
Li et al. Journal of Translational Medicine          (2024) 22:549  
https://doi.org/10.1186/s12967-024-05369-3

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine
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Abstract 

Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. 
However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we inves‑
tigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found 
that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvi‑
ronment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), 
the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential onco‑
genic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-
cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used 
to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhib‑
ited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features 
of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits 
the Epithelial–mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate 
the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.

Highlights 

1.	 Tight junctions are involved in malignant transformation of intestinal epithelial cells.
2.	 Gap junctions are involved in malignant transformation of fibroblasts.
3.	 LMOD1 is identified to resembles tight junctions in the epithelium and is similar to gap junctions in the stroma.
4.	 LMOD1 regulates FGF1 expression in  the  stroma to  promote tumorigenesis and  is  regulated by  AKAP12 

in the epithelium to inhibit tumorigenesis.
5.	 LMOD1 is associated with low immunotherapy response rates in colorectal cancer patients.
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Graphical Abstract

Introduction
Colorectal cancer (CRC) is the third most common can-
cer and the leading cause of death among gastrointesti-
nal tumors worldwide [1]. Although chemoradiotherapy 
is an effective option for CRC, the overall prognosis for 
patients remains unsatisfactory [2]. Recently, the stand-
ardized implementation of tumor immunotherapy and 
targeted therapies, especially immune checkpoint block-
ades (ICBs), has greatly prolonged patient survival [3]. 
However, a significant proportion of patients do not 
respond to ICBs, which is often accompanied by various 
degrees of adverse effects [4, 5]. Considering the individ-
ualized significance of cancer treatment, there is a need 
for more effective and precise treatment protocols. It is 
well documented that cancer cells’ survival depends on 
the tumor microenvironment (TME), which is essentially 
involved in the response rate to immunotherapy, and the 
impressive heterogeneity of the TME poses a great diffi-
culty in treatment [6, 7]. Patients with tumor-infiltrating 

lymphocytes (TILs) with difficulty in effectively infiltrat-
ing the tumor do not significantly respond to ICBs [8, 9].

Cellular communication (CC) is a pervasive biologi-
cal mechanism by which cells are influenced by signaling 
pathways and physical parameters in their environment 
during development and disease [10, 11]. Recently, the 
association between CC and cancer has been well dem-
onstrated [12–14]. It has been shown that weakening of 
tight junctions (TJs) is essential for cancer cells to turn 
on the epithelial–mesenchymal transition (EMT) pro-
gram, whereas increased expression of claudin (CLDN) 
proteins decreases the cancer cell’s ability to invade and 
metastasize [15, 16]. Hulikova et  al. demonstrated that 
tumor-stromal cell interactions influence cancer progres-
sion and fibroblasts help cancer cells maintain a favorable 
pH, which is necessary for cancer cells’ ability to prolif-
erate and invade, through the formation of gap junctions 
(GJs) between them [17]. Understanding the mechanis-
tic basis of intercellular communication during tumor 
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progression is fundamental to inhibiting cancer cell 
metastasis.

The aforementioned studies involved only one or two 
molecules associated with CC, but the heterogeneity of 
TME is the result of multiple, deeply interrelated mole-
cules. Currently, there is no comprehensive study on the 
tumor CC profile of TME, and the heterogeneity of CC 
molecules in tumors remains undetermined. It has been 
indicated that during tumor formation, TJ molecules are 
in an expression-deficient state, inhibiting most cancer 
cells from forming dense TJ structures, which may be 
related to genomic regulation and upstream molecular 
signaling [18, 19]. Therefore, analyzing the temporal and 
spatial characteristics of gene expression in tumors and 
understanding the correlation between various CC mol-
ecules and TME are important for determining the spe-
cific effects of CC on tumors.

The present study analyzed the gene expression het-
erogeneity of 47 CC molecules in The Cancer Genome 
Atlas (TCGA) pan-cancer database and compared nor-
mal and tumor tissues. The data indicated that genomic 
variants affected the expression of CC molecules. We 
first explained the spatiotemporal heterogeneity of CC 
molecules in tumor progression and linked CC molecules 
to the immune profile of the TME using transcriptomic 
information in TCGA-CRC. The results revealed that CC 
has a significant impact on the TME. We identified leio-
modin 1 (LMOD1)—a potential regulator of the CC phe-
notype with biphasic features of both GJs and TJs. It was 
confirmed that LMOD1 is a factor in poor immune infil-
tration of CRC and can be used to develop new targeted 
drugs to improve immunotherapy response rates.

Materials and methods
All the antibodies and reagents utilized in this study are 
listed in the Supplemental Material (Table S1). Antibody 
concentrations utilized were per the instructions pro-
vided by the relevant company or as indicated in the lit-
erature. Furthermore, all details regarding data analyses, 
participants’ inclusion/exclusion parameters, tables, fig-
ures, etc. are presented as supplementary data.

Public datasets
A total of 620 CRC samples were acquired from the Uni-
versity of California Santa Cruz (UCSC) website [20] and 
included gene expression, clinical, and mutation data. 
TCGA-CRC gene expression profiles (Fragments Per 
Kilobase of transcript per Million mapped reads [FPKM] 
values) were transformed into Transcripts Per kilobase 
Million (TPM) using R software. R software was used 
to construct the data matrix for further analysis of gene 
expression data. In addition, some TCGA data analyses 
were performed using the GSCALite web tool [21].

The spatial transcriptome (ST) data were obtained 
from the Gene Expression Omnibu (GEO) database. The 
normal intestinal and CRC tissue ST data can be accessed 
through GEO under accession numbers GSE158328 [22] 
and GSE206552 [23]. The “SpatialDimplot” function from 
the “Seurat” package was used to obtain the position 
information of each gene.

The Genetic Perturbation dataset GSE147739 was 
retrieved from genetic perturbation similarity analysis 
database (GPSAdb) (gene: LOMD1; cell line: SW480) 
[24]. Relevant transcriptomic analyses were also com-
pleted based on this database.

Survival and expression analyses
The “survival” package in R and the public dataset were 
utilized for mortality analysis. The assays comprised 
overall survival (OS), progression-free interval (PFI), 
and disease-specific survival (DSS). Furthermore, a 
paired t-test was carried out to elucidate the differences 
in TCGA-CRC among paired samples, and the data was 
visualized via the “ggplot2” package [25].

Consensus clustering
Data on molecules of TJs and GJs from the Human 
Genome Organization (HUGO) portal are summarized 
in Table  S2 [26]. Furthermore, clustering analysis was 
performed on the expression profiles of 47 molecules to 
identify CC phenotypes that are linked to CRC and strat-
ify CRC patients. Moreover, the most ideal CRC-cohort 
clustering quantity was established via the consensus 
clustering algorithm, and then its stability was validated. 
All the analyses were performed while employing the R 
package “ConsensusClusterPlus” and were repeated 50 
times with an 80% resampling rate [27].

Screening of CRC‑related differentially expressed genes 
(DEGs)
CRC-associated DEGs were identified using the “limma” 
package and ranked by absolute log2 fold change (FC) > 2 
and P < 0.05. Significant DEGs were assessed in the sub-
sequent analyses [28].

Establishment of co‑expression network
The “multiscale embedded gene co-expression network 
analysis (MEGENA)” package in R [29]—a recently 
established co-expression module analysis tool with new 
advantages for efficient gene association preservation 
and large-scale co-expression plane filtering axes forma-
tion—was utilized for co-expression network analysis. 
MEGENA analysis involved the formation of a fast pla-
nar filtered network (PFN), computational identification 
of specific PFN gene pairs, aggregation of established 
PFNs for multiscale clustering analysis (MCA), and other 
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assessments. A readable document was generated for 
the acquired gene module-based largest co-expression 
network via Cytoscape for visualization and final assess-
ment. The degree values were assessed for stratifying 
the module genes for the determination of possible hub 
genes.

Immunologic evaluation
The “Cibersort” algorithm was utilized to predict TCGA-
CRC sample immune cell infiltration [30]. With the help 
of the “ggplot2” R package, a box plot was established 
that indicated the immune cell abundance differences. 
Furthermore, the scores for Tumor immune dysfunction 
and exclusion (TIDE) were also investigated [31], which 
demonstrated the potential immune checkpoint (ICB) 
blockade response in CRC patients.

