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Abstract 

Background  Deciphering the role of plasma proteins in pancreatic cancer (PC) susceptibility can aid in identifying 
novel targets for diagnosis and treatment.

Methods  We examined the relationship between genetically determined levels of plasma proteins and PC 
through a systemic proteome-wide Mendelian randomization (MR) analysis utilizing cis-pQTLs from multiple cent-
ers. Rigorous sensitivity analyses, colocalization, reverse MR, replications with varying instrumental variable selections 
and additional datasets, as well as subsequent meta-analysis, were utilized to confirm the robustness of significant 
findings. The causative effect of corresponding protein-coding genes’ expression and their expression pattern 
in single-cell types were then investigated. Enrichment analysis, between-protein interaction and causation, knock-
out mice models, and mediation analysis with established PC risk factors were applied to indicate the pathogenetic 
pathways. These candidate targets were ultimately prioritized upon druggability and potential side effects predicted 
by a phenome-wide MR.

Results  Twenty-one PC-related circulating proteins were identified in the exploratory phase with no evidence 
for horizontal pleiotropy or reverse causation. Of these, 11 were confirmed in a meta-analysis integrating external 
validations. The causality at a transcription level was repeated for neutrophil elastase, hydroxyacylglutathione hydro-
lase, lipase member N, protein disulfide-isomerase A5, xyloside xylosyltransferase 1. The carbohydrate sulfotransferase 
11 and histo-blood group ABO system transferase exhibited high-support genetic colocalization evidence and were 
found to affect PC carcinogenesis partially through modulating body mass index and type 2 diabetes, respectively. 
Approved drugs have been established for eight candidate targets, which could potentially be repurposed for PC 
therapies. The phenome-wide investigation revealed 12 proteins associated with 51 non-PC traits, and interference 
on protein disulfide-isomerase A5 and cystatin-D would increase the risk of other malignancies.
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Introduction
Pancreatic cancer (PC) is one of the leading causes to 
cancer death worldwide with increasing incidence and a 
meager 5-year survival rate of less than 9% [1, 2]. Approx-
imately 80% of patients present with advanced and unre-
sectable disease at diagnosis, which is partially attributed 
to the asymptomatic nature and difficulty in early detec-
tion [3]. Precancerous or early-stage lesions cannot be 
efficiently recognized merely by imaging alterations, 
implying the significance of exploring reliable diagnostic 
biomarkers [4]. But even for resectable PC, the progno-
sis of patients is optimistic as a result of rapid postopera-
tion relapse and chemotherapy resistance [5]. Thus, novel 
available therapeutic strategies are warranted.

The plasma proteins as vital components in circulat-
ing blood, produced by cellular leakage and active secre-
tion, are involved in various crucial physiological and 
pathological processes, and can thereby act as a reflec-
tion of the overall physical condition as well as possible 
druggable targets for illnesses [6–8]. Specifically, sev-
eral circulating proteins are suggested to be biomarkers 
for inflammation, infection, and some systemic diseases 
[9–11]. With regard to malignancies, a number of cross-
sectional studies have looked into the discrepancy in 
circulating protein levels between cancer sufferers and 
healthy controls in an attempt to establish the intricate 
protein-carcinogenesis connection [12–15]. But the 
nature of their observational studies restricts the reliabil-
ity of conclusions due to potential confounding bias and 
reverse causation [16].

Recently, a series of large-scale proteomic research 
have identified the protein quantitative trait loci 
(pQTLs), enabling the causality inference for the effect 
of plasma protein on PC susceptibility via a two-sample 
Mendelian Randomization (MR) method, which utilizes 
genetic variants as instrumental variables to mimic ran-
domized controlled trials [17–19]. Since MR results 
are less likely to be biased by confounders and reverse 
causation, the MR method is widely applied in inves-
tigating the causative factors for outcomes, such as 
the causal correlation of peripheral metabolites or gut 
microbiome with PC [20–22]. Of note, as the extension 
of MR methodology, proteome-wide MR studies focus 
on the genetic-determined circulating protein concen-
tration and disease etiology and have been employed 

for exploring carcinoma-related biomarkers or promis-
ing interference targets in tumors like colorectal cancer, 
breast cancer, and lung cancer [23–26].

In the present study, we integrated cis-pQTL data for 
a proteome-wide MR analysis to identify PC-associated 
plasma proteins. Bidirectional MR, replicative valida-
tion and meta-analysis, and Bayesian colocalization 
were used to confirm the primary results. Then the cor-
responding protein-coding gene expressions were also 
analyzed regarding their causal effect on PC and their 
expression pattern in single-cell types. The function 
and involved pathways of these targets were prelimi-
narily investigated through enrichment analysis, knock-
out mice models, and between-protein interaction and 
causation. The interplay network between circulating 
proteins, known PC risk factors, and PC was further 
analyzed and discussed. Finally, drug-target databases 
were inquired to prioritize the druggable targets, and a 
phenome-wide MR was conducted to evaluate the drug 
safety and repurposing.

Methods
Overall design
The workflow and methodology of this study are out-
lined in Fig. 1. In brief, cis-pQTL data derived from six 
publicly accessible datasets were employed to conduct 
a proteome-wide, two-sample MR in the primary study 
phase. Subsequently, a three-part analytic protocol was 
applied to enhance and expand our initial findings. For 
part one, we employed several sensitivity analyses, bidi-
rectional MR, Bayesian colocalizaion, external replica-
tions and meta-analysis, and replicative MR analysis in 
transcription level to validate the primary proteome-
wide MR results. For part two, single-cell type expres-
sion analysis, GO/KEGG enrichment, mutual causality, 
protein–protein interaction (PPI) network, single gene 
knock-out mice models, and mediation analysis, were 
used to annotate the function and infer the potential 
pathogenic pathways of these PC-associated candidates 
obtained from analysis in part one. For part three, the 
druggability and possible side effects estimated by a 
phenome-wide MR were assessed for prioritizing these 
therapeutic targets. The P-values were all adjusted by 
the Benjamini–Hochberg false discovery rate (FDR) in 
multiple tests in our study.

Conclusions  By employing comprehensive methodologies, this study demonstrated a genetic predisposition linking 
21 circulating proteins to PC risk. Our findings shed new light on the PC etiology and highlighted potential targets 
as priorities for future efforts in early diagnosis and therapeutic strategies of PC.

