNA microbes, and another RNA library 
construction is necessary to sequence RNA viruses, 
which will need extra time and cost [7, 8]. Thus, simul-
taneous detections of RNA and DNA microbes in one 
mNGS workflow is an essential requirement for routine 
clinical pathogen detection for infectious encephalitis/
meningitis (IM). Sander et al. and Bal et al. developed an 
mNGS protocol for routine DNA and RNA viral respira-
tory infection diagnostics with sensitivity comparable to 
PCR [9, 10].

We have developed an mNGS protocol that could 
enable the detection of DNA and RNA pathogens in the 
Cerebrospinal fluid (CSF) samples [11], and the perfor-
mance in the diagnosis of IM should be studied using 
clinical samples. Besides, our mNGS protocol further 
provided one additional potential in evaluating the host 
transcriptional profiling by mNGS. Host transcriptional 
profiling has emerged as a promising alternative to 
pathogen-based diagnostics that can identify respiratory 
infections from those with noninfectious illnesses [12–
14]. It also performed well in evaluating the prognosis of 
respiratory infections and sepsis [15, 16]. Furthermore, 
host transcriptional profiling has been coupled with the 
simultaneous detection of pathogens to improve the 

diagnosis of tuberculosis meningitis and acute respira-
tory infections [17, 18].

However, while highly promising, this approach has 
not been well studied in IM. This study may extend 
current etiological diagnostics and treatments by 
detecting pathogens and host transcriptional profil-
ing simultaneously. Firstly, we evaluate the performance 
of this approach in a large retrospective cohort of IM 
patients in Shenzhen Children’s Hospital, the only sen-
tinel pediatric hospital in Shenzhen, covering more than 
250 IM patients annually. Moreover, we address the need 
for better diagnostics, antibiotic resistance prediction, 
contamination discrimination, and prognosis of IM by 
integrating host response and DNA/RNA microbe detec-
tion. These results may provide an important basis for 
diagnosing and treating IM.

Method
Samples collection and analysis
We retrospectively reviewed the CSF samples at Shen-
zhen Children’s Hospital to identify infectious menin-
gitis/encephalitis (IM) samples. Uninfected samples of 
leukemia and other diseases were used as controls. All 
patients underwent standard microbiologic diagnos-
tics testing, and the retention times of CSF samples are 
the same as corresponding tests. Physicians identified 
subjects with CSF without knowing the mNGS results. 
Patient characteristics (age and gender), clinical treat-
ments, clinical laboratory indicators, and prognosis were 
extracted from the hospital database. All clinical and lab-
oratory features were obtained the same day the mNGS 
test occurred. 142 samples were finally included and 
grouped into three categories according to clinical and 
microbiologic observations:

Confirmed infectious meningitis/encephalitis (CIM)
The clinical diagnosis was BM or VM, and CSF PCR 
or culture test was positive for the bacterial or viral 
pathogen.

Suspected infectious meningitis/encephalitis (SIM)

(1)	Clinical diagnosis supported BM or VM, but CSF 
culture and PCR test were negative.

(2)	Or clinical diagnosis was uncertain but CSF culture 
or PCR test was positive.

Noninfectious samples (CTRL)
Clinical diagnosis was leukemia and other diseases with-
out infectious symptoms, and CSF culture and PCR test 
were negative.

Microbes identified by clinician-ordered diagnostics 
in the 36 CIM samples positive for PCR target viruses 
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and culture-dependent bacteria were categorized as 
pathogens (n = 28 in the training cohort and n = 8 in the 
validation cohort). We accepted that this practical gold 
standard would provide an attenuated estimate of perfor-
mance due to the sensitivity limitations of microbial cul-
ture in the setting of antibiotic pre-administration [17].

Total nucleic acid extraction
Following our previous method [11], total nucleic acids 
(RNA and DNA) were extracted with the EasyPure RNA 
Kit (TransGen, China), and RNA was reverse-transcribed 
using the Transcriptor first-strand cDNA synthesis kit 
(Roche, Switzerland). The second strand cDNA synthe-
sis was achieved using NEBnext mRNA Second Strand 
Synthesis Module (NEB, USA). The average DNA yield is 
0.9 µg, as quantified using the qubit and qPCR.

