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Abstract 

Background  Cardiac fibrosis after myocardial infarction (MI) has been considered an important part of cardiac 
pathological remodeling. Immune cells, especially macrophages, are thought to be involved in the process of fibro-
sis and constitute a niche with fibroblasts to promote fibrosis. However, the diversity and variability of fibroblasts 
and macrophages make it difficult to accurately depict interconnections.

Methods  We collected and reanalyzed scRNA-seq and snRNA-seq datasets from 12 different studies. Differentiation 
trajectories of these subpopulations after MI injury were analyzed by using scVelo, PAGA and Slingshot. We used Cell-
phoneDB and NicheNet to infer fibroblast-macrophage interactions. Tissue immunofluorescence staining and in vitro 
experiments were used to validate our findings.

Results  We discovered two subsets of ECM-producing fibroblasts, reparative cardiac fibroblasts (RCFs) and matrifi-
brocytes, which appeared at different times after MI and exhibited different transcriptional profiles. We also observed 
that CTHRC1+ fibroblasts represent an activated fibroblast in chronic disease states. We identified a macrophage 
subset expressing the genes signature of SAMs conserved in both human and mouse hearts. Meanwhile, the SPP1hi 
macrophages were predominantly found in the early stages after MI, and cell communication analysis indicated 
that SPP1hi macrophage-RCFs interactions are mainly involved in collagen deposition and scar formation.

Conclusions  Overall, this study comprehensively analyzed the dynamics of fibroblast and macrophage subsets 
after MI and identified specific subsets of fibroblasts and macrophages involved in scar formation and collagen 
deposition.
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Background
Fibrosis is a pathophysiologic process common to various 
cardiovascular diseases [1]. Activation of fibroblasts and 
deposition of extracellular matrix (ECM) proteins dur-
ing the acute phase of myocardial infarction (MI) effec-
tively prevents cardiac rupture and reduces the mortality 
rate [2,3]. However, persistent fibrosis alters the normal 
structure of the heart and leads to a decrease in cardiac 
function [4]. This responds to the fact that fibroblasts 

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

†Da Ke and Mingzhen Cao contributed equally to this work.

*Correspondence:
Heng Zhou
hengzhou@whu.edu.cn
1 Department of Cardiology, Renmin Hospital of Wuhan University, 
Jiefang Road 238, Wuhan 430060, People’s Republic of China
2 Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 
People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-05353-x&domain=pdf


Page 2 of 23Ke et al. Journal of Translational Medicine          (2024) 22:560 

may have a dual role at different stages of MI. Similarly, 
the pathogenesis of cardiac fibrosis varies from one eti-
ology to another, reflecting the complexity of the disease 
itself. Myofibroblasts are regarded as essential cells in 
the fibrotic process, but there is diversity in the origin of 
myofibroblasts, which makes it difficult to accurately pro-
file and study this cell population [5]. Multiple immune 
cells and signaling pathways are involved in fibroblast 
activation and subsequent pathophysiologic processes. 
The intertwining of inflammation and fibrosis poses a 
significant challenge to the precise treatment of fibrosis.

Macrophages, the most abundant immune cell type 
in the heart [6], are extensively involved in the tissue 
response to injury, and different macrophage activation 
states play a key role in the development and resolution 
of fibrosis [6]. Scar-associated macrophages (SAMs), a 
recently defined CD9+TREM2+macrophage, have been 
found to have a similar phenotype in multiple tissues and 
organs [7–9]. In several disease models, this macrophage, 
which is closely associated with fibroblast activation, 
also expresses Spp1 and expands after organ injury [10]. 
Conserved monocyte-derived SAMs phenotype among 
different tissues and organs reflects mechanisms shared 
in the progression of fibrosis [11]. Several studies have 
also found that SAMs are spatially located close to ECM-
producing fibroblasts and together constitute the fibrotic 
niche [12–14]. Accurate mapping of immune cell, espe-
cially macrophage, interactions during fibroblast activa-
tion is important to uncover new therapeutic targets for 
fibrosis treatment.

Recent applications of single-cell RNA-sequencing 
(scRNA-seq) technologies in cardiovascular disease 
have provided us with a dynamic and nuanced under-
standing of changes in different cellular subpopula-
tions [12,15–20]. However, individual studies tend to 

focus on a particular disease state or population of cells 
and thus do not provide a comprehensive overview of 
the disease process and often lack validation in human 
scRNA-seq datasets. Here, we collect published mouse 
and human scRNA-seq datasets covering a wide range 
of cardiovascular diseases and different murine disease 
models, including multiple stages of MI, transverse aor-
tic constriction (TAC) models, ischemic cardiomyopathy 
(ICM), dilated cardiomyopathy (DCM) and hypertrophic 
cardiomyopathy (HCM). We focus on the phenotypes 
of different subsets of fibroblasts and macrophages and 
their dynamic transition during MI. At the same time, we 
attempted to depict fibroblast-macrophage interactions 
in different disease states. Immunofluorescence stain-
ing and adenovirus transfection experiments were used 
to validate our findings. These data can further enhance 
our understanding of cardiac fibroblast properties as well 
as provide valuable insights for subsequent macrophage-
based treatment of cardiac fibrosis.

Methods
scRNA‑seq and snRNA‑seq datasets collected in this study
scRNA-seq and snRNA-seq datasets were acquired from 
the Gene Expression Omnibus database (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/), ArrayExpress (https://​www.​ebi.​
ac.​uk/​biost​udies/​array​expre​ss), Figshare (https://​figsh​
are.​com/) and Human Cell Atlas (https://​www.​human​
cella​tlas.​org/) (Table 1). The mouse single-cell transcrip-
tomic datasets used in this study included: E-MTAB-
9816(MI) [19], E-MTAB-7895(MI) [16], GSE135310 
(MI) [20], GSE163129 (MI) [18], GSE163465 (MI) 
[17], GSE185265(MI) [21], GSE155882 (TAC) [22], 
GSE132144(MI) [23]. The human single-cell transcrip-
tomic datasets used in this study included: GSE145154 
(normal and failed human heart) [24], a project 