Keywords  Pancreatic cancer, Plasma proteome, Therapeutic target, Mendelian randomization
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Study datasets and genetic instruments selection
In the exploratory phase, genome-wide association study 
(GWAS) summary statistics regarding PC were acquired 
from the FinnGen consortium R10 release (https://​
www.​finng​en.​fi/​en) [27]. In the present research, PC was 

defined as malignant neoplasm of the pancreas, incorpo-
rating pancreatic ductal adenocarcinoma and other path-
ological types of malignant pancreatic tumors. Summary 
statistics of genetic associations with circulating proteins 
were obtained from six distinct large-scale proteomic 

Fig. 1  Flowchart of the study design. MR, Mendelian randomization; IV, instrumental variable; pQTL, protein quantitative trait loci; FDR, false 
discovery rate; UKBPPP, UK Biobank Pharma Proteomics Project; GWAS, genome-wide association study; GERA, Kaiser Permanente Genetic 
Epidemiology Research on Adult Health and Aging cohort; GTEx v8, Genotype-Tissue Expression Project version 8; GEO, Gene Expression Omnibus; 
PPI, protein-protein interaction; DGIdb, Drug Gene Interaction Database

https://www.finngen.fi/en
https://www.finngen.fi/en
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studies (Ferkingstad et  al., 4907 proteins; Sun et  al., 
3282 proteins; Folkersen_1., 82 proteins; Suhre., 1124 
proteins; Folkersen_2., 90 proteins; Zhao., 91 proteins 
[6, 28–32]). Detailed descriptions of the above datasets 
can be found in original publications. We harmonized 
these proteomic data by remapping protein IDs onto 
corresponding gene symbols. For proteins presented in 
multiple datasets, or those with different probes or iso-
forms, we calculated the proportion of variability (R2) 
(see below), and the one with the largest R2 was retained. 
To satisfy the basic assumptions of MR, we filtered the 
extracted pQTLs upon the following criterion: (1) pQTLs 
with genome-wide significant (P < 5E-8) association with 
any protein; (2) minor allele frequency (MAF) > 0.01; (3) 
linkage disequilibrium (LD) R2 between SNPs was con-
trolled < 0.1 within 10  Mb; (4) cis-pQTL was defined as 
pQLT being cis-acting (within 200 kb upstream or down-
stream of the protein-coding gene region); (5) SNPs 
located in the major histocompatibility complex (MHC) 
region (chromosome 6, 31-33  Mb) and sex chromo-
some were excluded; (6) R2 and F-value were computed 
to evaluate the strength of instrumental variables (IVs) 
(R2 = 2*MAF*(1-MAF)*beta*beta; F-value = R2*(N-2)/
(1-R2)) [33], and SNPs with F-value < 10 were removed; 
(7) cis-pQTL should not be directly associated with PC 
(P-value > 1E-5). The involved GWAS studies mainly 
enrolled participants of European ancestry and had 
all received approval from their corresponding ethical 
review committees.

Proteome‑wide MR, sensitivity analysis, and reverse MR 
analysis
The “TwoSampleMR” R package was utilized for a 
proteome-wide MR analysis [34]. The MR methodol-
ogy employed SNPs as IVs to infer causal relationship 
between two traits, and the wald ratio (No.SNPs = 1) 
and inverse variance-weighted (IVW) algorithms (No.
SNPs > 1) were applied as principal MR approaches since 
they were most efficient when all IVs were validsince [35]. 
The wald ratio algorithm calculated the effect ratio of 
one variant in exposure and outcome. When there was 
at least two instruments, the IVW algorithm was used to 
combines the ratio estimates of each variant in a meta-
analysis model. Before MR analysis was performed, we 
harmonized the exposure and outcome data using the 
“harmonise_data” function. This process extracted IVs 
that overlapped in the filtered exposure data with the 
outcome data and automatically removed incompatible 
and palindromic SNPs. The presence of heterogeneity 
was assessed using Cochrane’s Q test, and a test P-value 
less than 0.05 indicated heterogeneous IVs. In this case, a 
random-effect IVW model would be used. Otherwise, a 
fixed-effect IVW MR was performed. The P-values of the 

proteome-wide MR results were corrected with the Ben-
jamini–Hochberg FDR method, and causal associations 
with FDR-corrected P-values less than 0.05 were consid-
ered significant. Additionally, the MR-Egger regression 
intercept test, MR-Pleiotropy Residual Sum and Outlier 
(MR-PRESSO) methodology, and MR-PRESSO global 
test were employed to evaluate the horizontal pleiot-
ropy [36, 37]. Subsequently, MR analyses with four addi-
tional approaches including weighted median, MR-Egger, 
weighted mode, and simple mode were performed as part 
of sensitivity analyses. Since the MR results were poten-
tially susceptible to the IVs selection, we re-analyze the 
data after modifying the IVs inclusion criterion by tak-
ing the parameter of LD R2 threshold of 0.001, 0.01, 0.2, 
and 0.3, respectively. Additionally, the presence of reverse 
causation was assessed by an inverse MR. However, only 
two SNPs were initially extracted as IVs proxied for PC 
after pruning instruments with a stringent threshold for 
P-value (P-value < 5E-8) and LD clumping (r2 = 0.001). 
Thus, a broader threshold for the P-value of 5E-6 was 
adopted as a replicative validation in the reverse MR. 
Upon integrating results of all above sensitivity analyses, 
potential targets with robust evidence in the discovery 
phase were defined as: (1) significantly associated with 
PC after multiple tests correction; (2) no pleiotropic out-
liers detected, or significant MR results in the re-analysis 
after removing outliers; (3) absence of horizontal pleiot-
ropy revealed by Egger intercept or MR-PRESSO global 
test; (4) identical effect direction to primary results in 
sensitivity analyses using additional MR approaches and 
varying LD parameters; (5) no evidence showing reverse 
causation.

Bayesian colocalization
Circulating proteins in significant relation to PC and 
passing all sensitivity tests were analyzed with Bayes-
ian colocalization using “coloc” R package to illuminate 
whether a protein and PC were linked to a shared causal 
variant or the association was driven by the confound-
ing of linkage disequilibrium [38]. Aligning with previ-
ous studies, we adopted default parameters of p1 = 1E-4, 
p2 = 1E-4, and p12 = 1E-5 in this process [39]. P1 and p2 
represented the prior probability that a SNP is signifi-
cantly correlated with protein and PC risk, respectively, 
and p12 represented the prior probability of a SNP being 
associated with both traits. For each locus, the poste-
rior probabilities of the following five hypotheses were 
assessed: (1) H0: no causal variant for either plasma pro-
tein or PC; (2) H1: one causal variant only for protein; 
(3) H2: one causal variant only for PC; (4) H3: two dif-
ferent causal variants for protein and PC respectively; 
(5) H4 one shared causal variant for both PC and plasma 
protein. High-support evidence of colocalization was 
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considered in cases with the posterior probabilities of H4 
(PPH4) over 0.75, and medium-support evidence of colo-
calization was defined as PPH4 less than 0.75 but greater 
than 0.5 [40].