Preparation of single cell suspensions from surgical 
specimen
Surgical specimens were assessed using single-cell RNA 
sequencing (scRNA-seq) to evaluate the molecular char-
acteristics and cell populations of CRC progression after 
normal mucosa developed into adenoma and eventu-
ally malignant adenocarcinoma. Normal epithelium, 
adenoma, and adenocarcinoma were selected from the 
same patient. biological replicates were performed on 
three patients, and nine samples were included. The 
study protocol was approved by the ethics commit-
tee of Jiangsu Province Hospital of Chinese Medicine, 
and informed consent was obtained from clinicians and 
patients (2021NL-206–01). Chemotherapy and radio-
therapy were not administered to the patients before 
surgery. A rapid intraoperative pathological examina-
tion was performed. All tissues were diagnosed by senior 
pathologists in the Department of Pathology. Each fresh 
specimen from surgery was subjected to subsequent pro-
tocols. The biopsy samples were sliced into small pieces 
using an Iris scissor, inoculated for 30 min in the diges-
tion solution augmented with phosphate-buffered saline 
(PBS) at 37  °C and 800 rpm, and then incubated with 
collagenase III, trypsin, and deoxyribonuclease (DNase) 
at 37 °C for 1 h. After dilution of cell suspension with 4 
mL of Dulbecco’s modified Eagles medium (DMEM), 
cells were passed via a 40-m cell mesh, spun for 5 min 
at 250g, and separated from the buoyant. Cells were 
then rinsed twice with phosphate-buffered saline (PBS). 
The cell pellet was resuspended using the solution of red 
blood cell lysis, incubated at 4 °C for 10 min, mixed with 
chilled PBS (10 mL), and centrifuged for 10 min at 250g. 
Then, the pellet was re-dissolved in PBS (5 mL) without 
magnesium or calcium and bovine serum albumin (BSA; 
0.04% w/v). The suspension (10 µL) was quantified using 

a hemocytometer under the inverted microscope using 
trypan blue to assess the number of live cells.

scRNA data processing
The 10× Genomics sequencing data were aligned and 
measured against a human reference genome (hg19) via 
the CellRanger package (version 3.1) [32]. Cells with A 
library size < 200, mitochondrial transcript ratio > 0.4, 
and gene expression < 3 were removed. The remain-
ing gene expression matrix of 20,262 cells was normal-
ized and then adjusted by regressing the total cellular 
unique molecular identifier (UMI) counts. The “FindVari-
ableGenes” function was applied to calculate highly vari-
able genes by setting the mean expression in a range of 
0.125 and 5 and the quantile normalized variance > 0.5. 
Then, based on principal component analysis (PCA), 20 
essential principal components (PCs) were selected for 
uniform manifold approximation and projection (UMAP) 
dimensional reduction. All cells were clustered using the 
“FindClusters” function, and unbiased clustering yielded 
27 major clusters (the top 25 principal components with 
a resolution of 0.5), annotated into 8 main cell types by 
manual annotation (well-known cell markers).

For further analysis, violin and dot plots were estab-
lished via the “Vlnplot” and “Dotplot” functions, respec-
tively. For heatmaps, the “DoHeatmap” function was 
applied using specific genes of each cell cluster/type. 
Cell–cell crosstalk was estimated using CellChat. The dif-
ferentiation in the TME was mapped out via Monocle 3 
to generate substantial translational links between differ-
ent cell types. CytoTRACE was utilized to establish the 
differentiation potential [33].

Transmission electron microscopy (TEM)
The tissue and cell TEM was carried out per the manu-
facturer’s protocol. Specimens were dyed with 0.3% lead 
citrate and photographed via an electron microscope 
(Hitachi, Tokyo, Japan; 2500 × or 30,000 × Magnification).

Hematoxylin and Eosin (HE) staining
HE staining was used for histopathological assessment of 
tissues. Fresh samples were fixed for 24 h in 10% forma-
lin before being embedded in paraffin. Tissue slides were 
baked at 60 °C for 1 h, then deparaffinized with dimeth-
ylbenzene, hydrated with gradient ethanol, stained with 
HE, dehydrated with gradient ethanol, and mounted with 
neutral balsam. After sealing sections with neutral bal-
sam, photos were taken and analyzed using an upright 
epifluorescent microscope (Nikon, Eclipse Ni-E, Tokyo, 
Japan).
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Immunohistochemical staining (IHC)
Tissues were embedded in paraffin, sliced, and mounted 
onto slides. IHC was conducted according to a stand-
ardized protocol [34]. IHC score, also known as the 
H-score, was calculated as previously described [35]. Two 
pathologists independently performed the pathological 
diagnosis.

Multicolor immunofluorescence and co‑expression 
analysis
The multicolor immunofluorescence assessment was 
based on the tyramide signal amplification (TSA) sys-
tem. Briefly, the sliced tissue specimens were dewaxed, 
rehydrated, treated for heating-induced epitope retrieval 
(HIER) with hydrogen peroxide, blocked using 3% BSA to 
inhibit nonspecific interaction, and labeled with primary 
antibodies and horseradish peroxidase-conjugated anti-
rabbit secondary antibodies and fluorescent tyramide 
consecutively. Then, sections were treated for HIER, BSA 
blocking, and antibody staining. Next, nuclei were dyed 
with 4,6-Diamidino-2-phenylindole (DAPI) and imaged 
under a fluorescence microscope (Nikon, DS-QilMC, 
Tokyo, Japan).

Cancer‑associated fibroblasts (CAFs) and normal 
fibroblasts (NFs) isolation
Primary human colorectal CAFs and NFs were separated 
as previously described [36]. NFs were separated from a 
normal colon approximately 20 cm from the tumor, and 
CAFs were extracted from a moderately differentiated 
adenocarcinoma from a surgical specimen of the same 
patient. The two tissues were sliced into about 1  mm3 
pieces and washed thrice with PBS and antibiotics (peni-
cillin [100  U/ml], streptomycin [100  µg/ml], and genta-
mycin [50  µg/ml]). Next, 0.1% type III collagenase with 
deoxyribonuclease (DNase) I (30  U/ml) was utilized for 
tissue digestion at 37  °C for 0.5  h in a water bath, fol-
lowed by filtering via a 70‐μm filter to remove undigested 
debris, and then centrifuged briefly. CAFs and NFs were 
cultivated in supplemented DMEM (10% fetal bovine 
serum [FBS], 100U/ml penicillin, 100 µg/mL streptomy-
cin) at 37 °C with 5% CO2. The characteristics of tissue-
derived fibroblasts were verified by their morphology and 
the expression of fibroblast markers and cell morphology. 
The precise details are given in the Supplemental Mate-
rial Fig. S1.

Cell culture
The human CRC RKO (Cat: TCHu116) and SW480 (Cat: 
SCSP-5033) cell lines were acquired from a 113-cell 
repository of the China Academy of Sciences (Shang-
hai, China) and propagated in DMEM augmented with 
10% FBS. All cells were cultured in 5% CO2 at 37  °C. 

Moreover, the identity of the cell lines was confirmed and 
the cell’s mycoplasma contamination was successfully 
carried out using the short tandem repeat (STR) profiling 
method.

Lentiviral vector and plasmid construction 
and transfection
All plasmids and lentiviruses were designed and con-
structed by GeneChem. Detailed information on the 
construction of various plasmids and the production of 
lentiviruses and plasmids is presented in Supplemental 
Tables S3–6 and S7–10. The transfection protocol was 
carried out per the manufacturer’s protocol. The accu-
racy of transduction, knockdown, and overexpression 
was assessed via western blotting (WB) (Figure S2A-B). 
The protocol with the highest transfection effectiveness 
was selected.

Establishment of a co‑culture unit
For tumor/CAF co-culture analysis, the passage number 
of primary CAFs of < 11 was utilized. A transwell tech-
nique was applied to propagate CRC cells and CAFs in 
a non-contact co-culture unit. The cultural media was 
refreshed once every 48 h. After 5 days, cells were har-
vested from the bottom compartment for subsequent 
analysis [37].

Wound healing assay
The RKO and SW480 cells were propagated for the 
wound-healing assays to assess migration capabilities. 
Cells (4 × 105/well) in 6-well plates were propagated for 
24 h in a serum-free medium. Then the medium was 
discarded, and wounds were created in the cell layer 
using a 200-μL pipette tip. The wound healing rate was 
assessed at 0, 12, and 24 h under a phase-contrast micro-
scope (Olympus CKX 41, Olympus, Hachioji, Japan) at 
200 × magnification.

Transwell assay
A transwell assay was carried out to assess the inva-
sion ability of the cells as previously described [38]. 
Cells (5 × 104) were propagated in DMEM (200  μL) in 
the upper chambers of transwell 24-well plates with a 
pore size of 8 µm. A chemoattractant was inoculated 
in a medium (500  μL) augmented with 10% FBS in the 
lower chambers. Matrigel was laminated on the transwell 
chambers. After 24 h of co-culturing, the upper transwell 
chamber was rinsed using 1% PBS, and the chambers 
were preserved for 15 min with 4% paraformaldehyde 
before staining with 0.1% crystal violet. Cells that invaded 
the lower chambers were imaged under a phase-contrast 
microscope (Olympus, CKX 41, Hachioji, Japan), and 
cells were quantified using ImageJ.
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WB assay
The WB assay was performed as previously described 
[27]. The radioimmunoprecipitation (RIPA) buffer was 
utilized for cell lysis to acquire proteins, which were 
quantified via Bradford assay. Approximately 20 µg of 
each sample was isolated by sodium dodecyl-sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) (8 or 
10%), transplanted on the polyvinylidene fluoride (PVDF) 
membrane, blocked in BSA (5%), probed with appropri-
ate primary antibodies at 4  °C overnight, rinsed thrice 
using Tris-buffered saline + Tween-20 (0.05%), and then 
labeled with the corresponding secondary antibodies. 
β-actin/GAPDH proteins were utilized as reference.