Next-generation sequencing
Finally, both cDNA and gDNA (genomic DNA) were 
used for library generation and sequencing. This method 
consisted of a single nucleic acid extraction step and a 
single library generation and combined and integrated 
the advantages of both RNA-seq and WGS, which can 
measure both DNA/RNA pathogens and host gene 
expression in a single assay. Sequencing was performed 
by Novogene Inc (Tianjin, China) on the Hi-seq 2000 
sequencing system (Illumina), generating 2 × 150 paired-
end reads.

Taxonomic classification
Kraken2 pipeline was used for taxonomic classifica-
tion and abundance quantification at the species level 
as in our previous study [11, 19]. First, low-quality bases 
(q ≤ 30) and adapter sequences were trimmed using Trim-
momatic v0.36 with default parameters [20]. The reads 
with fewer than 36 (samples with bacteria) or 140 (sam-
ples with viruses) bases were filtered out. Accordingly, 
1.32 billion clean paired-end reads were obtained across 
the 142 samples, with an average of 9.3  million reads 
per sample (Supplementary Table 1). Second, Kraken2 
was used to taxonomically classify the clean reads with 
default parameters [19]. Kraken2 had similar, and often 
superior, per-sequence accuracy to other classifiers with 
high processing speed and fewer memory requirements. 
Kraken2 maps and classifies overlapping 31-kmer bp 
sequences to the most recent common ancestor to pro-
vide the most accurate taxonomic classification, such as 
species and genus. The default reference databases for 
Kraken2 were built from RefSeq bacteria, archaea, viral 
libraries, and the GRCh38 human genome. By including 
the GRCh38 human genome in the reference database, 
Kraken2 allows for easy and accurate classification and 
removal of human reads [19]. The outputs of Kraken2 
were visualized by Pavian v1.0 [21].

Definitions and calculation formula
The positive cutoff of non-viral pathogens referred to 
the previous reports [11] and 10 samples from the CTRL 
group were used as negative CSF samples (NCSF). If 
microorganisms were not detected in the negative cere-
brospinal fluid (NCSF), the RPKM in NCSF was set to 
1, and the RPKM ratio (RPKMratio) was calculated. 
The positive viral cutoff was three noncontiguous or 
non-overlapping fragments of more than 140  bp on the 
genome covered [11], and the viral species did not exist 
in the NCSF. The coverage was displayed by Integrative 
Genomics Viewer (IGV 2.8.10).
Raw reads (RR):	 Refers to the number of reads classified 
to a specific species.
Genome size (GS):	 Refers to the genome size of 
the microorganism’s genome (Mb).
Total reads (TR):	Refers to the reads classified as 
microorganisms.
RPKM:	 The value of RR/(GS*TR).
RPKMSAMPLE:	 The RPKM of a certain microorganism 
in the CSF samples.
RPKMNCSF:	 The RPKM of a certain microorganism 
in NCSF.
RPKMratio:	 The ratio of RPKMSAMPLE to 
RPKMNCSF.

Analysis of antibiotic resistance genes by mNGS
All mNGS reads were searched for antibiotic resistance 
genes (ARGs) using UBLAST (with E-value ≤ 10 − 7) 
against the curated structured ARG database SARG, 
which integrates ARDB, CARD, and the latest NCBI-
NR databases [22]. When an alignment with length ≥ 75 
nucleotides and identity ≥ 80% was found [22, 23], the hit 
ARG was deemed found in a sample. The abundances 
of ARGs were normalized using UBLAST with default 
option [22, 23]. The heatmap plot for ARGs was con-
ducted using the R pheatmap package.