Replication and meta‑analysis
We repeated our primary analysis in a two-phase vali-
dation. In replication phase 1, cis-pQTLs were obtained 
from a plasma proteomic association study in UK 
Biobank [41], which incorporated 2923 proteins and 
54,219 European ancestry individuals, while in replica-
tion phase 2, the genome-wide association data for PC 
was replaced by an integrated GWAS study involving 
population from both UK Biobank and the Kaiser Perma-
nente Genetic Epidemiology Research on Adult Health 
and Aging cohort (GERA) with a sample size of 411,013  
[42]. All of the above datasets were essentially GWAS 
data of the same phenotype with that of the exposure 
or outcome in the discovery phase. They had adequate 
sample size and large number of measured SNPs. These 
GWAS studies all incorporated European populations, 
and there was no population overlap in each exposure-
outcome pair because they were from distinct research 
cohorts. So the selection for above validation datasets 
met the requirements of MR analysis and ensured these 
data were suitable to be employed in further replicative 
phases. The cis-pQTL filtering process was identical 
to that of the discovery phase. and sensitivity analyses 
(heterogeneity test, pleiotropy test, and supplementary 
MR approaches) were performed as usual. Moreover, to 
expand our findings, proteins without significant links to 
PC in the primary stage were also analyzed using alterna-
tive data sources. Finally, a meta-analysis was conducted 
to combine MR estimates from the discovery phase and 
two replication phases, which would be deemed as the 
ultimate results of external validation. Heterogeneity of 
meta-analysis was assessed by the statistics I2 to deter-
mine the use of random effect or fixed effect models [43]. 
We then categorized the identified PC-related candidates 
that passed all sensitivity analyses in the primary stage 
into three tiers according to the evidentiary strength of 
colocalization and external validation: (1) tier 1 proteins: 
FDR-corrected P-value < 0.05 in meta-analysis, consistent 
effect direction in discovery and validation phases, and 
colocalization PPH4 > 0.75; (2) tier 2 proteins: FDR-cor-
rected P-value < 0.05 in meta-analysis, consistent effect 
direction in discovery and validation phases, and colo-
calization PPH4 < 0.75; (3) tier 3 proteins: unsuccessful 
replication in external validation.

Transcriptome‑level MR and SMR analysis
For the sake of further investigating the causation of 
the corresponding protein-coding genes’ expression on 

PC, we obtained full expression quantitative trait loci 
(eQTL) data for whole blood tissue from the eQTLGen 
Consortium (https://​eqtlg​en.​org/), which comprised 
genetic associations with the expression of 16,987 genes 
among 31,684 mostly healthy participants [44]. The 
selection standard for cis-eQTLs was the same as that of 
cis-pQTLs (see above), and the acquired cis-eQTLs for 
candidate targets were then employed in the subsequent 
transcription-level two-sample MR analysis. In addition, 
the summary-data-based MR (SMR) test using the top 
hit eQTL as instrument was also implemented with SMR 
software (SMR v1.3.1) as a sensitivity analysis. And the 
heterogeneity in independent instrument (HEIDI) was 
conducted to distinguish the identified relationships from 
pleiotropy and genetic linkage [45]. The SMR-formatted 
cis-eQTLs data could be accessed from publicly available 
link (https://​molge​nis26.​gcc.​rug.​nl/​downl​oads/​eqtlg​en/​
cis-​eqtl/​SMR_​forma​tted/​cis-​eQTL-​SMR_​20191​212.​tar.​
gz). Likewise, the SMR and HEIDI tests were also per-
formed to explore the gene-PC association in pancreas 
tissue by utilizing the SMR-formatted cis-eQTLs data 
acquired from https://​yangl​ab.​westl​ake.​edu.​cn/​softw​are/​
smr/#​DataR​esour​ce. Results would be considered posi-
tive and valid when the P-value for SMR was less than 
0.05 and the P-value for HEIDI test was over 0.05.

Single cell‑type expression analysis
We downloaded the single-cell RNA sequencing (scRNA-
seq) data of target protein-coding genes in 16 PC sam-
ples from the Gene Expression Omnibus (GEO) database 
(Registration number: GSE155698) [46]. The scRNA-seq 
data was then processed with “Seurat” R package [47]. 
The created and merged Seurat object incorporated 
49,333 cells and 32,738 features. Firstly, in order to obtain 
high-quality data on single-cell RNA expression, the fol-
lowing filtering standard was established: 1. exclusion of 
genes with expression lower than five counts in one cell; 
2. exclusion of cells with < 300 or > 4000 measured genes; 
3. exclusion of cells with > 10% mitochondrial contami-
nation. As a consequence, a total of 28,994 high-quality 
cells and 23,384 features were remaining for further anal-
ysis. Data after quality control would be normalized with 
“NormalizeData” function, which was used to normal-
ize raw read counts by applying a scale factor of 10,000 
and logarithmically transforming the values to stabilize 
the variance across genes with different expression lev-
els. Subsequently the “SingleR” R package was employed 
for cell clusters annotation, which assigned cell identities 
by correlating single-cell RNA expression profiles with 
reference datasets of known cell types, enabling precise 
identification and analysis of distinct cell populations 
[48]. To illustrate whether the expression of the target 
gene was enriched in a specific cell cluster, differential 

https://eqtlgen.org/
https://molgenis26.gcc.rug.nl/downloads/eqtlgen/cis-eqtl/SMR_formatted/cis-eQTL-SMR_20191212.tar.gz
https://molgenis26.gcc.rug.nl/downloads/eqtlgen/cis-eqtl/SMR_formatted/cis-eQTL-SMR_20191212.tar.gz
https://molgenis26.gcc.rug.nl/downloads/eqtlgen/cis-eqtl/SMR_formatted/cis-eQTL-SMR_20191212.tar.gz
https://yanglab.westlake.edu.cn/software/smr/#DataResource
https://yanglab.westlake.edu.cn/software/smr/#DataResource
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gene expression across cell types was analyzed using the 
Wilcoxon Rank Sum test, and the enrichment would be 
defined as significant when FDR-corrected P-value < 0.05 
and |Log2(fold-change)|> 1.

Function and pathway enrichment
For exploring the potential biological implication of 
identified PC-related circulating proteins, enrichment 
analysis with regard to the GO function terms (biologi-
cal processes, cellular components, and molecular func-
tions) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways was applied [49]. This enrichment 
methodology was conducted by evaluating whether the 
presence of specific genes within a given pathway signifi-
cantly exceeded what would be anticipated by chance, as 
determined by the proportion of genes in the background 
dataset associated with that pathway. Functions or path-
ways with FDR-corrected P-value less than 0.05 were 
deemed significantly enriched.