Table 1  The scRNA-seq and snRNA-seq datasets used in this study

Datasets Repository Species Platform References Purpose

E-MTAB-9816 ArrayExpress Mouse 10X Genomics Nat Commun Main dataset

E-MTAB-7895 ArrayExpress Mouse 10X Genomics Cell Rep Main dataset

GSE132144 GEO Mouse 10X Genomics Circulation Validation dataset

GSE185265 GEO Mouse 10X Genomics Circulation Validation dataset

GSE155882 GEO Mouse 10X Genomics Nature Validation dataset

GSE135310 GEO Mouse 10X Genomics Circ Res Validation dataset

GSE163129 GEO Mouse 10X Genomics Nat Commun Validation dataset

GSE163465 GEO Mouse 10X Genomics Small Methods Validation dataset

Kuppe et al. dataset Human Cell Atlas Human 10X Genomics Nature Main dataset

GSE145154 GEO Human 10X Genomics Basic Res Cardiol Main dataset

GSE185100 GEO Human 10X Genomics Circulation Validation dataset

Liu et al. dataset Figshare Human 10X Genomics Cell discovery Validation dataset

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/biostudies/arrayexpress
https://www.ebi.ac.uk/biostudies/arrayexpress
https://figshare.com/
https://figshare.com/
https://www.humancellatlas.org/
https://www.humancellatlas.org/
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contributed by Christoph Kuppe et  al. [12], GSE185100 
[25], a seurat object for snRNA-seq dataset of the car-
diac tissues from 10 HCM patients and 2 healthy donors 
contributed by Liu et  al [26]. The non-cardiomyocyte 
scRNA-seq datasets E-MTAB-9816 and E-MTAB-7895 
contain samples from multiple time points post MI 
and were available as raw sequencing files, and there-
fore served as the main mouse datasets for our analysis 
(Table S1). The main human datasets were derived from 
partial samples from the Christoph Kuppe et al. dataset 
and GSE145154, collectively comprising cardiac tissue 
from AMI, ICM and healthy groups (Table  S1). Other 
scRNA-seq or snRNA-seq datasets were utilized as vali-
dation datasets to verify and extend our findings, reduc-
ing the impact of limitations of a single dataset (Table S2).

Single‑cell transcriptomic datasets processing and analysis
Raw fastq files (E-MTAB-9816, E-MTAB-7895) were 
obtained from the European Nucleotide Archive and 
were processed using CellRanger v3.0.2 (10 × Genomics). 
The scRNA-seq fastq data files were aligned with STAR 
to the mm10 genome (gencode vm23) index, annotated 
via GTF file and grouped by barcodes and UMIs resulting 
in a feature-barcode matrix.

The gene count matrix was loaded into R (4.2.3) and 
pre-processed using Seurat [27] (4.3.0.1). A Seurat 
object was generated by using CreateSeuratObject func-
tion, cells with low (≤ 500) or abnormally high (≥ 8000) 
gene counts and a high percentage of mitochondrial 
genes (≥ 20%) were removed. Subsequently, we normal-
ize the Seurat object, find variable features, scaling and 
dimensionality reduction by principal-component anal-
ysis (PCA). Finally, we use harmony [28] to integrate 
the different Seurat object to eliminate potential batch 
effects. Uniform manifold approximation and projection 
(UMAP) dimensional reduction by ‘RunUMAP’ function 
was used to visualize the cell clusters across conditions. 
Differential expression of genes (DEGs) in each of the 
clusters were determined using ‘FindAllMarkers’ (logfc.
threshold = 0.25, min.pct = 0.25). The protein–protein 
interaction (PPI) network of overlap DEGs was created 
based on the STRING database (http://​string-​db.​org). 
The DEGs were analyzed with Enrichr [29,30] to iden-
tify enriched biological processes (Gene Ontology (GO) 
Biological Process 2023 in Enrichr). The signature of 
cell subpopulations were selected from the TOP DEGs. 
Here, we used the R package “AUCell” to map gene sets 
to human or murine single-cell datasets to discover sub-
populations of cells with similar expression profiles.

Cell–cell interaction analysis by CellPhoneDB and NicheNet
CellPhoneDB [31] is a publicly available repository of 
curated receptors, ligands and their interactions and 

can be used to search for a particular ligand/receptor. 
We used the CellphoneDB database to detect cell-to-cell 
communication in our newly generated data. First, we 
extracted the gene expression matrix and metadata from 
the integrated snRNA-seq data, and then used the statis-
tical analysis method in CellphoneDB to analyze cell–cell 
interactions. For the single-cell dataset where the species 
is mouse, we converted the gene id to the correspond-
ing homologue in human. Finally, we use the R package 
“ktplots” and “circlize” for visualization of the results.

NicheNet [32] can be used to predict cellular intercom-
munication. NicheNet uses human or mouse scRNA-
seq datasets as inputs in combination with a database of 
known ligand-to-target signaling paths to infer possible 
interactions between different cell types. NicheNet pri-
oritizes ligands according to their activity and looks for 
affected targets with high potential to be regulated by 
these prioritized ligands. In our study, the receiver cell 
population is the ‘fibroblasts’ cell population, whereas the 
sender cell populations are ‘macrophages’. The gene sets 
of interest were genes that were differentially expressed 
in fibroblasts in MI or ICM compared to controls.

RNA velocity and single‑cell trajectory inference
The mouse 10 × scRNA-seq data generated from 
E-MTAB-7895 were used for the RNA velocity analysis. 
First of all, BAM files were preprocessed with samtools 
to make them compatible with velocyto.py [33]. The 
different Loom files generated by velocyto.py are then 
loaded into scVelo [34] and integrated. We use the scv.
pp.filter_and_normalize function to process the data. The 
moments of normalized spliced and unspliced counts 
were calculated using the scvelo.pp.moments function 
for each cell with default parameters. The RNA velocity 
was estimated using the scvelo.tl.velocity function with 
the ‘‘stochastic’’ or ‘‘dynamical’’ model, and the velocity 
graph was built using the scvelo.tl.velocity_graph func-
tion. The RNA velocities were projected into the UMAP 
coordinates with the scv.pl.velocity_embedding_stream 
function for visualization.

For trajectory inference, Partition-based graph 
abstraction (PAGA) has been benchmarked as the 
best technique. PAGA is extended by velocity-inferred 
directionality. Here, PAGA was used to character-
ize connections between cell subpopulations and infer 
transitions between different subclusters. CellRank is a 
modular framework to study cellular dynamics based 
on Markov state modeling of multi-view single-cell data 
[35]. In this study, we used the CellRank’s VelocityKer-
nel and computed a transition matrix based on RNA 
velocity. To make our calculations more accurate, we 
combine the VelocityKernel with the similarity-based 
ConnectivityKernel and visualize the results using the 

http://string-db.org
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vk.plot_projection function. CytoTRACE [36] is a com-
putational algorithm for predicting differentiation status 
from scRNA-seq data. CytoTRACE leverages a simple, 
yet robust, determinant of developmental potential—the 
number of detectably expressed genes per cell, or gene 
counts. We used CytoTRACE as a complement to the 
RNA velocity analysis.