Xenograft tumor model
The in-vivo experiments were authorized by the Animal 
Ethics Committee of Jiangsu Province Hospital of Chi-
nese Medicine (2022DW-10–01). This research followed 
the Animal Research: Reporting of In Vivo Experiments 
(ARRIVE) guidelines (https://​arriv​eguid​elines.​org). Nude 
male BALB/c mice (4 weeks old, 18–22 g) were bought 
from Beijing Weitong Lihua Experimental Animal Tech-
nology Co., Ltd. (Certificate No. SYXK2019-0010). The 
mice were subcutaneously administered in the right arm-
pit with CAFs (2 × 106) and SW480 (2 × 106). CAFs were 
stably transfected with sh-LMOD1, oe-LMOD1, small 
interfering RNA targeting fibroblast growth factor 1 (si-
FGF1), and normal control (NC) cells. To explore the 
tumor-promoting potential of the A-kinase anchor pro-
tein 1 (AKAP12)/LMOD1 axis in  vivo, SW480 (4 × 106) 
was inserted in the right flank of nude mice. SW480 cells 
were stably transfected with sh-AKAP12, oe-AKAP12, 
oe-LMOD1, and NC. Six mice were used for each experi-
mental group. After 7 days, the existence of tumors was 
identified. The largest and smallest diameters of the 
tumor were assessed twice weekly, and on day 28, mice 
were sacrificed using CO2 according to the American 
Veterinary Medical Association (AVMA) Guidelines 
for Humane Animal Euthanasia [39]. The sera were col-
lected, and tumors were sampled for volume analysis 
using the following formula: V = 1/2ab2 (“a” and “b” rep-
resent tumor length and width in mm). Growth curves 
were generated.

Statistical analysis
The correlation between variables was assessed using the 
Pearson and Spearman correlation coefficients. The sta-
tistical significance of non-normally and normally dis-
tributed variables was assessed using the Mann–Whitney 
U test (also called the Wilcoxon rank sum test) and t-test, 
respectively. Kruskal–Wallis and one-way ANOVA tests 
were applied for inter-group comparison. Furthermore, 
the contingency table was elucidated using a two-sided 

Fisher’s exact test. The Kaplan–Meier method was 
applied to generate survival curves for subgroups, and 
statistically significant differences were elucidated using 
the log-rank (Mantel-Cox) test. The hazard ratio (HR) 
was identified using the univariate Cox proportional haz-
ard regression model. All statistical analyses were carried 
out using R, with a P < 0.05 (two-tailed) depicting signifi-
cant differences.

Results
Single‑cell atlas of epithelial tissue, intestinal adenoma, 
and CRC​
To characterize colorectal precancerous and malignant 
lesions, 9 biopsies were performed, comprising 3 pairs of 
normal intestinal epithelial biopsies (3 cases), adenoma 
biopsies (3), and CRC biopsies, respectively, from the 
same patient (Figure S3A, Table  S11). All CRC samples 
were pathologically diagnosed as moderately differenti-
ated (G2), and no other primary tumors were found. For 
each sampling, individual cells were selected without 
prior cell filtering, and sequencing data were generated 
using a 10X chromium platform. After removing low-
quality cells, 20,262 high-quality cells were retained for 
subsequent analysis. To assess different cell types based 
on gene transcription profiles, downscaling and unsu-
pervised cell clustering were carried out using the Seurat 
package after removing the batch effect among multiple 
samples. As shown in t-distributed stochastic neighbor 
embedding (t-SNE) and UMAP, 26 major cell clusters 
were finally identified in all samples (Figure S3B), which 
were then defined as single-cell transcriptome profiles 
of normal-precancerous lesions and CRC. These clusters 
were categorized by marker genes into eight known cell 
lines: T cell (marked by CD3D), plasma B cell (marked 
by MS4A1), monocyte (marked by S100A9), epithelia 
cell (EC, marked by EpCAM), follicular B cell (marked 
by MZB1), Macrophage (marked by CD14, CD163, and 
CD68), mast cell (marked by KIT), and fibroblast (marked 
by DCN) (Figure S3C-D). In addition to the typical cell 
type indices, other genes that marked each cell type were 
identified (Fig. S3E). The distribution of different sam-
ples and different tissue types on UMAP, respectively, is 
depicted in Fig. S3F and G. Each cell lineage proportion 
considerably differed among different samples (Fig. S3H), 
suggesting strong heterogeneity.

Genetic characterization and transcriptional variation 
of CC
The stability of the tissue microenvironment depends on 
the mutual communication of different cells, and various 
mechanisms have evolved for this purpose, of which the 
most direct and efficient is through channels that directly 
connect the cytoplasm of neighboring cells [40, 41]. TJs 

https://arriveguidelines.org
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and GJs are the two most classical modes of communica-
tion, and their dysfunction is associated with the develop-
ment of various diseases, especially tumors [42, 43]. Our 
previous study showed that gap junction protein alpha 4 
(Cx43, also named GJA4) is lowly expressed in normal 
intestinal mesenchymal tissues but highly expressed in 
CRC mesenchymal tissues and may impair the survival of 
CRC patients through CAF-related pathways [44]. Build-
ing on this finding, we further incorporated TJs into our 
analysis to explore the significance of CC in CRC from a 
more comprehensive perspective.

Information on the 47 CC molecules was acquired 
from the HUGO gene Nomenclature Committee portal, 
including 24 GJ proteins (connexins and pannexins) and 
23 TJ proteins (CLDNs). The localization and regulatory 
mechanisms of CC in the TME are presented in Fig. 1A. 
To detect genetic variation in cancer cell communication 
molecules, 1,482 samples were selected with at least one 
mutation per 47 CC molecules in the TCGA pan-cancer 
dataset. The oncoplot revealed the most frequent somatic 
mutations linked with 10  CC molecules in pan-cancer 
tissues. Of the 1482 samples, mutations were found in 
753 cases, with a mutation frequency of 50.84%. It was 
revealed that GJA8 exhibited the highest mutation fre-
quency (11%), followed by GJA10 (10%) and GJA1 (7%). 
Moreover, missense mutation was the most frequent 
nutation, and ovarian cancer (TCGA-OV) was the most 
frequent mutated cancer (Fig. 1B). Considering that only 
14 types of cancer indicated > 10 paired tumors and nor-
mal samples, transcriptome differential expression was 
compared between these cancers. Further analysis of 
messenger RNA (mRNA) levels of the 47 CC molecules 
revealed that the expression of various genes was reduced 

in several tumor tissues, including CLDN5, CLDN11, 
GJD3, CLDN19, and CLDN20 (Fig.  1C). These findings 
indicated that genetic variation is one of the essential fac-
tors that influence CC expression. Most cancers revealed 
a positive relationship between copy number variant 
(CNV) and mRNA expression levels, especially PANX1 
(Fig.  1D). Intriguingly, mRNA expression levels were 
negatively associated with DNA methylation in a subset 
of cancer types, with an opposite trend in another sub-
set (Fig.  1E). In addition, the prognostic significance of 
different CC molecule expressions varied across differ-
ent types of tumors (Fig. 1F). Meanwhile, transcriptional 
patterns of CC molecules were markedly heterogeneous 
in normal and various cancer samples, suggesting a cor-
relation between aberrant expression and transcriptional 
variants.

Due to the previous research base, the present study 
focused on CRC [44]. The TCGA database revealed 
substantial co-mutations between CLDN23 and GJB6, 
CLN23 and GJB7, CLDN14 and CLDN11, CLDN7 and 
CLDN17, etc. (P < 0.01, Fig.  1G). Of the 544 samples, 
144 displayed CC molecular mutations, with a mutation 
frequency (26.47%). Among the 47 genes, GJA8 had the 
highest mutation frequency (4%) (Fig.  1H), which was 
the missense mutation. The correlation among CC mol-
ecules in TCGA-CRC is shown in Figure S4. To charac-
terize the localization of CC molecules at the single-cell 
level, the expression of CC molecules was scored using 
the “AddModuleScore” function of the “Seurat” pack-
age in our scRNA data. The results showed that the 
CC molecules were up-regulated in ECs (Fig.  1I, J) 
and significantly down-regulated in cancerous tissues 
(Fig.  1K), compared with normal intestinal epithelium 