Protein–protein interaction (PPI) and mutual causation
The protein–protein interaction (PPI) network was con-
structed with the Search Tool for the Retrieval of Inter-
acting Genes (STRING) database (https://​string-​db.​org) 
with a minimum interaction confidence score of 0.4. To 
further investigate the interplay between circulating pro-
tein levels, we carried out a series of two-sample MR 
analyses pair by pair of those candidate target proteins 
with each other.

Animal knock‑out models
For circulating proteins shown as potential therapeu-
tic targets, we queried the single gene knock-out mice 
models through the Mouse Genome Informatics (MGI) 
website (http://​www.​infor​matics.​jax.​org) to verify their 
biological function, as well as the possible side effects that 
might be brought about by the targeted therapy. Pheno-
types in relation to single gene knock-out were manually 
classified and displayed in three categories: neoplastic 
phenotypes, phenotypes of the digestive system, and phe-
notypes of others.

Mediation analysis
The etiology of malignant tumors was complicated, and 
the effect of proteins on tumorigenesis might not be 
direct but indirect through established risk factors. In 
order to validate the above hypothesis, we designed a 
four-step analysis protocol: (1) identify risk factors for 
PC through previous literature; (2) verify the causation of 
these risk factors on PC via a two-sample MR (Effect1); 
(3) compute the MR estimate of PC-associated circulat-
ing proteins on these risk factors (Effect2) and conduct 
colocalization analysis; (4) estimate the mediation effect 

and direct effect. The total effect from protein to PC was 
equal to the MR estimate obtained from the proteome-
wide MR analysis of the discovery phase, and the media-
tion/indirect effect was calculated as (Effect1 * Effect2), 
while the direct effect was calculated as (Effecttotal—
Effectmediation) [50]. There would be a possibility that the 
mediation effect existed if the effect direction of all causal 
pairs in the association between proteins, PC, and risk 
factors followed right logic. The confidence interval (CI) 
and P-value of mediating effect were estimated by the 
delta method.

Druggability assessment and phenome‑wide MR analysis
Three drug-targets databases (Drugbank: https://​go.​
drugb​ank.​com/; ChEMBL: https://​www.​ebi.​ac.​uk/​
chembl/; DGIdb: https://​www.​dgidb.​org/) were queried 
to identify available drugs targeting the candidate circu-
lating proteins. Details of the drugs and drug-gene inter-
action were documented. Furthermore, a phenome-wide 
MR analysis was performed to appraise the drug safety 
and repurposing. Summary statistics of genetic associa-
tion with extensive phenotypes were collected from UK 
Biobank (https://​pheweb.​org/​UKB-​SAIGE/), and only 
traits with cases over 500 were retained as outcomes in 
the phenome-wide MR. All the cis-pQTLs proxied for 
plasma proteins and all the parameters used in MR pro-
cess were identical to that of the discovery phase.

Results
Proteome‑wide MR identified 21 plasma proteins causally 
affecting PC susceptibility in the discovery phase
In the discovery phase, after removing SNPs with 
P-value > 5E-8 or MAF < 0.01, IVs were available for 4,790, 
2,229, 63, 356, 85, and 75 proteins in the proteomic stud-
ies of Ferkingstad et  al., Sun et  al., Folkersen_1., Suhre., 
Folkersen_2., and Zhao., respectively. After LD clump-
ing and removal of pQTLs located in sex chromosome or 
MHC region and pQLTs located away from protein-cod-
ing gene region, 1,774, 658, 32, 228, 72, and 61 proteins 
were retained respectively. After deletion of IVs with 
F-value < 10 and harmonization, a total of 28,050 SNPs 
were available to proxy 2,781 proteins. Then, proteins 
that appeared in more than one dataset were eliminated 
and the one with the largest R2 sum was retained. Finally, 
a total of 19,379 SNPs were applied as IVs for 1,751 pro-
teins in the primary MR analysis. The median number 
of cis-pQTLs used for proxying single protein was six 
(ranging from one to 90). And instruments for most of 
the proteins (1372/1751) were derived from the study of 
Ferkingstad et al. [28], according to their R2 sum.

The primary results revealed 21 significant protein-
PC association pairs after correcting P-values with FDR 
(FDR-corrected P-value < 0.05), as displayed in Fig.  2 

https://string-db.org
http://www.informatics.jax.org
https://go.drugbank.com/
https://go.drugbank.com/
https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://www.dgidb.org/
https://pheweb.org/UKB-SAIGE/
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in the form of a Manhattan map and volcano plot. In 
the sensitivity analysis with additional MR approaches 
(MR Egger, weighted median, weighted mode, and 
simple mode), the direction of causality of significant 
findings were all in concordance with the primary con-
clusions (Additional file1: Table  S1). In addition, no 
inter-SNPs heterogeneity was found via Cochran’s Q 
test, and no horizontal pleiotropy was observed through 
the Egger intercept test and the MR-PRESSO global 
test for these positive MR results. Then we altered the 
clumping parameter (LD R2 = 0.001, 0.01, 0.2, and 0.3, 
respectively) in four separate repeats for the 21 identi-
fied proteins. Of the 84 replicative inspections, none of 
them demonstrated an effect direction contrary to the 
original estimates, and the majority of the MR analyses 
(74/84) still yield a statistically significant association 
(Additional file1: Table S2). In terms of the reverse causa-
tion, no obvious impact from PC on circulating protein 
concentrations was found after multiple testing correc-
tions, whenever the IVs for PC were selected based on a 
strict (5E-8) or relatively loosen (5E-6) P-value threshold 
(Additional file1: Table S3). Collectively, the associations 
between PC and 21 genetically predicted protein levels 
passed all of the sensitivity analyses, implicating robust 
evidence.

Of the 21 PC-associated circulating proteins, 14 pro-
teins exhibited tumor-promoting efficacy, including ABO 
(Histo-blood group ABO system transferase), PTGDS 
(Prostaglandin-H2 D-isomerase), CFD (Complement 
factor D), CHST11 (Carbohydrate sulfotransferase 11), 
ELANE (Neutrophil elastase), HAGH (Hydroxyacyl-
glutathione hydrolase, mitochondrial), CST5 (Cysta-
tin-D), PCSK1 (Neuroendocrine convertase 1), HRG 

(Histidine-rich glycoprotein), LIPN (Lipase member N), 
MAN2B2 (Epididymis-specific alpha-mannosidase), DPT 
(Dermatopontin), PDIA5 (Protein disulfide-isomerase 
A5), and FGFBP3 (Fibroblast growth factor-binding pro-
tein 3). Among these candidates, ABO yielded the most 
prominent causality (OR (95%CI) = 1.21 (1.16–1.26), 
FDR-corrected P-value = 4.88E-16).