We used Slingshot [37] to infer developmental differ-
entiation trajectories in the scRNA-seq dataset. Slingshot 
can serve as a component in an analysis pipeline after 
dimensionality reduction and clustering. In our study, 
we used slingshot to infer the developmental trajectories 
of the fibroblast subsets and the macrophage-monocyte 
dataset. For the fibroblast dataset, we chose Mki67+ 
fibroblasts as the starting point based on the results of the 
PAGA and CytoTRACE analyses. For the macrophage-
monocyte dataset, combining the results of PAGA anal-
ysis and CytoTRACE analysis, we set Gpnmb+Fabp5+ 
macrophages as the endpoint and monocytes as the start 
point to analyze the cell developmental trajectory.

pySCENIC analysis
We analyzed activated regulons in different fibroblast 
subpopulations using SCENIC [38]. Gene–gene co-
expression relationships between transcription factors 
(TFs) and their potential targets were inferred using the 
grn function and the gene regulatory network recon-
struction algorithm "grnboost2". Next, the regula-
tor activity of each cell was calculated using the aucell 
algorithm.

Animal models
All experimental animal procedures were approved by 
the Animal Care and Use Committee of Renmin Hospital 
of Wuhan University, and were also in accordance with 
the Guidelines for the Care and Use of Laboratory Ani-
mals published by the US National Institutes of Health. 
Wild-type C57BL/6 mice (male; 8–10  weeks old; 23.5–
27.5 g) were purchased from the Institute of Laboratory 
Animal Science, Chinese Academy of Medical Sciences 
(Beijing, China). For MI surgery, the hearts and left ante-
rior descending arteries (LAD) of the mice were com-
pletely exposed, and the vessels were ligated with a 7–0 
suture approximately 2 m from the lower margin of the 
left atrial appendage under a stereomicroscope, and the 
distal end of the ligature appeared white due to ischemia, 
indicating that the procedure was successful. The mice 
were sacrificed on postoperative days 7 and 28 and the 
hearts were excised and used for subsequent studies. For 
TAC surgery, mice were anesthetized by intraperitoneal 
injection of 0.3% sodium pentobarbital (50 mg/kg), chest 
and axillary hairs were shaved off. The surgical region 
was subjected to sterilization using iodine and a 75% 

ethanol solution. Afterward, an incision was made in the 
left thoracic cavity of the mice. Subsequently, the aortic 
arch was ligated with a No. 7–0 silk thread and a No. 27 
G needle.

Masson’s trichrome staining
Heart tissue was fixed in 10% buffered formalin and 
embedded in paraffin. Transverse sections of heart tis-
sue were cut, deparaffinised in xylene and dehydrated by 
the ethanol gradient method. Masson trichrome stain-
ing was performed according to the manufacturer’s pro-
tocol (Servicebio, G1006, China). Finally, the sections 
were washed, dehydrated and sealed with a xylene-based 
sealer.

Immunofluorescence staining
For fluorescent staining of heart tissue sections, paraffin-
embedded sections were first de-paraffinized, rehydrated, 
and subjected to antigen recovery using citric acid buffer 
for immunofluorescent labeling of cardiac slices. For 
immunofluorescence staining of cell coverslips, cells were 
fixed with 4% paraformaldehyde for 15 min and permea-
bilized in 0.5% Triton X-100 for 15  min. After blocking 
the non-specific binding with 10% goat serum, cardiac 
slices or cell coverslips were incubated with the primary 
antibodies (Table S3) at 4 °C overnight, and stained with 
the goat anti-mouse IgG Alexa Fluor 488 or goat anti-
rabbit IgG Alexa Fluor 568 secondary antibodies (1:100 
dilution) at 37  °C for an additional 1 h. The nuclei were 
visualized with SlowFade™ gold antifade reagent with 
DAPI (#S36939, Invitrogen). The immunofluorescent 
images were obtained by a DP74 fluorescence micro-
scope (OLYMPUS, Tokyo, Japan) and quantified with 
ImageJ software.

Cardiac fibroblast isolation, culture and adenovirus 
infection
The cardiac fibroblasts were extracted from 3-day-old 
Sprague–Dawley rats. After removal of the atria and right 
ventricle and rinsing with pre-cooled D-Hanks solution, 
cardiac tissues were minced in DMEM/F12 (#51445C, 
Gibco) culture medium and digested with 0.125% trypsin 
(#25,200, Gibco) five times, each time for 10  min. The 
digest was then collected and centrifuged to remove the 
supernatant. The cells were resuspended in DMEM/F12 
culture medium containing 15% FBS, filtered through a 
40 µm filter and inoculated into 10 cm dishes for 90 min. 
Cardiac fibroblasts were incubated by adding shCtrl or 
shCthrc1 adenovirus to DMEM/F12 culture medium 
containing 10% FBS. After 12 h of incubation, the culture 
was switched to DMEM/F12 medium containing 10% 
FBS and Ang II (1 μmol/l) without adenovirus and con-
tinued for 48 h.
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RNA isolation and quantitative real‑time PCR
Total RNA was extracted from the cardiac fibroblasts 
with TRIzol lysis reagent (#15,596,018, Invitrogen), 
extracted by trichloromethane, precipitated by isopro-
panol and rinsed by 75% ethanol. The purity as well as 
the concentration of the proposed RNA was determined, 
cDNA synthesis was performed with a Transcriptor 
First Strand cDNA Synthesis Kit (Roche, Basel, Switzer-
land). Light Cycler 480 SYBR Green 1 Master Mix was 
used to perform qRT-PCR. The details about all primer 
sequences are listed in Table S4, and GAPDH is used as 
the endogenous reference gene.

Statistical analysis
Results are expressed as the mean ± SEM. Compari-
sons between two groups with a normal distribution 
and homogeneity of variance were performed using an 
unpaired Student’s t test. GraphPad Prism (version 9.0, 
GraphPad Software, San Diego, CA) was used for statisti-
cal analysis. A P value less than 0.05 was considered sta-
tistically significant.