Fig. 1  Comparison of expression levels of cell communication (CC) molecules. A Patterns mapped on the BioRender website to reveal 
the regulatory mechanisms of CC in tumors and their functions in the immune microenvironment of tumors. B The waterfall diagram illustrates 
the most frequent 47 CC molecule’s somatic mutations in The Cancer Genome Atlas (TCGA) pan-cancer data. 50.81% represents the proportion 
of 753 samples with at least 1 mutation of the top 10 genes among 1482 samples with at least one mutation of 47 CC genes. The percentage 
value on the right side of each line in the image indicates the number of samples with the specific gene mutation divided by 1,482 samples which 
had at least one mutation among the 47 CC genes. We label different types of CC molecules in red [gap junctions (GJs)] and blue [tight junctions 
(TJs)], respectively. C The dot’s color = degree of fold change. Red = high and blue = low expression in cancer tissue. Fold change = mean (tumor)/
mean (normal), p-values were used. Field realistic doses (FDR) was utilized for adjusting the t-test and p-value. The size of the bubble indicates FDR; 
the larger the bubble, the lower the FDR. Genes with > twofold change and significance (FDR > 0.05) were used to plot graphs. If no significant 
genes are present in a cancer type, that cancer type was not included in the final figure. D Bubble plots display the correlation between the Copy 
number variant (CNV) (D) as well as DNA methylation (E) and the expression of the mRNA levels. A positive correlation is reflected in red, 
while a negative correlation is indicated by blue. Darker colors indicate a higher correlation index. The FDR is indicated by the bubble size. F Bubble 
plots showing the results of a log-rank test of the survival of 47 CC molecules in the TCGA-CRC cohort. Red represents detrimental to survival 
and blue denotes favorable to survival. The FDR is represented by the bubble size. G The mutation profiles of 44 CC molecules in 544 CRC 
patients in the TCGA-CRC cohort; co-mutations are shown by the green, mutex-mutations are indicated by the red, and asterisks indicate P values 
(*P < 0.05,.P < 0.01). H Mutation frequency of 47 CC molecules in 544 CRC patients in the TCGA-CRC cohort. The small graph above is the Tumor 
Mutational Burden (TMB), and the numbers on the right indicate the mutation frequency of each gene and provide the proportion of each variant. 
I, J Uniform Manifold Approximation and Projection (UMAP) (I) and violin (J) plot indicates the CC feature level (generated by the “AddModuleScore” 
function) across different cell types in our single cell RNA data. K Violin plot showing the CC feature level across different tissue types

(See figure on next page.)
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and intestinal adenomas. These results suggested that an 
imbalance of CC molecules may lead to CRC.

TJs are involved in the malignant transformation 
of intestinal epithelial cells (IECs)
The dynamic changes in molecular signaling during EC 
malignant transformation (a protagonist in TME) have 
attracted considerable attention [45, 46]. Our scRNA 
data showed that CC molecules had the highest expres-
sion levels in ECs compared with other cells (Fig. 1I, J). 
After subclustering all ECs, 11 distinct groups were iden-
tified (Fig. 2A). These cell fractions were assigned to four 
major cell types, including normal, adenoma, cancer, and 
normal/adenoma cells, based on the type of tissue ori-
gin of each cell (Fig. 2B–D). Specific genetic markers for 
each cell type are displayed in Fig. 2E, further reflecting 
a high degree of heterogeneity of ECs. Then, cell trajec-
tory analysis was carried out using the Monocle toolkit 
to further elucidate possible evolutionary routes between 
cell types. The pseudotime trajectory axis based on tran-
scriptional profiles revealed two distinct trajectories of 
transdifferentiation (Fig. 2F). Using CytoTRACE, Cluster 
2 (high CytoTRACE score) was identified as the normal-
lesion transdifferentiation initiation point (Clusters 2, 7, 
and 8 were predominantly derived from normal tissues, 
Fig. S5A and Fig.  2G–I). Moreover, normal IECs were 
further classified into different functional subpopula-
tions based on specific gene markers (Figure S5B). It was 
found that the two routes had distinct characteristics; 
specifically, a fraction of normal IECs (Cluster 2, Cluster 
7, and Cluster 8) transdifferentiated into adenoma cells, 
whereas another fraction (mixed with adenoma cells) 
eventually transdifferentiated into cancer cells (Fig.  2J, 
K). To characterize the function of CC during transdiffer-
entiation, CLDN3, CLDN4, and CLDN7 were selected to 
represent TJs, and GJA4, GJB1, and GJC1 were selected 

to represent GJs, respectively. Pseudotemporal expres-
sion dynamics of the representative genes showed that TJ 
levels increased and then decreased during normal-ade-
noma transdifferentiation and decreased directly during 
normal-cancer transdifferentiation. However, no change 
in both transdifferentiation routes was observed in GJs, 
which were always maintained at low levels (Figs.  2L, 
M and S6, S7). Further, multiplex immunofluorescence 
(mIF) staining of independent normal and cancer resec-
tion specimens confirmed that epithelial TJ levels were 
down-regulated in CRC tissues (as evidenced by an atten-
uated pattern of co-expression of EC-specific marker 
proteins epithelial cellular adhesion molecule [EpCAM] 
and CLDN4), whereas GJ levels did not differ signifi-
cantly between normal intestinal epithelium and CRC 
tissues (Fig.  2N–Q). Loss of CLDN expression usually 
accompanies TJ destruction during tumor progression 
and leads to the acquisition of a malignant phenotype 
in cancer cells [47, 48]. Thus, the ultrastructure of CRC 
cells was observed under TEM. Compared with normal 
controls, CRC cells exhibited reduced TJ-mediated bar-
rier formation and loose junction structures (Fig. 2R–S). 
These findings suggest that TJs are involved in the trans-
differentiation of IECs to adenoma and carcinoma cells.

GJs are involved in the malignant transformation 
of fibroblasts
CAFs are important tumor stroma components [49, 50]. 
The signaling crosstalk that develops between CAFs and 
other cells is necessary to maintain the TME [51, 52] 
(Fig.  3A, estimated using CellChat in our scRNA data). 
Here we further established the expression atlas of CC 
features in fibroblasts. Cluster analysis of all fibroblasts 
was performed, and two significant cell subpopulations 
(Cluster 0 and Cluster 1) were identified (Fig. 3B). Based 
on the proportion of single-cell tissue sources in the 

(See figure on next page.)
Fig. 2  Heterogeneous landscape of CC molecules across different lesions in epithelial cells. A–C UMAP plot of all epithelial cells, color-coded 
for eleven seurat clusters (A), three tissue types (B), and four cell types (C). D The fraction of three tissue types in four cell types. E Heatmap 
showing differentially expressed genes among the four cell types (fold change > 1.5, FDR < 0.01). F The trajectories of all epithelial cells 
constructed by Monocle 3. Each point corresponds to a single cell and is colour coded by pseudotime. G–I Box (G) and t-distributed stochastic 
neighbor embedding (t-SNE) (H, I) plot demonstrate the degree of differentiation of cluster 2, 7, and 8 (three normal epithelial cell clusters) 
assessed by CytoTRACE. J–K Monocle 3 demonstrates two trajectories of cellular differentiation present in epithelial cells, including from normal 
cells to adenoma cells (J) and from normal/adenoma cells to cancer cells (K). L, M Two-dimensional plots showing the dynamic expression 
of representative CC molecules during the epithelial cell transitions during the pseudotime. N Multiplex immunofluorescence (mIF) staining 
images of CLDN4 (green), EPCAM (pink), and GJA4 (red) in a resected normal colon specimen (blue, DAPI), and CLDN4 (for TJs) is upregulated 
in epithelial cells (marked by EPCAM). Scale bars are labeled on the graph. O mIF staining images of CLDN4 (green), EPCAM (pink), and GJA4 (red) 
in a resected colon cancer specimen (blue, DAPI), And CLDN4 (for TJs) is downregulated in epithelial cells (marked by EPCAM). Scale bars are labeled 
on the graph. P, Q Co-localization was determined using the Pearson correlation coefficient in normal colon specimens (P, R = 0.9459, P < 0.0001) 
and colon cancer specimens (Q, R = 0.5616, P < 0.0001), respectively. The co-localization relationship between CLDN4 and EPCAM was weaker 
in tumor tissue compared to that of normal tissue. The X-axis represents each pixel point on the image, and the Y-axis represents the gray value 
corresponding to each pixel point. R, S The ultrastructure of junctions was examined using transmission electron microscope (EM) in in normal 
colon specimen and colon cancer specimen. Orange arrows indicate TJs and green arrows denote GJs
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two clusters (Fig. 3C, D), CAFs were mainly represented 
by C0, indicating high expression of BGN, POSTN, and 
ACTA2, and NFs were mainly represented by C1, indi-
cating high expression of OGN, POSTN, and MFAP5 
(Fig.  3E, F). Next, gene set enrichment analysis (GSEA) 
was performed to decipher the differences in molecular 
characteristics between CAFs and NFs. Compared with 
NFs, CAFs were associated with signaling pathways such 
as cell-substrate junction, focal adhesion, actin filament 
binding, and regulation of the actin cytoskeleton (Fig. 3G, 
H). Notably, CAFs were mostly derived from NFs, which 
were recruited to the tumor region and reprogrammed 
into the former by cancer cells secreting cytokines. To 
further investigate this ongoing process, a trajectory 
analysis of CAFs and NFs was conducted (Fig. 3I). Con-
trary to the phenomenon observed in ECs, GJs but not 
TJs were involved in the transdifferentiation of NFs to 
CAFs. Specifically, GJ genes were all up-regulated during 
this differentiation, while the levels of TJ genes remained 
unchanged (Figs. 3J and S8). mIF staining of independent 
samples also confirmed that GJ protein expression was 
markedly increased in tumor mesenchymal tissues (high 
expression of actin alpha 2 [ACTA2] and low expres-
sion of cytokeratin) than in normal mesenchymal tis-
sues, whereas no difference was found in TJs (Fig. 3K–N). 
Meanwhile, a higher density of GJ channels was observed 
in the ultrastructures of tumor stroma (Fig. 3O, P, Green 
arrow). To spatially confirm these co-localization and co-
expression relationships, normal and cancerous were fur-
ther studied. Spatial transcriptomics sections from GEO 
database were distinguished between epithelium and 
stroma by pathological sections and specific gene mark-
ers (EpCAM for epithelium and ACTA2 for stroma). 
Similarly, the co-localization of TJs and parenchyma was 

weakened and the co-localization of GJs and stroma was 
strengthened in CRC compared with normal intestinal 
tissue (Fig. 3Q, R). Collectively, these data imply that GJs 
may be important in the activation of CAFs.