The other 7 plasma proteins displayed a protective 
action against PC onset, including CHST9 (Carbohy-
drate sulfotransferase 9), PSG5 (Pregnancy-specific beta-
1-glycoprotein 5), STAMBP (STAM-binding protein), 
LINGO1 (Leucine-rich repeat and immunoglobulin-like 
domain-containing nogo receptor-interacting protein 1), 
APOA5 (Apolipoprotein A-V), APOM (Apolipoprotein 
M), and XXYLT1 (Xyloside xylosyltransferase 1), among 
which the STAMBP showed the most significant negative 
causation (OR (95%CI) = 0.04 (0.01–0.15), FDR-corrected 
P-value = 2.12E-3).

Colocalization analysis
To distinguish the causal relationship between geneti-
cally determined circulating protein levels and PC 
from linkage disequilibrium, the colocalization analy-
sis was applied. Among the 21 candidate proteins, the 
PPH4 values for ABO (PPH4 = 0.967) and CHST11 
(PPH4 = 0.757) were over 0.75, suggesting high-support 
evidence for an association linked to a shared causal 
variant (Additional file1: Table  S4). Besides, medium-
level evidence of colocalization (PPH4 > 0.5) was 
observed linking LINGO1 (PPH4 = 0.638) and PTGDS 
(PPH4 = 0.619) to PC. As for the rest of the 17 circulat-
ing proteins, no significant satisfaction for assumption 

Fig. 2  The Manhattan plot (A) and volcano plot (B) of the proteome-wide Mendelian randomization analysis in the discovery phase
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H4 was revealed. However, it was worth noting that 
negative results did not inherently invalidate the find-
ings obtained from MR [51].

Replication and meta‑analysis
For the prominent associations found in the discovery 
stage, we repeated the analysis with additional data 
sources to inspect the robustness of conclusions. In 
replication phase 1, when the GWAS data for PC was 
obtained from a study integrating UK Biobank and 
GERA participants, the genetically predicted circu-
lating level of ABO and HRG had a significant causal 
link with PC. Furthermore, for proteins with negative 
results in the primary phase, replicative proteome-
wide analysis was still conducted to expand our find-
ings. As demonstrated in Additional file1: Table  S5, 
EVL, PCSK9, NPTX2, and GPC1 were additionally 
identified with potential influence on PC occurrence in 
replication phase 1 after multiple testing corrections. 
In replication phase 2, cis-pQTLs extracted from UK 
Biobank consortium were available for 11 out of the 21 
identified plasma proteins, and 8 out of the 11 avail-
able proteins (ABO, CFD, CST5, DPT, FGFBP3, HRG, 
PDIA5, PTGDS) were still causally associated with PC 
risk. Likewise, proteome-wide MR analyses investigat-
ing 1,939 proteins from the UK Biobank Pharma Prot-
eomics Project (UKBPPP) study were also performed in 
replication phase 2, whose full results can be accessed 
in Additional file1: Table S6. Subsequently, a meta-anal-
ysis was employed to integrate MR estimates from both 
the discovery and replication phases. After pooling 
effects and correcting P-values with FDR method, sta-
tistically significant associations with PC were observed 
in 11 proteins including ABO, CFD, CHST11, CHST9, 
CST5, ELANE, HAGH, HRG, LIPN, MAN2B2, PCSK1, 
PSG5, and PTGDS (Additional file1: Table  S7). How-
ever, of these candidates, inconsistent causation direc-
tion between the discovery and validation phases was 
observed for PTGDS and MAN2B2. Accordingly, tak-
ing all the above results together, the circulating pro-
teins were grouped into three categories (see methods). 
ABO and CHST11 lay in the top tier with the strongest 
evidence from both colocalization and replications. The 
tier 2 proteins incorporated proteins with successful 
repeats in external validation but no colocalization evi-
dence, including CFD, ELANE, HAGH, CST5, CHST9, 
PSG5, PCSK1, HRG, and LIPN. And the rest of the 10 
proteins were classified as tier 3 category including 
PTGDS, MAN2B2, DPT, PDIA5, STAMBP, FGFBP3, 
LINGO1, APOA5, APOM, and XXYLT1. Detailed 
information for protein categorizing was summarized 
in Table 1.

Gene expression of candidate targets and PC risk
Among the 21 identified potential therapeutic targets, 
eQTLs for 13 corresponding protein-coding genes in 
whole blood tissues were finally acquired from eQTLGen 
consortium. In test with two-sample MR method, the 
association between PC and expression levels of ELANE, 
HAGH, LIPN, PDIA5, PTGDS, and XXYLT1 reached a 
statistical significance (Additional file1: Table S8). How-
ever, it was unfortunately discovered that the effect of 
PTGDS gene expression was opposite to its effect at a 
protein level. When applying SMR method using top 
hit eQTL and HEIDI test as supplementary sensitivity 
analyses, only STAMBP was identified to correlate with 
PC and pass the HEIDI test. In addition, eQTL data in 
pancreas tissues were only available for ABO, HAGH, 
and MAN2B2 from GTEx v8, and after employing these 
eQTLs in SMR-based analysis, ABO expression yielded 
a positive correlation with PC (P-value = 0.04), but the 
HEIDI test suggested a potential presence of heterogene-
ity (P-value for HEIDI = 0.004).

Single‑cell type expression in PC tissues
Single-cell type RNA sequencing data for 16 PC tissues 
were attracted from the dataset of GSE155698. Since 
ABO, PSG5, and APOA5 were not detected in the study, 
expressions of 18 protein-coding genes were then avail-
able for further analysis. As shown in Fig. 3A, after anno-
tation for cell types, all cells were classified into nine 
clusters incorporating monocytes, T cells, epithelial cells, 
neutrophils, tissue stem cells, NK cells, macrophages, B 
cells, and endothelial cells. The cell type-specific gene 
expressions were demonstrated in Fig.  3B and C. Sub-
sequently, in the Wilcoxon Rank Sum test for the dif-
ferential gene expression across cell types, PTGDS was 
observed to be significantly enriched in tissue stem 
cells with FDP-corrected P-value < 0.05 and |log2(fold-
change)|> 1, while CFD was enriched in immune cells 
such as monocytes, NK cells, and neutrophils.