Results
ECM‑producing fibroblasts have similar phenotypes 
across mouse and human single‑cell transcriptome atlas
To comprehensively characterize the subpopulations of 
fibroblasts in MI, we integrated two previously published 
scRNA-seq datasets [16,19]. After quality control and 
filtering, we ended up with a dataset containing 12,0121 
cells categorized into 11 different cell types (Fig.  1A). 
These cells were extracted from mouse hearts 1, 3, 5, 7, 14 
and 28 days after MI (Fig. 1B). We extracted fibroblasts 
from the integrated scRNA-seq dataset and re-clustered 
them to get higher resolution for heterogeneity and ulti-
mately identified 12 subclusters (Fig. 1C). Analyzing the 
composition of fibroblasts at different time points we 
identified three subsets of fibroblasts (cluster 5, cluster 9 
and cluster 10) that were absent in controls but appeared 
during the acute phase of the MI period (Fig. 1D). Next, 

we analyzed all the fibroblast subsets to identify genes 
characteristic of different subsets (Table  S5). Character-
ization genes for cluster 5 included Cthrc1, Acta2, Fn1, 
Col1a1 and Postn (Figure S1A; Table  S5). Characteriza-
tion genes for cluster 9 included Mt2, Ccl2, Timp1, Mt1 
and Prg4. Cluster 9 was present in large numbers on 
day 1 after MI, decreases rapidly on day 5, and exhibited 
high expression of genes related to immunity. Charac-
terization genes for cluster 10 included Stmn1, H2afz, 
Cks2, Cenpa and Acta2 (Figure S1A; Table S5). We also 
found that MKi67 was almost exclusively expressed in 
cluster 10 (Figure S1B), suggesting that cluster 10 rep-
resents a subset of fibroblasts with high proliferative 
capacity. Of note, we identified cluster 7, which is abun-
dant in the late phase of MI but rare in the control and 
acute phases of MI. Characterization genes for cluster 7 
included Comp, Sfrp2, Cilp, Eln, Wisp2 and Ctgf (Figure 
S1A; Table S5). This subcluster exhibits the characteris-
tic of matrifibrocytes, which appeared late in the infarc-
tion phase as mentioned in the previous study, persisted 
in the scarred area, expressed the Comp gene, and lost 
αSMA expression (Figure S1A) [39,40]. The biological 
processes of cluster 5 were enriched in the collagen fibril 
organization and ECM organization (Fig.  1F), suggest-
ing that this cluster was closely associated with fibrotic 
scar formation and may represent the reparative cardiac 
fibroblasts (RCFs) mentioned in a previous study [23]. 
To test our hypothesis, we reanalyzed the Ruiz-Villa-
lba et  al. generated scRNA-seq, and clustering analysis 
found Cthrc1 is highly expressed in cluster 3, suggesting 
that cluster 3 represents the RCFs mentioned by Ruiz-
Villalba et  al. (Figure S1C and S1D). We then extracted 
the top 50 DEGs in this subpopulation and mapped them 
to our fibroblast dataset, and finally found this signa-
ture was highly expressed in cluster 5, in concordance 
with our hypothesis (Figure S1E). Of note, we found that 
the top 50 DEGs of matrifibrocytes, which appeared in 
the late phase of MI, were also predominantly enriched 
with ECM organization (Fig. 1G). DEGs analysis further 

(See figure on next page.)
Fig. 1  Activated fibroblasts have similar phenotypes across mouse and human single-cell data. A Overview of the mouse scRNA-seq datasets. 
The project distribution, time distribution, clusters distribution and cell types distribution are depicted as UMAP plots. B UMAP plots of cells 
from 0, 1, 3, 5, 7, 14, and 28 days after MI in the integrated mouse scRNA-seq dataset colored by cell type. C UMAP scRNA-seq plot of fibroblasts 
from the integrated mouse scRNA-seq dataset. A total of 12 clusters were identified. D UMAP plots of fibroblasts from 0, 1, 3, 7, 14, and 28 days 
after MI colored by cluster. E Gene expression of Postn, Fn1, Col1a1 and Runx1. F GO enrichment analysis of the top 50 genes in cluster 5 
(RCFs, mouse). G GO enrichment analysis of the top 50 genes in cluster 7 (matrifibrocyte, mouse). H The volcano plots showing the DEGs 
between cluster 5 vs. cluster 7. I Heatmap showing TFs activity for cluster 5, cluster 7 and cluster 10 fibroblasts subsets (mouse). J UMAP plot of cells 
from the integrated human scRNA-seq dataset colored by cell type. K UMAP scRNA-seq plot of fibroblasts from the integrated human scRNA-seq 
dataset. A total of 12 clusters were identified. L UMAP plots showing mouse RCFs scRNA-seq signatures using the top 10 DEGs from mouse RCF 
mapped into fibroblasts from the integrated human scRNA-seq dataset. M UMAP plots showing mouse cluster 7 scRNA-seq signatures using 
the top 10 DEGs from mouse cluster 7 mapped into fibroblasts from the integrated human scRNA-seq dataset. N Gene expression of COMP, SFRP2, 
CILP and WISP2. O Gene expression of POSTN, FN1, COL1A1 and RUNX1
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Fig. 1  (See legend on previous page.)
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confirmed that Postn, Cthrc1 and Acta2 were expressed 
in RCFs, while Comp and Gsn were enriched in matri-
fibrocytes (Fig.  1H). We next used pySCENIC [38] to 
explore whether the gene regulatory structure (regulons) 
in RCFs was deranged compared with the matrifibro-
cytes. The results showed significant differences in the 
TFs of these two types of fibroblasts, with RCFs exhibit-
ing much higher expression of transcription factors such 
as Bcl11a and Sirt6, as well as high expression of SOX4, 
SOX6 and SOX8 (Fig. 1I). Among them, SOX6 is consid-
ered an important target for cardiovascular disease [41]. 
Matrifibrocytes, in contrast, had high expression of E2f6 
and Atf3 (Fig.  1I). GO enrichment analysis of Mki67+ 
fibroblasts showed that the DEGs were mainly enriched 
in mitotic spindle organization, microtubule cytoskeleton 
organization involved in mitosis and mitotic cell cycle 
phase transition (Figure S1F). DEGs analysis showed that 
Col1a1, Col3a1 and Sparc were expressed in RCFs, while 
Stmn1 and Cenpa were enriched in Mki67+ fibroblasts 
(Figure S1G).