Transcriptional analysis of host genes
RNA reads were aligned to the UCSC human hg19 ref-
erence genome using STAR [24]. The read counts for 
each gene were summarized using the program feature-
Counts, requiring counted reads uniquely aligned and 
≥ 90% matched to gene [25]. The read count matrix from 
featureCounts was inputted into the Bioconductor pack-
age DESeq2 to identify differentially expressed genes [26] 
with the cutoffs FDR < 0.05 and |Log2FC| >0.5. The nor-
malized counts generated by DESeq2 were used in the 
following analysis.

KEGG pathway GSEA enrichment analysis
Functional enrichment analyses of BM and VM-related 
genes were conducted using the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) via R package 
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clusterProfiler [27]. FDR < 0.05 was the cutoff criteria to 
identify the enriched KEGG pathways.

Construction of BM classification model
Gene feature selection
Using the matrix of read counts per gene as input, we 
selected differentially expressed gene features between 
BM and CTRL samples via the DaMiRseq package 
[28]. Covariates such as batches, age, and gender were 
included in the model to reduce the effect of irrelevant 
sources. Differentially expressed features were used as 
predictors for the below classification model.

Construction of the classification model
We used Lasso logistic linear regression (cv.glmnet func-
tion in R glmnet package) to reduce complexity and 
overfitting and build the classification model [29]. The 
formula is as follows:

	
ω = argminω

(∑
(Y − ωTX)

2
+ λ ||ω ||

)

X refers to the expressions of differentially expressed 
genes selected via DaMiRseq.  Y refers to the classifica-
tion of samples, including BM and CTRL samples. The 
parameter λ controls the overall strength of the penalty. 
λ is estimated by cross-validation and the recommended 
lambda.1se (largest value of lambda such that error is 
within one standard error of the minimum lambda) is 
used to choose the simplest model whose accuracy is 
comparable with the best model [29].

Construction of the BM prognosis model
The BM samples with prognosis information were ran-
domly divided into training (n = 33) and test datasets 
(n = 18). Training datasets are used to build the model, 
and test datasets are used to assess the possible future 
performance of the BM prognosis model. Similar to the 
above classification model, Lasso logistic linear regres-
sion model (cv.glmnet function in R glmnet package) was 
used to train the BM prognosis model:

	
ω = argminω

(∑
(Y − ωTX)

2
+ λ ||ω ||

)

X refers to the expressions of poor prognosis-related 
genes obtained from DaMiRseq.  Y refers to the out-
come of the samples and includes two groups (good and 
poor prognosis). Cross-validation is used to estimate the 
parameter λ and the recommended lambda.1se value is 
chosen in the final tuned model.

ROC curve
ROC curves were generated to evaluate the models’ per-
formance using the R packages ggplot2 and pROC [30]. 
Sensitivity and specificity were calculated using the R 
ROCR package [31].

Results
The performance of the comprehensive mNGS protocol
In our previous study, we developed an mNGS protocol 
(comprehensive mNGS, c-mNGS), allowing the detec-
tion of both DNA and RNA pathogens (including DNA 
viruses, RNA viruses, G + bacteria, and G- bacteria) in the 
samples of infectious meningitis/encephalitis (IM) in a 
single assay, which reduces the cost and turnaround time 
compared to the conventional mNGS protocols that tar-
get DNA and RNA separately [11]. In this study, we tested 
the performance of this protocol using a large number of 
CSF samples from IM patients (Fig. 1A). Briefly, 142 sam-
ples were included in this study, which were divided into 
three groups: CIM (n = 36), SIM (n = 43), or CTRL (n = 63) 
(Fig. 1A) based on traditional microbiological tests.

For these samples, we generated an average of 9.30 mil-
lion paired-end reads per sample (Supplementary Table 
1). The kraken2 pipeline was used to align reads and iden-
tify microbial taxa as in our previous study [11, 19]. The 
average microbial reads from each sample was 69,082 
(Supplementary Table 1). The abundance of each microbe 
in a sample was estimated using RPKMratio values (See 
methods). We optimized both methodology and patho-
gen reference databases to improve the accuracy of taxa 
identification. Using the RPKMratio as the abundance esti-
mate and the updated reference database, our protocol 
can achieve AUC = 0.98 and 0.99 in the training and test-
ing data, respectively (Fig. 2A and B). Our protocol also 
detected 50% more enteroviruses than the conventional 
protocols (Fig. 2C and D). Using RPKMratio>9.134 as the 
cutoff for positive prediction, our protocol can reach sen-
sitivity and specificity of 90% and 96.6% in the training 
samples and 100% and 92.9% in the testing samples.