Unsupervised learning identified two different CC‑level 
patterns
The above results suggested that a spatiotemporal het-
erogeneity of the CC molecules existed during malig-
nant transformation. To comprehensively understand 
the integrated mechanism of the CC feature in CRC, 
unsupervised clustering was performed on 620 sam-
ples from TCGA-CRC. Two unique modification pat-
terns were identified, named Cluster 1 (C1, 525 cases) 
and Cluster 2 (C2, 95 cases) (Fig. 4A, B). PCA confirmed 
that the two clusters were distinguishable by the 47 CC 
molecule expression levels (Fig.  4C). The thermogram 
showed that TJs had lower levels but GJs had higher 
levels in C2 than in C1 (Fig.  4D). Considering previous 
findings (Figs.  2 and 3), we speculated that the stroma 
of C2 might be in a more active state, while its epithelial 
component might have a weaker malignant feature. We 
analyzed survival prognosis differences between the two 
CC subtypes, and results showed that C1 had a distinct 
and significant survival advantage, whereas C2 had a 
poorer prognosis (OS, P = 0.047; DFS, P = 0.000407; DSS, 
P = 0.00242; PFS, P = 0.535; Fig. 4E). Next, the CC pheno-
type was compared with several commonly used clinical 
indicators. It was found that most C1 patients were in the 
advanced stages, whereas most C2 patients were in the 
early stages (Fig. 4F). Notably, the abundance of stromal 
components was lower in the tumor of C1 patients and 
higher in the tumor of C2 patients (TCGA pathology 
slides, Fig.  4G). The “ESTIMATE” method showed that 

Fig. 3  The heterogeneous landscape of CC molecules across different lesions in fibroblasts. A Circle plot showing the possible ligand-receptor 
pairs between fibroblasts and other type cells (predicted by CellChat). B The UMAP plot of all fibroblasts, color-coded for two seurat clusters. 
C, D The fraction of three tissue types in two cell types showed by histogram (C) and UMAP plot (D). E All fibroblasts were defined as Normal 
fibroblasts (NFs) and Cancer-associated fibroblasts (CAFs), respectively, according to tissue origin. F Heatmap showing differentially expressed 
genes between the two cell types (fold change > 1.5, FDR < 0.01). G, H The bubble plots indicate the up-regulated gene set in NFs (G) and CAFs 
(H), differently. I Trajectory of fibroblasts constructed by Monocle 3. Each point corresponds to a single cell and is colour-coded by pseudotime. J 
Two-dimensional plots showing the dynamic expression of representative CC molecules during the fibroblast transitions along the pseudotime. K 
mIF staining images of ACTA2 (pink), CLDN4 (green), and GJA4 (red) in a resected normal colon specimen (blue, DAPI), and GJA4 (for GJs) is lowly 
expressed in normal mesenchymal tissues (marked by ACTA2). Scale bars are labeled on the graph. L mIF staining images of CK (orange), ACTA2 
(pink), CLDN4 (green), and GJA4 (red) in a resected colon cancer specimen (blue, DAPI), and GJA4 is highly expressed in cancer mesenchymal 
tissues (marked by ACTA2 and CK). Scale bars are labeled on the graph. M, N Co-localization was evaluates based on the Pearson correlation 
coefficient in normal colon specimens (M, R = 0.2692, P < 0.0001) and colon cancer specimen (N, R = 0.8806, P < 0.0001), respectively. The 
co-localization relationship between GJA4 and ACTA2 was stronger in tumor tissue compared to normal tissues. The X-axis represents each pixel 
point on the image, and the Y-axis represents the gray value corresponding to each pixel point. O, P The ultrastructure of junctions in normal colon 
specimens and colon cancer specimen was examined using a transmission electron microscope (EM). Orange arrows represent TJs, and green 
arrows represent GJs. Q, R Spatial transcription sections indicate the spatial expression of EPCAM, ACTA2, TJs markers (CLDN3/4/7), and GJs markers 
(GJA4, GJB1, and GJC1) in normal colonic tissue (Q) and colon cancer tissue (R). The dot color indicates the expression level of the markers. Green 
boxes for the parenchyma and pink boxes for the mesenchyme

(See figure on next page.)
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C2 had high stromal and immune signals (Fig. 4H), both 
of which have been shown to correlate with poor out-
comes [53, 54]. In addition, immunosuppressive stromal 
cells or abundant stroma hinder the success of immuno-
therapy. A computational method was applied to model 
the two main mechanisms of tumor immune evasion and 
tumor immune dysfunction and exclusion (TIDE) to pre-
dict the ICB response based on transcriptional profiles. 
The results showed that C2 had a significantly higher 
TIDE score than C1, suggesting that C2 patients may not 
benefit from immunotherapy (Fig. 4I, P < 0.0001). Immu-
nological estimates indicated that M2 macrophages were 
highly enriched in C2 and that M2 macrophages are a 
major modulator of immune tolerance in cancer cells 
andconfer resistance to immunotherapy (Fig. 4J).

Identification of LMOD1 as CC phenotype‑associated 
factors
Differences in the gene expression between CC subtypes 
were assessed to identify potential regulators. A total of 
157 DEGs were identified between C1 and C2 (Fig. S9A). 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) enrichment analyses revealed 
that the extracellular matrix (ECM) organization and 
collagen-comprising ECM, ECM structural constitu-
ent, and other collagen-matrigel matrix-related signals 
were significantly activated in C2 (Fig. S9B, Table  S12). 
For hallmark enrichment, C2 was enriched for a large 
set of cancer-related genes, such as PI3K_AKT_MTOR_
SIGNALING, MTORC1 SIGNALING, WNT_BETA_
CATRNIN_SIGNALING, and NOTCH SIGNLING 
(Figure S9C). Afterward, a MEGENA network was estab-
lished based on the DEGs (Figure S9D), and 8 modules 
and 157 module genes were obtained, with the largest 
module C1_5 encompassing 46 genes, followed by C1_2 
with 33 genes and module C1_11 with 27 genes (Fig. S9E, 
Table  S13). A Cox multivariable proportional hazards 
model constructed based on hub genes indicated that 
COL1A2, LMOD1, and MYH11 were significant adverse 

factors for CRC (Fig. S9F–H, TCGA-CRC, PFI, P < 0.05). 
Considering the very limited number of studies on 
LMOD1 in CRC, the current study focused on LOMD1, 
and Kaplan–Meier curves confirmed that LMOD1 was 
associated with a worse DSS and PFI in CRC (Fig. S9I–
K). Interestingly, there was a low expression of LMOD1 
in the CRC samples compared with the controls (Fig. 
S9L, P < 0.001). We further analyzed the difference in 
LMOD1 gene expression among different clinical stages 
of CRC cases in the TCGA-CRC cohort and found a posi-
tive correlation (Figure S9M–P; T stage, P < 0.05; N stage, 
P < 0.01; M stage, P < 0.05; Pathologic stage, P < 0.05). 
Next, a network of LMOD1-related genes was generated 
in the GeneMANIA (http://​www.​genem​ania.​org) and 
found a close link between LMOD1 and mesenchymal-
related genes, such as ACTA2, ITGA1, and ACTG2 (Fig-
ure S9Q). Overall, these results indicated that LMOD1 
may be an important oncogene.

LMOD1 resembles TJs in the epithelium and GJs 
in the stroma
Furthermore, we explored the possible connection 
between LMOD1 and CC features. Trajectory analy-
sis (our scRNA data) showed that LMOD1 was not 
involved in the transformation of normal epithelium 
into adenomas (Figs.  5A and S10A). Meanwhile, for 
the malignant transformation of ECs, the sequence 
of LMOD1 expression changes was similar to that of 
TJs; for malignant transformation of fibroblasts, the 
sequence of LMOD1 expression changes was in line 
with that of GJs and indicators of CAFs activation 
(Figs.  5B, C, S10B, and S11). This interesting pat-
tern is summarized in Fig.  5D. mIF staining of inde-
pendent samples confirmed that for the epithelium, 
LMOD1 expression was lower in cancer tissues than 
in healthy tissues (Fig. 5E–H); the opposite result was 
observed for the stroma (Fig.  5I–L). In addition, we 
described the spatial distribution of LMOD1 in the 
parenchyma and stroma of CRC tissues in the ST data 