To compare fibroblast subsets in human heart tissues, 
we downloaded snRNA-seq datasets of MI and ICM 
from the Human Cell Atlas and the GEO database and 
performed quality control and integration and a dataset 
of 72,515 cells was finally obtained. Clusters were anno-
tated with marker genes from the literature [12,15] and 
nine major cardiac cell types were identified (Fig. 1J). we 
extracted fibroblasts from the human scRNA-seq dataset 
and reclustered them for analysis. Unbiased clustering 
eventually grouped cardiac fibroblasts into 12 different 
subsets (Fig.  1K). We first mapped the gene expression 
signature of mouse RCFs using an AUC score. This sig-
nature was most highly expressed in human cluster 3 and 
cluster 6 (Fig.  1L). At the same time, the marker gene 
(POSTN, FN1, COL1A1 and RUNX1), which was highly 
expressed in mouse RCFs, was also highly expressed in 
human fibroblasts cluster 3 (Fig.  1O). This result sug-
gests that human fibroblasts cluster 3 and mouse RCFs 

have similar phenotypes. Next, we mapped the gene 
expression signature of mouse matrifibrocytes using 
an AUC score. This signature was highly expressed in 
human cluster 6, cluster 4 and some cells in cluster 1 
and cluster 5 (Fig.  1M). SFRP2, CILP and WISP2 were 
highly expressed in cluster 6, whereas COMP was mainly 
expressed in cluster 1 and cluster 5 (Fig. 1N). We simul-
taneously analyzed human cluster 3 (human RCFs) for 
DEGs analysis with human cluster 6 and human cluster 
0, respectively (Figure S1H and S1I). GO enrichment 
analysis of human cluster 3 showed that the DEGs were 
mainly enriched in collagen fibril organization and extra-
cellular matrix organization, while the DEGs in human 
cluster 6 were mainly enriched in cytoplasmic translation 
and peptide biosynthetic process (Figure S1J and S1K). 
In summary, by dynamically observing the changes in 
fibroblast subsets after MI, we observed four subsets of 
fibroblasts appearing after infarction, including Mki67+ 
fibroblasts, RCFs, Ccl2+ fibroblasts and matrifibrocytes. 
The signature of ECM-producing myofibroblasts (RCFs 
and matrifibrocytes) were also present in human cardiac 
single-cell transcriptome atlas.

Mki67+ fibroblasts contribute to RCFs during the acute 
phase of MI
To explore the differentiation trajectories of differ-
ent subsets of fibroblasts during MI, we utilized the 
E-MTAB-7895 dataset for RNA velocity analysis since 
this method requires raw sequencing data. We divided 
these fibroblasts into three groups based on differ-
ent periods: acute phase of MI (1, 3, 5, 7 days post-MI), 
subacute phase of MI (14, 28  days post-MI), and con-
trol group (non-surgical) (Fig.  2A and 2B). Here, we 
used two different models “stochastic” and “dynamical” 
to estimate RNA velocity, and we also used CellRank 
to compute a transition matrix based on RNA veloc-
ity. We calculated the rate of cell differentiation, which 
can be measured by velocity length. We first analyzed 

Fig. 2  Mki67+ fibroblasts contribute to RCFs during the acute phase of MI. A UMAP plots of fibroblast clusters showing time distribution. B 
Proportion of fibroblast clusters showing in bar plots from control, stable and acute groups. C RNA velocity analysis showing the transition 
potential among fibroblast clusters at the control group, transcription dynamics based on the dynamical model (left), transcription dynamics 
based on the stochastic model (middle). Using CellRank’s VelocityKernel to compute transition matrix based on RNA velocity (right). D The 
velocity length (left) and velocity confidence (right) of the fibroblasts in control group. E RNA velocity analysis showing the transition potential 
among fibroblast clusters at subacute group, transcription dynamics based on dynamical model (left), transcription dynamics based on stochastic 
model (middle). Using CellRank’s VelocityKernel to compute transition matrix based on RNA velocity (right). F The velocity length (left) and velocity 
confidence (right) of the fibroblasts in subacute group. G RNA velocity analysis showing the transition potential among fibroblast clusters 
at the acute group, transcription dynamics based on the dynamical model (left), transcription dynamics based on the stochastic model (middle). 
Using CellRank’s VelocityKernel to compute transition matrix based on RNA velocity (right). H The velocity length (left) and velocity confidence 
(right) of the fibroblasts in acute group. I UMAP analysis of all fibroblast clusters at acute group embedded with PAGA connectivities for trajectory 
inference. J UMAP plots colored by the recovered latent time in the scRNA-seq datasets at acute group (left) and expression heatmaps for top 100 
genes with fibroblasts ordered by latent time values. K UMAP plots of differentiation levels and the distribution of fibroblasts clusters (left). Boxplot 
showing the comparison of CytoTRACE score between different fibroblasts clusters (right)

(See figure on next page.)
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the fibroblast populations in the subacute and control 
phases. We found that cluster 0 in the control group may 
contribute to other fibroblast subsets, with no clear evo-
lutionary sequence between the various subsets (Fig. 2C). 

This is consistent with the higher rate of differentiation 
of cluster 0 (Fig. 2D). Similarly, there was no significant 
differentiation trajectory at 14 and 28  days after MI 
(Fig.  2E). Of note, cluster 7 (matrifibrocytes), a subset 

Fig. 2  (See legend on previous page.)
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of fibroblasts appearing mainly in the subacute group 
exhibited a higher rate of differentiation (Fig. 2F). In sum, 
our RNA velocity analysis results showed that the tran-
sitions between fibroblast subsets in the later stages of 
MI resembling the dynamics between fibroblast subsets 
observed in healthy myocardium.

We next focused on RNA velocity analysis of fibro-
blast subsets in the acute phase of MI. We found that the 
results of the RNA velocity analysis of the “stochastic” 
model were similar to those of the “dynamical” model 
and the transition matrix based on RNA velocity. In the 
period from 1 to 7 after MI, we found a transition from 
cluster 10 (Mki67 + fibroblasts) to cluster 5 (RCFs), 
immediately followed by a transition from RCFs to matri-
fibrocytes, cluster 4 (Fig.  2G). This is consistent with 
a previous study that matrifibrocytes are transformed 
from myofibroblasts [39]. We also observed a transi-
tion from cluster 9 to cluster 0 and cluster 2. Cluster 0, 
cluster 1 and cluster 3 are supposed to be the terminal 
subgroups of differentiation. Whereas there were no sig-
nificant differences in differentiation rates between sub-
sets of fibroblasts in the acute group (Fig.  2H). PAGA 
of RNA velocity provides a graph-like map of the data 
topology with weighted edges corresponding to the con-
nectivity between two clusters [42]. The PAGA velocity 
graph also showed a direction from Mki67+ fibroblasts to 
RCFs (Fig. 2I). The above results suggested that Mki67+ 
fibroblasts, which were rapidly activated after MI injury, 
were converted to RCFs and participated in subsequent 
cardiac wound healing. However, latent time analy-
sis showed no significant difference between RCFs and 
Mki67+ fibroblasts (Fig.  2J). We also used CytoTRACE 
to assess the differentiation potential of different fibro-
blast subsets and obtained similar results to the RNA 
rate analysis, with cluster 10 (Mki67+ fibroblasts), clus-
ter 5 (RCFs), cluster 9 (Ccl2+ fibroblasts) and cluster 7 
(matrifibrocytes) being the subsets with the highest dif-
ferentiation capacity, representing an intermediate dif-
ferentiation state (Fig. 2K). Finally, we used Slingshot to 
track the differentiation trajectory of fibroblast subsets. 
We set Mki67+ fibroblasts as our starting point because 
Mki67+ fibroblasts have a higher differentiation capac-
ity compared to other subsets. Consistent with the 
results of the above analysis, RCFs were derived from 
Mki67+ fibroblasts and served as an intermediate for the 

eventual emergence of other fibroblast subsets (Figure 
S2A through S2E).