Additionally, our protocol can detect infections in the 
SIM samples where pathogens were not detected with 
culture or PCR in routine diagnostics (Fig. 2E). For exam-
ple, HHV-7 virus was detected with 42 reads in one sam-
ple. Further, several bacterial pathogens were detected in 
some SIM samples with negative culture results, mainly 
Streptococcus pneumoniae and Ureaplasma parvum. 
All the newly detected pathogens using our protocol are 
listed in Supplementary Table 2.

Antimicrobial resistance genes of bacterial pathogens 
detected by mNGS
The mNGS also provides a portfolio of potential anti-
biotic resistance genes (ARGs) for bacterial pathogens, 
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Fig. 2  Establishment of mNGS pipeline for pathogen detections. (A) The comparisons of several different normalization methods for pathogen detec-
tions in training cohorts. M1: total reads are used as normalization, M2: Total micro reads are used as normalization, M3 (RPKMratio): total micro reads and 
genome size are used as normalization, M4: RPKMratio: total micro reads and genome size are used as normalization without PCR duplicate removal. (B) 
The preformation of RPKMratio-based normalization in the validation cohort. (C) Enterovirus detected by raw database and updated database. (D) The 
genome coverage of Echovirus E30, which is detected by updated database only. (E) The pathogens detected by routine tests and mNGS in the same 
infectious meningitis and encephalitis cohorts, respectively

 

Fig. 1  The workflow of this study. (A) The groups of samples involved in this study. (B) The workflow of the study
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enhancing bacterial diagnostics and guiding treatments, 
and improving antibiotic stewardship [32–35].

To evaluate ARG prediction by our mNGS protocol, 
we started with 24 IM-positive CSF samples with > 1000 
reads for bacterial pathogens. Overall, the identified 
ARGs are mainly associated with beta-lactam, amino-
glycoside, multidrug, tetracycline, and polymyxin (Sup-
plementary Fig.  1) and are highly heterogeneous over 
samples. For example, multidrug-resistant genes account 
for most reads in most samples. In contrast, aminogly-
coside-resistant genes and beta-lactam-resistant genes 
accounted for more than 50% of reads in some other 
samples (Supplementary Fig. 1).

To check whether the identified ARGs in a sample can 
predict the bacteria’s antibiotic resistance, we used anti-
microbial susceptibility testing as the gold standard and 
considered the samples with detection of Acinetobacter 
baumannii (AB, 5 samples), Escherichia coli (E. coli, 8 
samples), and Streptococcus agalactiae (GBS, 5 samples) 
as these pathogens are most frequent.

In the AB samples, most ARGs are associated with 
antibiotics like extended-spectrum β-lactamase (ESBLs), 
aminoglycoside, and multidrug antibiotics (Fig. 3A). For 
example, blaOXA−23 and blaOXA−225 genes are found in 
most samples, and their presences predict resistance to 
commonly used ESBLs (such as IPM and MEM) (Fig. 3B). 
Similarly, in the E.coli samples, the presence of the ARG 
CTX-M co-occurs with the resistance to cephalosporin 
antibiotics (Fig. 3C-D). In all 3 GBS samples (12, 21, and 

134) with susceptibility tests, the presence of ARGs ermB 
and ermC predicts resistance to Macrolide, and the pres-
ence of tetO, tetM, and tetW predicts resistance to tetra-
cycline (Fig. 3E–F).

Host response genes in infectious meningitis/encephalitis
Exploring the host responses can provide insights into 
both the diagnosis and prognosis of IM. Our c-mNGS 
protocol measures both DNA and RNA at the same time 
and thus provides the ability to profile host gene expres-
sions (Fig. 1B).