(See figure on next page.)
Fig. 4  Unsupervised Machine Learning algorithms used to identify 2 molecular subtypes in TCGA-CRC. A Heat map showing the sample clustering 
at K = 2 (the optimal cluster number) in TCGA-CRC. B Left: The cumulative distribution function (CDF) curve in consensus cluster analysis. The 
consensus score’s CDF curves with various subtype numbers (k = 2, 3, 4, 5, and 6) are shown. Right: Relative change in area under the CDF curve 
for k = 2–6. C The TCGA-CRC samples were classified via Principal Component Analysis (PCA) based on the CC molecules expression profile. Different 
colors = C1 and C2 subtypes, respectively. Each point is a single sample. D The distribution of 47 CC molecules between two subtypes in TCGA-CRC. 
GJs molecules are upregulated in C2 and TJs molecules are upregulated in C1. E Survival analysis in terms of Overall Survival (OS), Disease-Specific 
Survival (DSS), Progression-Free Survival (PFS), and Disease-Free Survival (DFS) based on 2 subtypes (TCGA-CRC, Logrank test, n = 620). F The Sankey 
diagram completely showing the association between the subtypes and clinicopathological attributes. G Representative images of pathological 
Hematoxylin–eosin (HE) staining of 2 CC phenotypes (above, scale bars = 500 μm; below, scale bars = 50 μm). C2 contained a more abundant 
matrix component than C1. H Violin plots showing the immune score and stromal score of different CC patterns (Wilcoxon test). I The box plot 
indicating the Tumor Immune Dysfunction and Exclusion (TIDE) score of different CC patterns (Wilcoxon test). J Comparison of TME infiltrating cells 
between the two CC phenotypes (Wilcoxon test). ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05

http://www.genemania.org
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(GEO database). As expected, LMOD1 expression dis-
appeared in the parenchymal component of the tumor 
(compared with normal parenchyma), whereas it was 
relatively increased in the tumor stromal component 
(Fig. 5M, N), as summarized in Fig. 5O. Subsequently, 
the Tumor Immune Estimation Resource (TIMER) tool 
and “ESTIMATE” package were employed for further 
quantification in TCGA-CRC. The results revealed a 
marked positive association between LMOD1 expres-
sion and CAF infiltration level (colon adenocar-
cinoma [COAD], R = 0.719, P = 5.96e−45; rectum 
adenocarcinoma [READ], R = 0.516, P = 2.00e−07), and 
a significant negative correlation with tumor purity 
(R = −  0.354, P = 1.98e−13) (Fig.  5P). As depicted in 
Fig. 5Q, LMOD1 expression was significantly positively 
correlated with all the scores, especially the stromal 
score (R = 0.749, P < 0.001). Subsequently, we selected 
ACTA2 (Fig.  5R, TCGA-CRC, R = 0.884, P < 0.001) 
and fibroblast activation protein (FAP, Fig. 5S, TCGA-
CRC, R = 0.677, P < 0.001) as markers of CAF activa-
tion. Human primary CAFs were successfully isolated, 
and it was confirmed in vitro that LMOD1 overexpres-
sion significantly promoted the expression of ACTA2 
and FAP, whereas down-regulation of LMOD1 demon-
strated the opposite result (Fig. 5T, U, P < 0.001).

Fibroblast‑expressing LMOD1 promotes cancer invasion 
through FGF1
Since LMOD1 may play distinct roles in the epithelium 
and stroma, we investigated LMOD1 function in fibro-
blasts and ECs, respectively. A correlation assay indicated 
that LMOD1 was positively correlated with most fibro-
blast growth factors (FGFs) (Fig. 6A, TCGA-CRC), espe-
cially FGF1 (Fig.  6B, TCGA-CRC, R = 0.730, P < 0.001). 
FGF1 has been shown to play an important role in the 
expansion of CAFs by suppressing the transcription of 
tumor protein p53 (TP53) and triggering tumor fibrosis 
[55]. Importantly, CAFs form signaling crosstalk with 
cancer cells to support tumor growth. NFs co-evolve 
with cancer cells and transform into CAFs, and CAFs 
secrete cytokines to induce cancer cell survival [56]. 
Since we confirmed that LMOD1 promotes the activa-
tion of CAFs, we further investigated whether LMOD1 
could stimulate cancer cell invasion through the above 
mechanism. A CAF-cancer cell co-culture model was 
established as shown in Fig.  6C. Under co-culture with 
oe-LMOD1-treated CAFs, RKO and SW480 cells exhib-
ited more potent migration ability, and this effect was 
partially reversed by si-FGF1 (Fig. 6D, E, wound healing, 
P < 0.0001). Next, transwell experiments were performed 
in the model (Fig.  6F), which showed that LMOD1-
treated CAFs affected the invasion ability of cancer cells 
(Fig.  6G, H, P < 0.01). Correlation analysis revealed that 
LMOD1 may have a regulatory function on EMT-related 

Fig. 5  Transcriptional landscape heterogeneity of LMOD1. A Two-dimensional plots illustrating the invariabilities in LMOD1 expression 
during the transitions (from normal cells to adenoma cells) along the pseudotime. B Two-dimensional plots showing the variations (decrease) 
in LMOD1 expression during the transitions (from normal/adenoma cells to cancer cells) along the pseudotime. C Two-dimensional plots indicating 
the variations (increase) in LMOD1 expression and fibroblasts activation markers during the transitions (from NFs to CAFs) along the pseudotime. 
D LMOD1 is involved in transdifferentiation from normal epithelium to colorectal cancer but not from normal epithelium to intestine adenomas 
(grey⊥stands for no change; purple↓stands for decrease). E, F Double immunofluorescence (dIF) staining images of EPCAM (green) and LMOD1 
(red) in a resected normal colon specimen (E) and a resected colon cancer specimen (F) (blue, DAPI). LMOD1 is upregulated in normal epithelial 
cells but downregulate in cancer cells. Scale bars are provided on the graph. G, H Co-localization was determined using the Pearson correlation 
coefficient in normal colon specimen (G, R = 0.5367, P < 0.0001) and colon cancer specimen (H, R = − 0.5860, P < 0.0001), respectively. The 
X-axis represents each pixel point on the image, and the Y-axis represents the gray value corresponding to each pixel point. The co-localization 
relationship between LMOD1 and EPCAM was weaker in tumor tissue compared to that of normal tissue, just like TJs. I dIF staining images 
of ACTA2 (green) and LMOD1 (red) in a resected normal colon specimen (blue = DAPI), and LMOD1 downregulated in NFs. Scale bars are labelled 
on the graph. J mIF staining images of ACTA2 (green), LMOD1 (red), and CK (pink) in a resected colon cancer specimen (blue = DAPI), and LMOD1 
is upregulated in cancer mesenchymal tissues. Scale bars are provided on the graph. K, L Co-localization was determined using the Pearson 
correlation coefficient in normal colon specimen (K, R = 0.7930, P < 0.0001) and colon cancer specimen (L, R = 0.9290, P < 0.0001), respectively. 
The co-localization relationship between LMOD1 and ACTA2 was stronger in tumor tissue compared with that in normal tissue, simile to GJs. 
The X-axis represents each pixel point on the image, and the Y-axis represents the gray value corresponding to each pixel point. M, N Spatial 
transcription sections showing the spatial expression of LMOD1 in normal colonic tissue (M) and colon cancer tissue (N). The dot color represents 
the expression level of the markers. Green boxes for the parenchyma and pink boxes for the mesenchyme. O LMOD1 exhibited similar behaviors 
as TJs during the malignant transformation of epithelial cells and to GJs in malignant transformation of fibroblasts. P Spearman correlation 
between LMOD1 expression and the tumor purity (left) as well as infiltration level of fibroblasts in Colon adenocarcinoma (COAD) (middle) 
and Rectum adenocarcinoma (READ) (right) was analyzed on TIMER 2.0 (TCGA-CRC). Q Spearman association of LMOD1 expression with stromal 
score (left), immune score (middle), and estimate score (right) was analyzed by “ESTIMATE” package (TCGA-CRC). R, S Spearman association 
of LMOD1 with fibroblast activation markers ACTA2 (R) and FAP (S) expression (TCGA-CRC). T, U Double staining technique by ACTA2 (green), 
and FAP (red) staining in the primary CAFs. Representative images of staining are shown. All assays were conducted thrice, independently (scale 
bars = 20 µm). ANOVA was applied. ****P < 0.0001

(See figure on next page.)
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markers (Fig. 6I: TCGA-CRC; CDH2, R = 0.750, P < 0.001; 
CDH1, R = 0.081, P = 0.040; MMP9, R = 0.550, P < 0.001; 
MMP2, R = 0.713, P < 0.001; SNAI1, R = 0.386, P < 0.001; 
SNAI2, R = 0.601, P < 0.001). The WB assay confirmed 
that LMOD1 up-regulation increased the levels of N-cad-
herin, matrix metalloproteinase 2 (MMP2), MMP9, Slug, 
and Snail in RKO and SW480 cells (co-cultured with 
CAFs in the pattern of Fig. 6C) but reduced the expres-
sion of E-cadherin; however, this effect was abolished 
by ectopic FGF1 expression (Fig.  6J, K). Together, these 
results suggest that LMOD1, localized on fibroblasts, is a 
proto-oncogene.