CTHRC1+ fibroblasts represent an activated fibroblast 
population in chronic disease state
Our results indicate that Cthrc1 was the top marker gene 
in RCFs, but RCFs were predominantly seen in the acute 
phase after MI injury. Previous studies have shown that 
CTHRC1 also appears in the late infarct stage and is 
expressed in human cardiac tissues from ICM and DCM 
patients [23]. To further explore the gene expression level 
of CTHRC1 in cardiac fibrosis and its correlation with 
the chronic disease state, we obtained the scRNA-seq 
datasets GSE155882 and GSE185265 related to cardiac 
fibrosis in mice from the GEO database. The GSE155882 
dataset includes mice treated in four different subgroups, 
while GSE185265 contains three subgroups (Figure S3A). 
We first integrated the data from different treatment 
groups in GSE155882 and then extracted fibroblast sub-
populations based on the marker gene of fibroblasts and 
performed dimensionality reduction clustering analysis 
(Fig.  3A). Fibroblast populations with high expression 
of Cthrc1 also had high expression of Postn, a classical 
marker of activated fibroblasts (Fig.  3B). DEGs analysis 
revealed a significant upregulation of Postn and Cthrc1 in 
cluster 6 (Fig. 3C). The expression of Postn was reduced 
in fibroblasts after treatment with JQ1, a drug that effec-
tively reduces fibrosis and improves cardiac function 
[22], and this effect was attenuated after the withdrawal 
of JQ1 midway. Similar to the results for Postn, Cthrc1 
expression in fibroblasts was reduced after JQ1 treatment 
(Fig.  3D). We used the same approach to integrate and 
process another scRNA-seq dataset GSE185265 (Figure 
S3B). Similar to the results of the TAC model, Cthrc1+ 
fibroblasts highly express Postn (Figure S3C). The expres-
sion level of Cthrc1 was significantly reduced in the late 
stage of MI, but it was still evident that Postn and Cthrc1 
expression levels were reduced in TTg mice [21] (bet-
ter heart function and less cardiac fibrosis) compared to 
control mice (Figure S3D and S3E). Our immunofluo-
rescence results showed that some Postn-positive fibro-
blasts also expressed Cthrc1 at 7  days after MI and in 
TAC model hearts, but such fibroblasts were rarely pre-
sent in cardiac tissues in the control group and at 28 days 
after MI (Fig. 3E). Taken together, the analysis of the two 

(See figure on next page.)
Fig. 3  Characterization of CTHRC1+ fibroblasts in a mouse model of heart failure. A UMAP plot showing the fibroblast and their subclusters. 
A total of 8 clusters were identified. All other types of cells were colored in gray. B Gene expression of Postn and Cthrc1. C Expression by cluster 
of known activated fibroblast related genes shown as violin plots in fibroblasts. D Expression by sample of Postn and Cthrc1 shown as feature plots 
in fibroblasts. E Spatial location of POSTN, CTHRC1 in the control group, the infarct zone at 7, 28 days post MI and 28 days post TAC. POSTN (green), 
CTHRC1 (red), Nuclei (DAPI, blue). Co-localizations are in yellow (arrows). Scale bars: 100 µm
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Fig. 3  (See legend on previous page.)
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mouse scRNA-seq datasets suggested that in chronic 
disease states, fibroblast populations with high Cthrc1 
expression (Cthrc1+ fibroblasts), a subset of Postn+ fibro-
blasts, are associated with worsened cardiac function and 
exacerbated fibrosis.

To explore whether there are similar results in human 
heart tissue, we collected snRNA-seq datasets of human 
DCM and HCM (Figure S4A). We first integrated mul-
tiple DCM samples and then extracted fibroblasts which 
were finally divided into 5 subsets (Figure S4B). Com-
pared with other subsets, cluster 5 and cluster 6 highly 
expressed POSTN, and were mainly present in the DCM 
group (Figure S4C and S4D). In addition, we found that 
CTHRC1 was mainly expressed in cluster 5 and highly 
overlapped with POSTN+ fibroblasts. For HCM, unbi-
ased clustering grouped the fibroblasts into six clusters. 
Cluster 1 and cluster 5 increased considerably in HCM 
vs. CTRL (Figure S4F and S4G). Consistent with this, 
cluster 1 and cluster 5 were highly expressive of genes 
associated with activated fibroblasts such as POSTN and 
MEOX1 [22], meanwhile CTHRC1 was also predomi-
nantly expressed in relation to these two subsets (Figure 
S4H). Compared to controls, fibroblasts from the HCM 
group exhibited higher expression of CTHRC1 (Figure 
S4I). The results of GO enrichment analysis for cluster 
1 and cluster 5 also showed that the DEGs were mainly 
enriched in the ECM organization, extracellular structure 
organization and collagen fibril organization (Figure S4J). 
Similar to the results obtained from the mouse scRNA-
seq dataset, CTHRC1+ fibroblast in DCM and HCM 
often also have high expression of POSTN and represents 
activated fibroblasts.