To identify differentially expressed genes, we compared 
the samples of bacterial meningitis (BM; 47 samples) 
and the control (CTRL; 37 samples). We identified 1036 
DEGs (Supplementary Table 3) and found 48 enriched 
KEGG pathways by the GSEA method. The top terms 
include oxidative stress (hsa00190: Oxidative phosphor-
ylation and hsa05208: Chemical carcinogenesis-reac-
tive oxygen species) and antigen processing (hsa04612: 
Antigen processing and presentation) and immune 
responses (hsa05332: Graft-versus-host disease and 
hsa05320:Autoimmune thyroid disease) (Fig. 4A).

Similarly, 26 viral meningitis/encephalitis (VM) sam-
ples were compared to the control. Similarly, we identi-
fied 22 VM-vs-CTRL DEGs (Supplementary Table 3) 
and found 40 enriched KEGG pathways by the GSEA 
method. The top 10 pathways are shown in Fig.  4B, 
including immune rejection (hsa05330: Allograft rejec-
tion, hsa05332: Graft-versus-host disease and hsa04612: 

Fig. 3  Detections of ARGs in AB, E. coli, and GBS. (A) The ARG types and consistency of ARGs with antimicrobial susceptibility testing for AB (A-B), E. coli 
(C-D), and GBS (E-F), respectively. The full names of the antibiotics abbreviated in the figure are as follows: IPM (Imipenem), MEM(Meropenem), AMP 
(Ampicillin), CAZ(Ceftazidime), CPD (Cefpodoxime), CEZ (Ceftizoxime), CTRX (Ceftriaxone), CFPM (Cefepime), SXT (Sulfamethoxazole), TET (Tetracycline), 
ERY (Erythromycin) and CLI (Clindamycin)
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Antigen processing and presentation), and viral infec-
tions (hsa05168:Herpes simplex virus 1 infection and 
hsa05169: Epstein-Barr virus infection).

Finally, we tried to obtain several host genes that can 
distinguish BM, VM, and CTRL samples. The R package 
DaMiRseq was used to rank and select the most robust 
genes for the model (See methods), and 53 genes were 
obtained. The genes can separate the samples very well 
(Fig. 4C). And based on the 53 genes, we built a logistic 
regression 3-class model which showed high classifica-
tion performance and achieved AUC values of 0.972, 
0.967 and 0.994 for BM, VM and CTRL, respectively 
(Fig. 4D). The genes associated with the scores of BM and 

VM in the classification model can be found in Supple-
mentary Fig. 2 and some genes are knowingly associated 
with infections, such as ASRGL1, NR2F6, and OLFML3 
for bacterial infection (Fig. 4E) and STIP1, PGAM5, and 
AKAP8 for viral infections (Fig. 4F).

Using host gene expression response to detect bacterial 
contaminations
Bacterial contaminations are widespread for CSF sam-
ples, leading to false-positive diagnoses and costly, possi-
bly unnecessary treatments [36]. One strategy to identify 
potential contaminations is to examine host gene expres-
sion in a CSF sample because they are unlikely affected 

Fig. 4  Functional enrichment analysis, classification model, and biomarkers for IM. (A) The enriched KEGG pathways between BM and CTRL samples. 
(B) The enriched KEGG pathways between VM and CTRL samples. (C) The t-SNE visualization results for BM, VM, and CTRL. (D-E) The expressions of BM-
associated genes (D) and VM-associated genes (E)
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by contamination. To this end, we developed a BM/
CTRL classification model based on host gene profiling 
(Fig. 5A).

We randomly divided 82 samples (including BM and 
CTRL subjects) into training (n = 54) and test cohorts 
(n = 28). The top five differentially expressed genes 
between BM and CTRL samples were selected via the 
DaMiRseq package (See methods) and were used to 
develop a logistic regression model (LRM). The model 
performed well in both training (AUC = 0.947, sensi-
tivity = 90.6%, and specificity = 86.4%) and test cohorts 
(AUC of 0.969, sensitivity = 93.8%, and specificity = 83.3%) 
(Fig. 5B), providing a tool to rule out contaminations.