AKAP12 regulates EC‑expressing LMOD1 and inhibits 
cancer invasion
Moreover, we investigated the function of LMOD1 in 
ECs. To predict the possible regulatory mechanisms of 
LMOD1 in epithelial tissues, we searched the GPSAdb 
database and found that interfering with AKAP12 expres-
sion in SW480 cells significantly down-regulated LMOD1 
(Fig.  7A, gene perturbed data GSE147739, red box, 
P = 0.0007). In the TCGA pan-cancer database, AKAP12 
and LMOD1 were positively correlated in most cancer 
types, suggesting the prevalence of a regulatory relation-
ship between the two (Fig. 7B). Particularly, there was a 
high positive correlation between LMOD1 and AKAP12 
in COAD (R = 0.820, P < 2.2e–16) and READ (R = 0.759, 
P < 2.2e-16) (Fig.  7C). The enrichment of the differen-
tial transcriptome generated by AKAP12 knockdown 
showed that AKAP12 was negatively associated with 
the activation of multiple cancer-related signaling path-
ways (Fig.  7D, E). Additionally, the TCGA pan-cancer 
data revealed that AKAP12 expression and transform-
ing growth factor-β (TGF-β) signaling were negatively 
correlated in CRC (Fig. 7F, COAD and READ). Consid-
ering that TGF-β signaling is a classical EMT inducer, 
we believe that these data strengthen the evidence for 
AKAP12 and LMOD1 as tumor suppressor genes.

Whether AKAP12/LMOD1 signaling could inhibit 
cancer cell metastasis was then investigated in  vitro. 
Wound healing (Fig.  7G, H) and transwell (Fig.  7I, J) 

assays demonstrated that overexpression of AKAP12 
significantly inhibited cell migration and invasion, 
which was abrogated by ectopic LMOD1 expression. 
In addition, the WB assay showed that AKAP12 down-
regulation reduced E-cadherin expression in CRC cells 
but enhanced the expression of N-cadherin, MMP2, 
MMP9, Slug, and Snail; however, this effect was signifi-
cantly attenuated after the rescued of LMOD1 expression 
(Fig. 7K, L).

LMOD1 is biphasic in vivo and is associated with immunity 
to CRC​
Subsequently, the biphasic function of LMOD1 was 
validated in vivo. BALB/c mice were subcutaneously co-
injected with fibroblasts and cancer cells. To specifically 
analyze the role of CAF-derived LMOD1, primary CAFs 
were transduced with lentivirus particles to alter LMOD1 
expression and then injected subcutaneously into 
BALB/c mice mixed with untreated SW480 (Fig. 8A). It 
was found that LMOD1 overexpression significantly pro-
moted tumor growth; however, this effect was attenuated 
in mice carrying si-FGF1 tumors (Fig. 8B–D, P < 0.0001), 
confirming that LMOD1 stimulates tumor growth in vivo 
by regulating FGF1. Further, mIF staining confirmed that 
LMOD1 overexpression promoted FGF1 expression in 
mouse stromal tissue; however, this effect was not evi-
dent in parenchyma (Fig. 8E).

To specifically analyze the role of cancer cell-derived 
AKAP12/LMOD1, SW480 cells were transduced with 
lentivirus particles to alter AKAP12/LMOD1 expres-
sion and then injected subcutaneously into BALB/c mice 
(Fig. 8F). Results showed that AKAP12 interference sig-
nificantly promoted tumor growth; however, this effect 
was attenuated in mice carrying oe-LMOD1 tumors 
(Fig. 8G–I, P < 0.0001), confirming that AKAP12 inhibits 
tumor growth in vivo by regulating LMOD1. mIF stain-
ing further confirmed that interference with AKAP12 
reduced LMOD1 expression in mouse parenchyma tissue 
(Fig. 8J).

Continued activation of stromal CAFs promotes 
tumor fibrosis, which is an importantmalignant 

(See figure on next page.)
Fig. 6  LMOD1/FGF1 in CAFs promotes CRC cell invasion and metastasis by regulating the EMT process. A Correlation analysis between LMOD1 
and fibroblast growth factors (FGFs) based on TCGA-CRC. B Pearsons’s correlation coefficient between LMOD1 and FGF1 expression based on TCGA 
data. C Non-contact co-culture unit of CAFs and CRC cells for cell migration (Wound healing assay). A 1:1 ratio of the cells was employed. D, E 
Cell migration (Wound healing assay) in RKO and SW480 cells with the intervention of CAFs over-/under-expressing LMOD1 in the presence 
or absence of si-FGF1. (Scale bars = 100 μm, magnification, × 200). F The cell invasion (Transwell assay) assay for non-contact co-culture unit 
of CAFs and CRC cells. A 1:1 ratio of the cells was employed. G, H Cell invasion (Transwell assay) for RKO and SW480 cells with the intervention 
of CAFs over-/under-expressing LMOD1 in the presence or absence of si-FGF1. (Scale bars = 100 μm, magnification, × 200). I Association of LMOD1 
with EMT-related genes based on TCGA-CRC. J, K The expression of EMT-associated proteins in RKO and SW480 cells as determined by western 
blotting (n = 3 replicates). Data are shown as mean ± SEM, ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05. All assays were replicated thrice, 
independently
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features of advanced tumors [57]. The production of 
collagen by CAFs improves the stiffness of the TME 
Matrigel matrix, creating a barrier that prevents the 
killing of cancer cells by cytotoxic T cells and promotes 
immune escape [58]. This stroma-restricted phenotype 
is referred to as an immune-exclusion tumor, which 
occurs in patients who may not benefit from immuno-
therapy and thus have poor prognosis [59]. Previous 
studies reported that LMOD1 is a positive regulator of 
CAFs activation (Fig.  5T, U). Based on previous TIDE 
studies, we extracted gene expression signatures linked 
to T cell exclusion and dysfunction. In TCGA-CRC, 
we observed a significant positive correlation between 
LMOD1 and TIDE score (Fig. 8K, R = 0.553, P < 0.001), 
indicating that LMOD1 can stimulate resistance to 
immunotherapy. Further, LMOD1 scores were assigned 
to each CRC patient in a small cohort (n = 40) based on 
the IHC staining of LMOD1 (Fig. 8L–N) to explore the 
relationship of LMOD1 expression with immunother-
apy response. The inclusion/exclusion criteria are pre-
sented in the Supplemental material. It was found that 
responsive patients had lower LMOD1 expression than 
non-responder patients (Fig. 8O, P < 0.05). Patients with 
high LMOD1 expression exhibited lower response rates 
relative to those with high LMOD1 expression (Fig. 8P). 
Moreover, analysis of imaging data revealed that 
patients with a high LMOD1 expression experienced 
earlier progression (Fig. 8Q, red arrows represent meta-
static foci). Thus, we classified all CRC samples into 
three immune subtypes: immune-inflamed, immune-
excluded, and immune-desert tumors. Notably, most 
tumors with high LMOD1 expression were immune 
exclusion tumors, whereas those tumors with low 
LMOD1 expression were immune inflamed and 
immune desert tumors (Fig.  8R, T). This confirms our 
previous inference that LMOD1 can inhibit immune 
infiltration.

Discussion
As with multicellular organisms, the basic functional unit 
of a tumor is the individual cell, which sends and receives 
signals from its neighbors to maintain the malignant 
character of cancer cells [60]. Cell-to-cell communication 
during this process is a key mechanism leading to TME 
heterogeneity [61]. In particular, specialized cell surface 
protein complexes (TJs and GJs) which form cellular 
junctions contribute to the cellular heterogeneity during 
tumor evolution [62]. For instance, at the beginning of 
the EMT procedure (for epithelial cells), TJs are decon-
structed, tight intercellular contacts are disrupted, and 
TJs proteins are relocated and/or degraded [63]. Thus, 
epithelial cells lose the normal intercommunication and 
mutual inhibition, leading to the transformation of cells 
into invasive cells and disseminating to distant sites [64]. 
This investigation revealed that TJs were significantly 
weakened during the transformation of intestinal epi-
thelial cells into CRC cells. In addition, the expression of 
TJs proteins was decreased (which also manifested itself 
as a decrease in the number of TJs), and the structure of 
the TJs also became looser. This indicated that TJs have 
oncogenic roles during intestinal epithelial malignancy. 
Recent studies have shown that ZEB1 inhibits claudin-1 
expression in CRC thereby, promoting cell invasion and 
metastasis [65].

In our previous study, we demonstrated that GJs pro-
teins are rarely expressed in normal intestinal stroma 
but their expression is upregulated in the tumor stroma 
[44]. Therefore, we further explored the significance of 
GJs in the malignant transformation of stromal compo-
nents. Similar to our previous findings, we found that 
GJs is enhanced in malignant stroma. Under physiologi-
cal conditions, fibroblasts do not differentiate into an 
activated state following the alterations in GJs proteins 
43 (Cx43) and 26 (Cx26), while an increase in Cx43 
expression is accompanied by an increase in GJs function 
[66–68]. Under pathological conditions (e.g., tumors), 