Pathway enrichment and protein interaction
To explore whether these identified proteins were 
involved in a specific biological pathway, enrichment 
analysis for GO terms and KEGG pathways was per-
formed. As displayed in Fig.  4A, the top enriched 
pathways for biological procedure (BP) included gly-
coprotein biosynthetic process, chondroitin sulfate 
proteoglycan biosynthetic process, chondroitin sul-
fate biosynthetic process, and high-density lipopro-
tein particle assembly. In terms of cellular component 
(CC), these proteins were involved in cytoplasmic 
vesicle lumen, secretory granule lumen, triglyceride-
rich plasma lipoprotein particle, and very-low-density 
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lipoprotein particle. Moreover, for the aspect of molec-
ular function (MF), these targets were enriched in 
heparin binding, glycosaminoglycan binding, sulfur 
compound binding, and serine-type endopeptidase 
activity. However, no significantly enriched KEGG 
pathway was highlighted. PPI network analysis was used 
for investigating the interplay of the identified plasma 
proteins. A total of 17 interaction pairs involving 14 
proteins were obtained, and when setting the threshold 
of confidence score as 0.4, only the interaction between 

APOM and APO5 (score = 0.942), and interaction 
between APO5 and HRG (score = 0.861) were observed 
(Fig.  4B). In addition, the mutual influence of the 
plasma level of these candidate proteins was inspected, 
and a total of 49 significant associations were identified 
(Fig. 4C). Of these, ABO was the one to have the great-
est impact on the plasma level of other targets, and up 
to 8 circulating proteins (CHST11, XXYLT1, MAN2B2, 
FGFBP3, PTGDS, HAGH, LINGO1, STAMBP) were 
up- or down-regulated by ABO level.

Fig. 3  Single-cell type expression in pancreatic cancer tissue for the protein-coding genes of the identified candidate targets in the discovery 
proteome-wide Mendelian randomization investigation. A represented the nine cell clusters labeled and annotated by marker genes; B and C 
demonstrated the expression of candidate targets in each cell type
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Single gene knock‑out mouse models
The MGI resource was queried to identify the emerging 
phenotypes relevant to the knock-out of the potential 
targets. For the 21 potential target genes, among which 7 
played protective roles against neoplasms, no new-onset 
tumor or other neoplastic trait was induced in mouse 
models merely by knocking out the single gene. With 
regard to digestive system-related traits, PCSK1 knock-
out brought about chronic diarrhea and modification in 
intestinal goblet cells and enteroendocrine cells. Pheno-
types of other systems produced by single gene knock-
out could be accessed in Additional file 1: Table S9.

Mediation analysis
Alcohol consumption, body mass index (BMI), smok-
ing, chronic pancreatitis, and type 2 diabetes mellitus 
were identified as risk factors for PC through previous 
publications [52–56]. The two-sample MR method was 
applied to verify the correlation between risk fac-
tors and PC. As shown in Additional file  1: Table  S10, 
BMI (P-value < 0.001) and type 2 diabetes mellitus 
(P-value = 0.021) significantly increased the risk of PC. 
However, the impact of alcohol consumption, smok-
ing, and chronic pancreatitis on PC occurrence was not 
validated in our study (P-value > 0.05). In order to inspect 
whether the risk factors act as mediators in protein-PC 

connection, we analyzed the causal effect from the 21 
candidate proteins to risk factors. After multiple test-
ing corrections, several significant links were demon-
strated: CHST11 and CHST9 were positively associated 
with PC; FGFBP3 and PCSK1 were negatively associated 
with smoking; FGFBP3 and MAN2B2 were negatively 
associated with type 2 diabetes mellitus while ABO was 
positively associated with it (Additional file1: Table S11). 
Considering the significance and the effect direction 
of above MR results, the indirect effect on PC onset 
was possibly valid only for ABO and CHST11, via the 
mediation of type 2 diabetes mellitus and BMI, respec-
tively. The mediation effect was calculated as described 
in the method section, and the delta method was used 
to estimate the standard error. Therefore, the indirect 
effect of ABO on PC mediated by type 2 diabetes mel-
litus was 0.0049 (95%CI 0.0004–0.0094, P-value 0.035), 
and the corresponding mediation proportion was 2.61% 
(95%CI 0.19%-5.04%). The indirect effect of CHST11 on 
PC mediated by BMI was 0.0069 (95%CI 0.0014–0.0125, 
P-value = 0.015), and the corresponding mediation pro-
portion was 2.40% (95%CI 0.47–4.33%).

Druggability assessment
In druggability assessment, eight of 21 PC-associated 
plasma proteins, including ELANE, PSG5, HAGH, 

Fig. 4  The functional enrichment (A), PPI (B), and the between-protein causation analysis (C) of the identified 21 candidates in the discovery 
proteome-wide Mendelian randomization investigation. The red bubbles in PPI plot represent proteins acting to promote pancreatic cancer 
tumorigenesis, while green bubbles represent those acting to protect against pancreatic cancer. BP, biological procedure; CC, cellular component; 
MF, molecular function; PPI, protein–protein interaction
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PCSK1, PTGDS, HRG, CHST11, and APO5, were 
revealed to be targeted for drug development (Additional 
file  1: Table  S12). Drugs targeting ELANE have been 
applied in treatments for chronic obstructive pulmonary 
disorder (Alpha-1-proteinase inhibitor and Erdosteine) 
and neutropenia (Pegfilgrastim). Alitretinoin targeting 
PGS5 had been employed for topical treatment of cuta-
neous lesions in patients with AIDS-related Kaposi’s 
sarcoma. Some PC-related proteins could be targeted by 
taking micronutrient supplements, such as Vitamin A 
for targeting PTGDS, Zinc chloride and Zinc sulfate for 
HRG, and Glutathione for HAGH. Furthermore, insulin 
targeting PCSK1 was widely used in treating diabetes 
mellitus and improving glycemic control.

Phenome‑wide MR analysis
A phenome-wide MR analysis regarding the causality of 
target proteins on 782 non-PC traits retrieved from UK 
Biobank was carried out to investigate the possible side 
effects and repurposing. Ultimately, a total of 51 causal 
relationships involving 12 proteins reached statistical sig-
nificance, and no association was found for APOM, CFD, 
CHST9, FGFBP3, HAHG, LINGO1, MAN2B2, PTGDS, 
and STAMBP. Among the positive associations, over 
a half (28/51) owed to protein ABO, with the increased 
level of which mainly leading to thrombosis and cardio-
vascular events but preventing hemorrhage of digestive 
tract. Some other molecules also played a two-faced role 
in non-PC disease risk. For instance, targeting PCSK1 
might benefit in alleviating cardiomegaly but elevate the 
risk of osteoarthrosis and other arthropathies. Addition-
ally, of these plasma proteins in relation to non-PC phe-
notypes, interference on APOA5, HRG, and LIPN could 
be repurposed as treatment for some other digestive sys-
tem illness with no prominent side effect. To note, reduc-
ing the plasma concentration of PDIA5 and CST5 might 
increase the susceptibility of stomach cancer and uterus 
cancer, respectively. The Additional file 1: Table S13 doc-
umented full results for other traits influenced by PC-
related plasma proteins.