Candidate pathogens were identified in 3 CSF sam-
ples by mNGS reads (Fig. 5C), which may be subject to 
contaminations. By applying the model to these 3 CSF 
samples, we found that all the samples are infection-free 
(Fig.  5D). These results are in line with the observation 

that these samples are near-normal in biochemical indi-
cators and clinical manifestations.

Developing a model to identify BM patients with poor 
prognosis
According to the outcomes when discharged, more than 
half of BM patients (54.9%, 28/51) had poor prognosis. 
Poor prognosis is associated with complications of bac-
terial meningitis (including subdural effusion, ependymi-
tis, hydrocephalus, encephalomalacia, and brain abscess), 
withdrawal of treatment, or death [37]. To predict prog-
nosis, we developed a model based on ten differentially 
expressed genes between good and poor prognosis 
groups selected via the DaMiRseq algorithm (Fig.  6A). 
The BM samples were randomly divided into training 
(n = 33) and test cohorts (n = 18). And a logistic regres-
sion was trained from it. Finally, four genes, including 
CXXC4, XPNPEP2, IGSF1 and ND4L, were used in the 
model (Fig. 6B). As seen in Fig. 6C, the model performs 

Fig. 5  IM classification model can identify false-positive mNGS results caused by contamination. (A) The diagram of the host-pathogen combined meth-
od for contamination identification. (B) The performances of the BM/CTRL classification model. (C) The results of mNGS for 3 CSF samples with suspected 
contamination. (D) The results of the BM classification model for the above 3 CSF samples
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well in both training ((AUC = 0.88, sensitivity = 86.7% and 
specificity = 88.9%) and test cohorts (AUC = 0.78, sensitiv-
ity = 75% and specificity = 80%).

Discussion
In this study, we reported a multifaceted mNGS-based 
approach for IM diagnosis, treatment, and prognosis. 
The approach examines two central components of CSF 
samples: the pathogen and host response. By combina-
tive analyses of the pathogen and host data, our approach 
provides an advantage over traditional one in (1) detect-
ing DNA and RNA pathogens simultaneously (2), iden-
tifying antibiotic resistant genes (3), pinpointing sample 

contamination, and (4) predicting prognosis. For exam-
ple, our approach identified pathogens missed by stan-
dard clinical diagnostics, such as those in samples 48, 94, 
and 100.

Additionally, our approach also identified antibiotic 
resistant genes (ARGs), offering the potential to enhance 
antibiotic usage stewardship. For some commonly used 
antibiotics, the detected ARGs were highly consistent 
with resistance to antibiotics. For example, we detected 
the ARG blaCTX-M in two E. coli samples (6 and 133) 
and the samples seemed sensitive to the drug cepha-
losporin (Fig.  3D). Similarly, we detected ARGs ermB 
(ermC) and tetO (tetM) in 2 GBS samples (16 and 125) 

Fig. 6  The logistics regression model for predicting BM prognosis. (A) The expressions of poor prognosis-related genes. (B) The performance of the BM 
prognostic risk prediction model in training and validation cohorts. (C) The expressions of CXXC4, XPNPEP2, IGSF1, and ND4L genes in poor and good 
prognosis samples
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which are predicted to be resistant to Tetracycline and 
Macrolide (Fig.  3F). However, the identified ARGs in 
some cases did not match well with antibiotic testing 
results, which could be due to inaccurate annotations of 
ARGs and/or other unknown mechanisms, such as other 
resistance mutations; this topic needs further research 
[38, 39].

The host gene expression analysis also provides us 
another angle to diagnose IM. In particular, we identified 
differentially expressed genes in BM and VM samples, 
and these genes are associated with different functional 
categories. For instance, BM genes are particularly asso-
ciated with oxidative stress, in line with previous reports 
that oxidative stress played an important role in the 
pathophysiology of pneumococcal meningitis [40]. Some 
overexpressed genes in BM samples are associated with 
infections, such as ASRGL1, NR2F6, and OLFML3 for 
bacterial infection (Fig. 4D). OLFML3 may be associated 
with immune responses against bacterial clearance [41]. 
OLFM4, a closely related member of OLFML3, could 
regulate proinflammatory responses to kill bacteria such 
as Staphylococcus aureus [42]. NR2F6 encoded a nuclear 
orphan receptor, which is involved in antigen-specific 
CD8 + memory formation after bacterial infection [43].