Activator protein‑1 is a common transcription factor 
in CTHRC1+ fibroblasts in chronic disease state
To better understand the characteristics of CTHRC1+ 
fibroblasts, we subjected CTHRC1+ fibroblasts to DEG 
analysis with all other fibroblast subpopulations. We 
took the intersection of the genes upregulated in the 
dataset of TAC mice with the genes whose expression 
was upregulated in the dataset of MI 3  month mice, 
and finally obtained 16 genes (Fig.  4A and 4B). These 

intersecting genes included Comp, Fn1, Cilp, Spp1 and 
Postn, which were associated with fibrosis. Similarly, the 
common genes that were highly expressed in CTHRC1+ 
fibroblasts in DCM and HCM compared to other fibro-
blast subpopulations also included profibrotic genes such 
as POSTN, COL1A1 and COL1A2 (Fig.  4C and 4D). 
We transfected the constructed adenovirus into cardiac 
fibroblasts to knock down the Cthrc1 gene in the cells, 
and the results of qRT-PCR showed that the Cthrc1 gene 
was successfully knocked down after infection (Fig.  4E 
and 4F). We found that expression of collagen-associ-
ated mRNA levels was reduced in Cthrc1 knockdown 
cells under Ang II stimulation compared to shCtrl group 
(Fig. 4G). Similarly, immunofluorescence results showed 
that the fluorescence intensity level of Col1a1 was lower 
in the shCthrc1 group compared to the shCtrl group, but 
the fluorescence intensity of Col3a1 was not significantly 
different between the two groups (Fig. 4H and I). We next 
analyzed the TFs of CTHRC1+ fibroblasts using pySCE-
NIC in an attempt to discover their shared transcription 
factor profile. Common TFs for Cthrc1+ fibroblasts in the 
TAC model and 3  months after MI included Klf4, Klf2, 
Npdc1, Xbp1, Jund, Maff, Junb and Tfdp1 (Fig.  4J). TFs 
shared by CTHRC1+ fibroblasts in DCM and HCM were 
PKNOX1, FOXO1, CREB5, BBX, RFX2, BRF2, RXRG 
and FOS (Fig. 4K). Combining the results of these anal-
yses we found that activator protein-1 (such as JUND, 
JUNB and FOS) may be a common transcription factor in 
CTHRC1+ fibroblasts. Altogether, the above results sug-
gested that, CTHRC1+ fibroblasts in the chronic disease 
state tend to represent persistently activated fibroblasts 
and activator protein-1 may be involved in the regulation 
of CTHRC1+ fibroblasts.

Gpnmb+Fabp5+ macrophages possess characteristics 
of SAMs and SPP1hi macrophages present in the early 
stages of MI
Immune-fibroblast interaction is an important mecha-
nism of MI. To study macrophage alterations after MI, 
we extracted macrophages from the integrated mouse 
scRNA-seq dataset, and unbiased clustering grouped 
the macrophages into 8 subclusters (Fig.  5A and 5B). 

Fig. 4  Gene expression profile of CTHRC1+ fibroblasts. A Volcano plot of DEGs in Cthrc1+ fibroblasts versus all other types of fibroblasts. B 
Shared differentially expressed genes and their PPI network. C Volcano plot of DEGs in Cthrc1+ fibroblasts versus all other types of fibroblasts. 
D Shared differentially expressed genes and their PPI network. E–F GFP expression level and mRNA expression level of CTHRC1 in the shCtrl 
and shCthrc1 groups. Scale bars: 100 µm G The mRNA expression level of Col1a1, Col3a1, Ctgf, Postn, Fn1 in the shCtrl and shCthrc1 groups 
(n = 3). H Col1a1 expression detected by cellular immunofluorescence staining (n = 4). Scale bars: 50 µm. I Col3a1 expression detected by cellular 
immunofluorescence staining (n = 4). Scale bars: 50 µm. J Heatmap showing top 50 TFs activity for TAC-fibroblast cluster 6 (Cthrc1+ fibroblasts) 
and MI-fibro cluster 8 (Cthrc1+ fibroblasts). Venn diagram showing TFs common to both disease models. K Heatmap showing top 50 TFs activity 
for DCM-fibroblast cluster 5 (CTHRC1+ fibroblasts) and HCM-fibro cluster 1 (CTHRC1+ fibroblasts). Venn diagram showing TFs common to DCM 
and HCM. *P < 0.05, **P < 0.01

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Fig. 5  Gpnmb+Fabp5+ macrophage possess characteristics of SAMs. A UMAP plot of macrophages from the integrated mouse scRNA-seq dataset. 
A total of 8 clusters were identified. B Heatmap showing the expression profiles of top 5 genes ranked by LogFC of each cluster. C Gene expression 
of Lyve1, Spp1, Cd9 and Trem2. D UMAP plots of macrophages from 0, 1, 3, 7, 14, and 28 days after MI colored by cluster. E Violin plots showing 
the expression of Trem2, Spp1, Cd9, Gpnmb, Fabp5 and Cd63 in macrophage subsets. F The volcano plots showing the DEGs between cluster 0 
vs. cluster 1 (mouse). G The volcano plots showing the DEGs between cluster 0 vs. cluster 3 (mouse). H Heatmap showing the top 50 TFs activity 
for cluster 0 and cluster 1 and cluster 10 macrophages subsets (mouse). Venn diagram showing TFs common to both subsets. I The volcano plots 
showing the DEGs between cluster 6 vs. cluster 0 (human). J The volcano plots showing the DEGs between cluster 6 vs. cluster 1 (human). K 
Heatmap showing the TFs activity for cluster 1 and cluster 6 macrophages subsets (human)
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Cluster 3 high expression of Lyve1 may represent a resi-
dent Lyve1+ macrophage (Fig.  5C). It has recently been 
suggested that SAMs express TREM2 and/or CD9 in liver 
fibrosis and lung fibrosis [7]. We therefore validated the 
expression levels of these genes in different macrophage 
subsets. We found that Cd9 and Trem2 were expressed 
in several subsets including cluster 0, cluster 1, cluster 2, 
and cluster 4 (Fig. 5C). Spp1+ macrophages, which have 
recently been suggested to be strongly associated with 
tissue fibrosis [43,44]. We found that Spp1 was highly 
expressed in cluster 0, cluster 1 and cluster 4 (Fig.  5C). 
Cluster 0 and cluster 4 began to expand mainly at 3 days 
after MI, peaking at day 7, but decreased dramatically 
on day 14, whereas cluster 1 expanded rapidly on day 1 
after MI but decreased substantially on day 5 (Fig.  5D). 
DEGs analysis of the different subsets revealed that genes 
highly expressed in cluster 0 included Gpnmb, Fabp5, 
Ctsd, Syngr1, Trem2, Cd63 and Spp1 (Fig. 5E; Table S6). 
In concordance with this, compared with the cluster 1 
and cluster 3, cluster 0 highly expresses Apoe, Gpnmb, 
Lgals3 and Spp1 (Fig. 5F and 5G). The temporal sequenti-
ality of the appearance of cluster 1 and cluster 0 and their 
positional proximity in the UMAP plot led us to specu-
late whether they share similar transcriptional features. 
The results of pySCENIC analysis showed that 35 of the 
top 50 TFs were the same between cluster 0 and cluster 1 
including core transcription factors such as Spi1, Cebpb 
and Irf8 that are associated with macrophage lineage 
commitment and differentiation [45] (Fig.  5H). We also 
discovered cluster 0 exhibits some characteristic LAMs 
(lipid-associated macrophages) transcripts [46,47]. 
Meanwhile, the expression of cluster 0 was characterized 
like the previously reported SAMs, which highly express 
GPNMB, FABP5, SPP1 and CD63 [7]. Thus cluster 0 rep-
resents the Gpnmb+Fabp5+ macrophage possessing both 
LAMs and SAMs related characteristics. Considering the 
overlap of marker genes between LAMs and SAMs, fur-
ther investigations are warranted to understand whether 
LAMs and SAMs represent the same subsets of mac-
rophages in tissues.