Discussion
Early detection and valid treatment options for PC have 
long been a formidable challenge. To overcome this 
obstacle, increasing attention has been paid to the com-
plex interaction of plasma proteins and cancers in recent 
years: on the one hand, the onset and development of 
tumors could be accompanied by alteration in concentra-
tion of circulating proteins due to the secretion by onco-
cytes and tumor-associated stromal and immune cells, 
and these proteins might serve as valuable biomarkers 
for diagnosis and prognosis prediction [15, 57, 58]; on 
the other hand, these proteins are involved in multiple 

process of carcinogenesis, tumor invasion, metasta-
sis, and shaping the tumor microenvironment [59, 60]. 
Given the above facts, it is worthwhile to give a deep 
insight into the causal relationship between plasma pro-
tein and PC to assist efficient identification of potential 
diagnostic markers and interference targets by apply-
ing advanced analytic methodology with high-support 
evidence and less likelihood for confounding bias. With 
the emergence of the MR method, one previous research 
preliminarily attempted the causal inference of plasma 
protein levels and pan-cancer, including PC [61]. Nev-
ertheless, the instruments used in that study were not 
cis-acting, increasing the risk of horizontal pleiotropy. 
Besides, external validation with additional data sources 
was not conducted, making the conclusion less persua-
sive. Furthermore, the role of cancer-specific risk factors 
in established protein-cancer correlation, as well as the 
possible side effects for therapies targeting these proteins 
were not well investigated. Hence, a more rigorous and 
comprehensive design was required.

In this study, after stringent quality control approaches, 
we obtained eligible cis-pQTLs that satisfied the basic 
assumptions of MR, and they were further utilized in the 
following proteome-wide MR analysis. In the primary 
proteome-wide investigation, genetically determined 
plasma concentration of 21 proteins was identified to 
significantly correlate with PC risk. Then the subsequent 
analyses could be summarized into three parts according 
to their analytic purpose. In part one analysis for valida-
tion, no reverse causation and horizontal pleiotropy were 
found for the 21 significant associations through bidirec-
tional MR analysis, additional MR methods, repeated MR 
with varying IVs inclusion criteria, and other sensitiv-
ity analyses. The causal effect of ABO and CHST11 was 
confirmed by Bayesian colocalization with high-support 
evidence, while the effect of LINGO1 and PTGDS was 
confirmed with medium-support evidence. After con-
ducting replication analysis with alternative datasets for 
exposure and outcomes, respectively, and after subse-
quent meta-analysis, the causality was no longer signifi-
cant or inconsistent in direction with primary results for 
10 proteins including PTGDS, MAN2B2, DPT, PDIA5, 
STAMBP, FGFBP3, LINGO1, APOA5, APOM, and 
XXYLT1, and they were categorized into tier 3 proteins 
with relatively low credibility. ABO and CHST11 lay 
in the tier 1 group on account of strong colocalization 
evidence while the rest of the other 9 proteins (CFD, 
ELANE, HAGH, CST5, CHST9, PSG5, PCSK1, HRG, 
and LIPN) were set as tier 2 category. In summary, the 
part one analyses successfully verified and underlined 11 
plasma proteins (tier 1 and tier 2 proteins) in causal rela-
tion to PC with more convincing multi-dimension evi-
dence. Subsequently, in part two analysis for exploration 
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of the underlying pathways, we tested these identified 
associations at a transcription level in whole blood and 
pancreas tissues and looked into the differential expres-
sion of these protein-coding genes in specific cell clus-
ters. Then the enrichment analysis, PPI networks, mutual 
causation, and animal knock-out models were also 
applied attempting to comprehend the biological signifi-
cance and interaction of these targets. More importantly 
in part two analysis, the mediation analysis indicated the 
partial involvement of BMI and type 2 diabetes as media-
tors in the procancerous effect of CHST11 and ABO on 
PC, respectively. Finally, in the part three analysis for 
druggability, these targets were prioritized by searching 
drug-target databases and whether the risk of other dis-
eases would be elevated when targeting the proteins for 
treatment was assessed through a phenome-wide MR 
analysis. To sum up, drugs had been developed for eight 
of the candidates, among which no evidence for promi-
nent side effects was found upon targeting HRG, HAHG, 
and PTGDS, suggesting their promising potentials as safe 
therapeutic targets.

Protein ABO and CHST11 were causally linked to PC 
with the most convincing evidence in the present study. 
ABO (Histo-blood group ABO system transferase) is a 
glycosyltransferase enzyme participating in the biosyn-
thesis of A and B antigens and determining the ABO 
blood type of individuals. In accordance with our find-
ings, both epidemiological and genetic evidence have 
revealed a decreased susceptibility of PC in O blood 
type individuals in comparison to non-O groups [62, 
63]. PC patients PC carrying O blood group also expe-
rienced more favorable survival [64]. The exact underly-
ing mechanisms behind this connection remain unclear 
and are possibly ascribed to systemic inflammatory and 
immune response [65–67]. Interestingly, type 2 diabe-
tes, a known risk factor for PC, was found to partially 
mediate the causal effect from ABO to PC in our study, 
despite the controversial association between blood 
group and diabetes in previous reports [68, 69]. Simi-
larly, a retrospective study revealed a higher proportion 
of B blood type patients among those with long-term dia-
betes before PC diagnosis than that among PC patients 
without diabetes at diagnosis [70], which also implied 
the intricate interaction between ABO blood type, dia-
betes mellitus, and PC. However, although substantial 
evidence has demonstrated the strong link of ABO with 
PC, treatment targeting ABO is elusive and challeng-
ing considering the ambiguous impact on blood type 
and the multitude of side effects anticipated by our phe-
nome-wide investigation (Additional file  1: Table  S13). 
CHST11 (Carbohydrate sulfotransferase 11) as a member 
of the carbohydrate sulfotransferases family, is engaged 
in the modification of glycosaminoglycans, specifically 

in the sulfation of chondroitin sulfate, which is a crucial 
molecule in cancer progression and metastasis [71, 72]. 
And the microenvironment of PC tissue was observed 
enriched with chondroitin sulfate at a 22-fold increase in 
concentration compared to paired normal tissues [73]. It 
was also reported the high expression of CHST11 indi-
cated poor prognosis for PC patients and correlated with 
worse clinical stage and histological grade [74]. Consist-
ently, the pro-tumorigenesis effect of CHST11 was veri-
fied in this study, and a limited indirect effect through 
modulating BMI was additionally observed, throwing 
new insights into the possible interpretation of the asso-
ciation. Nevertheless, while experimental studies have 
shown CHST11 could drive cancer invasion, epithe-
lial-mesenchymal transition, and cancer stem cell gen-
eration by activating signaling pathways such as Wnt/
beta-catenin in multiple other types of malignancies [75, 
76], its direct biological significance on PC cells has yet to 
be elucidated. Further laboratory evidence is required to 
confirm and expand our findings.