In contrast, VM genes are mainly enriched in immune 
rejection (hsa05330: Allograft rejection, hsa05332: Graft-
versus-host disease and hsa04612: Antigen processing 
and presentation), and viral infections (hsa05168:Herpes 
simplex virus 1 infection and hsa05169: Epstein-Barr 
virus infection). Specifically, STIP1, PGAM5, and AKAP8 
were over-expressed in VM samples and associated with 
viral infections. STIP1 could help to facilitate substrate 
transfer between the Hsp70 and Hsp90 molecular chap-
erones, which function as broad host factors for viral 
protein folding [44]. PGAM5 is an important regulator in 
antiviral responses by regulations of IFNβ production via 
TBK1/IRF3 signaling pathway [45]. AKAP8 was among 
the top pro-viral factors for SARS-CoV-2 infections [46]. 
These BM/VM-specific genes may be used to distinguish 
BM, VM, and CTRL samples, assess the likelihood of 
infectious meningitis, and guide empiric antimicrobials 
at admission.

Given the capability to examine host gene expression, 
our approach provides a solution to detect contamina-
tion, because in contaminated samples host responses 
are not expected. Our model based on BM-differentially 
expressed genes can detect contamination without clini-
cal reference data and improves the accuracy of the tradi-
tional methods based on biochemistry.

By monitoring the host gene expression, we can also 
predict prognosis better. The existing prognostic mod-
els are mainly based on traditional clinical and labora-
tory indicators. For example, CSF sugar < 1 mmol/L and 
CSF protein > 2 g/L were reported to be independent risk 

factors for the poor prognosis of neonatal bacterial men-
ingitis [47]. Five laboratory and clinical indicators (CSF 
culture positivity, CSF white blood cell count, hemoglo-
bin, Glasgow Coma Scale, and pulse rate) were strongly 
associated with poor outcomes and used in prognosis 
prediction of adult bacterial meningitis with a sensitiv-
ity of 71.7% and a specificity of 63.1% [48]. We have con-
structed a BM prognostic prediction model using host 
gene response. Several genes, including CXXC4, XPN-
PEP2, IGSF1, and ND4L, are selected for the model via 
Lasso regression. CXXC4 can recruit TET2 to methylate 
CpG sites at promoters and CGIs in genomic DNA [10]. 
Pathogens can alter DNA methylation and regulate the 
expression and function of DNA methylation modifiers 
such as TETs and DNMTs, resulting in altered expression 
of important host genes involved in immune responses 
[49]. IGSF1 encodes an Ig superfamily glycoprotein on 
plasma membrane and can perform important functions 
on various immune cells [50]. XPNPEP2 may be involved 
in vasodilation and innate antiviral responses [51]. ND4L 
encoded a structural subunit of the mitochondrial respi-
ratory chains. Recent findings emphasize the emerging 
role of the mitochondrion as a critical intracellular sig-
naling platform regulating innate immune and inflamma-
tory responses to pathogens [52].

Conclusion
This study developed a comprehensive mNGS-based 
pipeline by simultaneously detecting two core ele-
ments of IM infections: DNA/RNA pathogen and host 
response. Our pipeline achieved not only accurate detec-
tion of DNA/RNA microbes but also broadened various 
clinical applications, including antibiotic resistance pre-
diction, BM/VM classification, contamination detection, 
and prognosis prediction, with comparable cost to tradi-
tional mNGS, which may be emerging as a routine pro-
tocol for infectious meningitis. As our study is from one 
hospital only, it is essential to test our approach on the 
data from other hospitals where the spectrum of infect-
ing organisms as well as patient demographics and health 
care settings may vary [53].
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