Fig. 7  AKAP12/LMOD1 overexpression inhibits the malignant phenotype of CRC cells. A A volcano plot displaying the differentially expressed 
mRNAs in AKAP12 knockdown cells [search in genetic perturbation similarity analysis database (GPSAdb), accession: GSE147739]. LMOD1 
was marked in a red box. B Association of AKAP12 expression with LMOD1 in TCGA pan-cancer. Grey = not statistically significant, Blue = negatively 
correlated, and Red = positively correlated. A spearman test was carried out. C Specific spearman correlation coefficients between AKAP12 
and LMOD1 in TCGA-COAD (left) and TCGA-READ (right) are shown. D DEGs enrichment analysis after AKAP12 knockdown in GSE147739. The larger 
the circle, the higher the number of genes, and the smaller the P-values, the darker the color and the more significant the enrichment. E Gene set 
enrichment analysis (GSEA) plots of TGF_BETA_BETA signals were analyzed in GPSAdb (accession: GSE147739). F Association of AKAP12 expression 
with TGF_BETA_BETA signals level in TCGA pan-cancer. Blue = negatively correlated, Red = positively correlated, and Grey = not statistically significant. 
A spearman test was carried out. G, H The wound-healing assays for ROK and SW480 cells over-/under-expressing AKAP12 in the presence 
or absence of si-LMOD1 (Magnification, × 200, scale bars = 100 μm). I, J Transwell migration assays for ROK and SW480 cells over-/under-expressing 
AKAP12 in the presence or absence of si-LMOD1 (Magnification, × 200, scale bars = 100 μm). K, L The expression of proteins related to EMT in RKO 
and SW480 cells was determined by western blotting (n = 3 replicates). Data are presented as the mean ± SEM. ****P < 0.0001, ***P < 0.001, **P < 0.01, 
*P < 0.05. All assays were performed thrice, independently

(See figure on next page.)
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myofibroblasts and fibroblasts maintain the metabolic 
acid load of cancer cells by providing the molecular appa-
ratus that facilitates excretion of acid by tumor cells (via 
GJs) [69, 70]. The tumor mesenchyme plays a unique and 
critical role in transferring excess H + ions away from 
cancer cells, thereby protecting the TME. This process 
relies heavily on well-formed GJ connections between 
CAFs to ensure efficient communication [10]. The “seed 
and soil” theory proposes that cancer cells (“seeds”) can 
only grow in the appropriate conditions (“soil”) [71]. The 
“soil”, the environment in which cancer cells grow, con-
sists of the extracellular matrix (ECM) and various cells 
in TME [72]. Fibroblasts secrete the major ECM compo-
nents, and proteases which remodel the structure of the 
ECM. Studies have shown that dense collagen arrange-
ment and high ECM stiffness can create a malignant 
phenotype in epithelial cells [73]. Therefore, the tumor 
stroma, represented by CAFs, is largely a carcinogenic 
component.

Based on aforementioned properties and functions of 
GJs and TJs, we defined two types of CRC communica-
tion phenotypes in the TCGA data. Significant differ-
ences in clinical features, biological signatures, and levels 
of immune cell infiltration were recorded between dif-
ferent clusters. In this case, cluster with poorer progno-
sis (C2) exhibited enhanced GJs signature (and a weak 
TJs signature), while the cluster with better prognosis 
(C1) had a stronger TJs signature (and a weaker GJs sig-
nature). Our findings, combined with existing research, 
suggest that the stroma in C2 tumors may be more 
aggressive, while the epithelial tissue in C1 tumors could 
be less malignant. This theory was later supported by 
enrichment analysis and analysis of pathological sections. 
Studies have clearly demonstrated that differences in the 
mRNA transcriptome between different CC subtypes 
correlate significantly with signaling pathways related to 

collagen and matrix formation. We also found that C2 
has higher stromal abundance and lower tumor purity, 
both of which are associated with poorer tumor prog-
nosis and often lead to poor immunotherapy response. 
Considering that the success of ICB depends on CD8 + T 
cells infiltration into the tumor, as well as the ability of 
the stroma to inhibit CD8 + T cells from approaching the 
cancer cells (an immune-exclusion effect), stromal deple-
tion may be an effective strategy to improve response 
to immunotherapy. This study also found that C2 had a 
higher TIDE score (higher scores indicate more difficulty 
in benefiting from immunotherapy).

Given the high heterogeneity of CC phenotypes in CRC 
patients, it imperative to search for potential regulators of 
the CC phenotype to develop new combination therapy 
strategies and immunotherapeutic agents. Finally, a gene 
co-expression network (MEGENA) was constructed and 
a COX model was established. Analysis of the showed 
that LMOD1 was an important regulator. Notably, 
LMOD1 expression was found positively associated with 
the clinical stage of the tumor. LMOD1 exhibits a unique 
biphasic role, resembling TJs in epithelial cells, acting as 
a potential oncogene, and GJs in fibroblasts, exerting a 
pro-oncogenic function. On the one hand, LMOD1 regu-
lates the expression of FGF1 to promote fibroblast acti-
vation and complete the EMT process of cancer cells in 
a fibroblast-dependent manner. It has also been shown 
to be modulated by AKAP12, which directly inhibits 
EMT in cancer cells. FGF1 was overexpressed in tumors 
compared to the paracancerous tissues [74]. Numer-
ous studies have shown that FGF1 promotes tumor con-
formity and is positively correlated with mesenchymal 
phenotype [75, 76]. As for AKAP12, a newly identified 
oncogenic factor, the RBMS1-AKAP12 regulatory axis 
inhibited EMT and liver metastasis in a CRC progression 
model [77]. The different signaling pathways triggered 

(See figure on next page.)
Fig. 8  In vivo experiment to validate the mechanism of LMOD1. A Diagram of the animal experiments. B Mouse xenograft tumors (n = 6 mice/
group). C Xenograft tumor volumes. D Xenograft tumor’s weights at the end of the investigation. E mIF staining of FGF1 (green) and N-cadherin 
(green) proteins in mouse xenograft tumor stromal and parenchymal tissues. ACTA2 (pink), DAPI (Blue) and CK (red) for tissue-localization 
(Magnification, × 400, scale bars = 20 μm). F The diagram showing the procedures used in animal experiments in vivo. G Mouse xenograft tumors 
(n = 6 mice/group). H Xenograft tumor volumes. I Xenograft tumor’s weights at the end of the investigation. J mIF staining of N-cadherin 
(green) proteins in mouse xenograft tumor parenchymal tissues. DAPI (Blue) and CK (red) for tissue-localization. (Magnification, × 400, scale 
bars = 20 μm). K The association of LMOD1 mRNA expression with TIDE score as determined on the TCGA-CRC database (Spearman method, 
n = 620). L–N CRC tissue’s LMOD1 proteins IHC staining (Magnification, × 400, scale bars = 20 μm). O Bar plot showing the specific response 
rates for the high- and low-LMOD1 average H-score groups in 40 CRC patients. P Box plot illustrating the specific LMOD1 expression (H-Score) 
between non-responder and responder post anti-PD-1 therapy in 40 CRC patients (Wilcoxon test, *P < 0.05). Q Representative pictures of CT 
scan. Primary or metastatic tumor foci measured before initiation of immunotherapy (Baseline, BL). The red arrows indicate the primary 
or metastatic tumor foci. PD for progressive disease (PD), PR for partial response (PR). The expression level of LMOD1 can predict immunotherapy. 
R–T The co-stained LMOD1, CK, and CD8 images in the 3 immunophenotypes. Based on the spatial CD8 + T cells distribution, CRC tissues are 
categorized into 3 immunophenotypes, immune excluded, immune inflamed, and immune desert. Different sample measurements were taken. 
(Magnification, × 400, scale bars = 20 μm). Data are presented as the mean ± SEM ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05. All experiments 
were repeated at least three times, independently
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by LMOD1 in the tumor’s tissue (parenchyma) and sur-
rounding connective tissue (stroma) exemplify the con-
cept of tumor heterogeneity. This phenomenon, where a 
single molecule exhibits variations in expression based 
on location and time, often reflects intricate sequences 
of molecular signaling, ultimately leading to diverse cell 
populations within the tumor. As previously described, 
tumor ECM contributes to drug resistance and immuno-
suppression [78]. Increased collagen production is asso-
ciated with depletion of CD8 + T cell subsets [79]. Recent 
studies have shown that LMOD1 exerts effect of CAFs 
in 5-FU resistance [80]. This molecular mechanism pro-
motes immune escape from tumors, but its role in immu-
nophenotyping and immune infiltration in CRC is not 
well understood. We have verified the effect of LMOD1 
on immune infiltration and immunophenotyping of CRC 
through multiple experiments. Tumors overexpressing 
LMOD1 are immune-excluded and patients with high 
expression of LMOD1 have a poor response to immuno-
therapy, suggesting that targeting LMOD1 may enhance 
the efficacy of immunotherapy for CRC.

We acknowledge that our study has some limitations. 
Although we distinguished between TJs and GJs in epi-
thelial cells and fibroblasts, respectively, we cannot rule 
out the possibility of internal heterogeneity among TJs and 
GJs themselves, and this heterogeneity could not be deter-
mined due to the limited number of sequenced samples. 
We are enrolling patients for a multicentre clinical cohort 
to further analyze and validate our findings. The clinical 
typing in this study was based on publicly available data, 
and further large-scale protein sequencing analyzes are 
needed to test the effectiveness of this stratification strat-
egy in the clinic. Our findings indicate that LMOD1 plays 
a multifaceted role in CRC progression. However, the spe-
cific mechanisms by which its key oncogenic functions 
contribute to this process and how they connect to cellular 
communication remain unclear. We are conducting fur-
ther investigations to address these knowledge gaps.

Conclusion
There is heterogeneity in the expression of CC molecules 
in the development of CRC, and this heterogeneity is 
both spatial and temporal. The CC-related gene LMOD1 
exhibits a biphasic function, providing a molecular basis 
for further understanding of TME heterogeneity.
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