In addition to ABO and CHST11, significant correla-
tions between another nine plasma proteins with PC 
were supported by external validation and meta-analysis, 
in spite of negative results from Bayesian colocalization. 
Noteworthily, there is still controversy on whether colo-
calization analysis violates the core MR assumptions, 
especially when utilizing quantitative trait loci as instru-
ments, and negative colocalization results thereby do not 
necessarily attenuate the plausibility of the inferred cau-
sality [51, 77]. Of these candidate targets in tier 2, CFD, 
ELANE, and HAGH demonstrated the strongest statisti-
cal correlation with PC upon ordering the adjusted P-val-
ues (Table 1). CFD (Complement factor D) functions by 
enzymatically cleaving factor B when it is complexed 
with C3b in the alternative pathway of the complement 
system. Reports on the relationship between CFD and 
PC are limited, with only one retrospective study pre-
senting that the CFD expression seemed to be irrelevant 
to the prognosis of PC patients undergoing neoadju-
vant chemotherapy and surgery [78. However, regarding 
other tumors, laboratory experiments revealed that CFD 
stimulated proliferation in cutaneous squamous cell car-
cinoma by modulating ERK1/2 signaling pathway [79. 
In particular, CFD is also known as one of the obesity-
driven biomarkers, and CFD along with its downstream 
effector hepatocyte growth factor secreted by adipocytes 
could augment the properties of cancer stem cells in 
breast cancer [80, 81]. Given that PC is another malig-
nancy linked to obesity and adipose accumulation, future 
investigation into the role of CFD within the mechanisms 
through which obesity contributes to PC could be of vital 
value. ELANE (Neutrophil elastase) is a serine protease 
predominantly secreted by neutrophils and is implicated 
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in the degradation of extracellular matrix proteins in the 
process of inflammation against pathogens [82]. It is also 
one of the essential components of neutrophil extracel-
lular traps, which has been proven to activate pancreatic 
stellate cells to form a thick, fibrotic stroma and acceler-
ate PC growth [83]. A previous report illuminated that 
ELANE played a mediator role in intratumoral bacteria 
and PC carcinogenesis, by shaping a pro-inflammatory 
tumor microenvironment [84]. In line with these find-
ings, an elevated concentration of ELANE at a plasma 
protein or transcription level led to increased PC risk 
in our study. Besides, the declined secretion of tumor 
necrosis factor was highlighted after ELANE knock-
out in mouse models. And drugs targeting ELANE have 
been approved in treating some inflammatory diseases, 
such as chronic obstructive pulmonary disorder. HAGH 
(Hydroxyacylglutathione hydrolase), also described as 
Glyoxalase II (GLO2), together with Glyoxalase I (GLO1) 
constitutes the glyoxalase system that is involved in the 
detoxification of methylglyoxal produced during the gly-
colytic pathway. In this study, the genetically determined 
plasma concentration of HAGH/GLO2 was positively 
associated with PC susceptibility. Consistently, numer-
ous researches have implied the involvement of GLO1 
and GLO2 in progression of multiple tumors. In PC, up-
regulation of GLO1 was spotted in cancerous tissues and 
indicated poor outcome and acquired resistance to gem-
citabine [85, 86]. In comparison, studies on GLO2 are 
scant and primarily focused on urological malignancies. 
For instance, GLO2 was observed to promote prolifera-
tion and elude apoptosis via mechanisms involving p53-
p21 axis [87].

This study has a number of noticeable advantages. To 
the best of our knowledge, the current study presented 
the most extensive and comprehensive proteome-wide 
MR analysis for PC. The breadth, depth, and rigorous-
ness of this study allowed for a more robust identification 
of promising targets for the development of screening 
biomarkers and therapeutic drugs for PC. First, numer-
ous measures were taken to evade violation of basic MR 
assumptions and diminish the risk of confounding bias. 
We excluded pQTLs located within the MHC region or 
distant from the vicinity of the corresponding protein-
coding gene (trans-pQTL). Considering MR analysis is 
susceptible to the IVs selection, we repeated our analy-
sis with additional IVs inclusion criteria that has been 
employed in previous proteome-wide MR studies [88, 
89]. A series of supplementary sensitivity analyses, 
reverse MR analysis, and colocalization analysis were 
conducted to enhance the robustness of identified asso-
ciations. Consistent results from replicative MR analysis 
with replaced data source and subsequent meta-analysis, 
as well as MR or SMR using eQTL data of blood and 

pancreas tissues, also minimized the false positive risk 
of the conclusions. Second, evidence from enrichment 
analysis, PPI, mutual causation analysis, and single gene 
knock-out models, could provide potential views on how 
these candidate targets interact with PC. Third, we clari-
fied a partial involvement of established PC risk factors, 
especially type 2 diabetes and BMI, in the pathogenic 
pathway of these plasma proteins. Last but not least, 
these identified targets were prioritized with druggability 
and side effects with three distinct drug-target databases 
and a phenome-wide MR investigation.

However, there are still several limitations. First, the 
enrolled populations in this study were mostly European 
individuals, and this restricted the expansion of our con-
clusions to other ancestries. Second, although employing 
cis-pQTLs instead of trans-pQTLs as instruments could 
avoid horizontal pleiotropy as much as possible, it would 
reduce the number of assessable candidates as a result 
of no eligible SNP for some proteins. To counteract this, 
we included up to six distinct proteomic studies in the 
primary stage, but it was still noteworthy that measure-
ment bias might exist among these researches. Third, this 
study principally focused on the proteins in plasma, and 
their effects in pancreas tissues were not explored due to 
insufficient available data. Similarly, because of the lack 
of eligible eQTLs, investigation regarding the association 
at an expression level was unavailable for some of the 
candidate targets. Moreover, it was worth noting that the 
STRING database applied for PPI analysis was not PC 
tissues-specific, meaning these results should be inter-
preted more conservatively. Last, despite the superiority 
of MR approach in causality inference, it was rarely pos-
sible to thoroughly eliminate confounding bias or reverse 
causation. Consequently, large epidemiological and 
experimental studies are warranted to support the above 
results, and our plans are currently underway to gradu-
ally carry out cell experiments and animal experiments to 
offer further evidence for the pathogenic role of part of 
interested proteins.

In conclusion, a total of 21 plasma proteins were iden-
tified with etiological significance for PC. Two and nine 
of them were prioritized with the most convincing and 
medium-support evidence, respectively. With future 
effective validation, these candidate proteins might serve 
as novel biomarkers in PC early detection and promising 
druggable targets for PC treatment.
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