Gpnmb+Fabp5+ macrophage was dramatically 
reduced in 14  days after MI, making us wonder if it 
plays a role mainly in the early stages after MI injury. 
To validate this hypothesis we additionally integrated 
three mouse scRNA-seq datasets that contained CD45+ 
cells isolated from the infarcted area of the heart 
(Figure S5A). We extracted macrophages from the 
integrated scRNA-seq dataset, sub-clustering of mac-
rophages led to the identification of 10 clusters (Figure 
S5B). To compare macrophage subpopulations in the 
newly integrated scRNA-seq dataset, we constructed a 
gene expression signature containing the top 30 genes 
of the Gpnmb+Fabp5+ macrophage and then mapped 

it to the new macrophage dataset. This signature was 
highly expressed in cluster 2 (Figure S5C). Similar to 
previous results, cluster 2 appeared mainly in the 3 
to 7  days period of MI and decreased significantly in 
the later stages (14 days post MI) (Figure S5D). At the 
same time, compared to other macrophage subpopula-
tions cluster 2 highly expressed Spp1 and Gpnmb (Fig-
ure S5E). These results suggested that Gpnmb+Fabp5+ 
macrophage expands rapidly during the acute phase of 
MI and disappears in the later stages of the disease.

To explore whether Gpnmb+Fabp5+ macrophage 
transcriptional signature was conserved in the human 
diseased heart, we extracted macrophages from the 
above integrated human scRNA-seq dataset and per-
formed unbiased clustering (Figure S6A). Cluster 0 
high expression of LYVE1 represented cardiac resident 
macrophages, and the SPP1 was mainly expressed in 
cluster 6 (Figure S6B). CD9 and TREM2 were highly 
expressed in cluster 1 (Figure S6B). We then mapped 
the Gpnmb+Fabp5+ macrophage signature to the 
human macrophage dataset and found that these fea-
tures were mainly expressed in cluster 1 and cluster 0 
(Figure S6C). At the same time, we found that CD63 
and FABP5 were also predominantly expressed in these 
two clusters (Figure S6D). Interestingly, we found that 
SPP1 was predominantly expressed in cluster 6, but 
not in cluster 1 and cluster 0, which is not consist-
ent with the expression profile in the mouse dataset. 
We then divided the cells into three different groups 
based on their origin: control, MI and ICM. Cluster 6 
(SPP1hi macrophages) were mainly present in the MI 
group, cluster 0 (LYVE1hi macrophages) was predomi-
nantly found in healthy cardiac tissue, whereas cluster 1 
(CD9hiTREMhi macrophages) was predominantly found 
in ICM patient cardiac tissue. (Figure S6E). GO enrich-
ment analysis of cluster 6 showed that the DEGs were 
mainly enriched in the regulation of cell migration, 
extracellular structure organization and external encap-
sulating structure organization (Figure S6F). The gene 
expression profiles between cluster 6 and cluster 1, and 
between cluster 6 and cluster 0 were highly differenti-
ated (Fig. 5I, J). In concordance with this, we found that 
the TFs were also very different between cluster 6 and 
cluster 1 (Fig.  5K). Overall, the results of our analyses 
indicated that, unlike the mouse dataset, macrophages 
possessing the Gpnmb+Fabp5+ macrophage signa-
ture in the human dataset were mainly present in the 
ICM but not in the MI cardiac tissue. However, in both 
mouse and human cardiac tissues, macrophages that 
highly express SPP1 (SPP1hi macrophages) were almost 
exclusively present in the early stages of MI, not in the 
later stages of the disease (post-MI > 14  days or ICM 
group).
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Dynamic transition of macrophage subsets in the acute 
phase of MI
We introduced RNA velocity analysis to profile the 
dynamics of different subpopulations of mouse mac-
rophages at different stages after MI injury. RNA veloc-
ity analysis showed that the majority of macrophage 
subpopulations in the control group flowed toward clus-
ter 2 and cluster 3 (Fig. 6A). The PAGA plot abstraction 
obtained similar results, with both cluster 4 and cluster 1 
shifting toward cluster 3, and cluster 0 and cluster 1 shift-
ing toward cluster 2 (Fig. 6C). The dynamic flow of mac-
rophages during the subacute phase was similar to the 
results of the control group (Fig. 6D). The results of the 
PAGA plot abstraction show that cluster 6 and cluster 0 
flow to cluster 3, and cluster 0 and cluster 5 flow to clus-
ter 2 (Fig. 6F). In both the control and subacute groups, 
cluster 1 showed a higher rate of differentiation (Fig. 6B 
and 6E). Next, we focused on analyzing the dynamics of 
macrophages in the acute phase, which possesses a larger 
number of macrophages. We use the generalized dynam-
ical model to understand the transcriptional dynamics of 
macrophages. RNA velocity predicted that cluster 0, clus-
ter 5 and cluster 1 may be an intermediate state in mac-
rophage dynamics (Fig.  6G). This is consistent with our 
above observation that these subpopulations appeared in 
the acute phase but disappeared in the subacute phase. 
The results of velocity length and velocity confidence sug-
gested that cluster 1 has a faster speed of differentiation 
compared to other macrophage subpopulations, which 
was consistent with the fact that cluster 1 presented in 
large numbers on the first day after infarction but then 
decreased dramatically on the fifth day (Fig.  6H). The 
PAGA velocity graph also showed the transition from 
cluster 2, cluster 3, cluster 5 and cluster 6 to cluster 0, 
suggesting that at the acute stage cluster 0 represents a 
terminally differentiated subpopulation (Fig. 6I). We also 
used CytoTRACE to assess the differentiation capacity 
of different macrophage subpopulations, and similar to 

the results of our RNA velocity analyses, cluster 1 had a 
high differentiation capacity and represented a rapidly 
increasing population after MI (Fig. 6J).

To explore whether cluster 0 (Gpnmb+Fabp5+ mac-
rophages) originated from monocytes, we integrated 
macrophages and monocytes into one dataset for 
analysis (Fig.  6K). RNA velocity analysis did not give a 
definitive indication of the direction of cellular differ-
entiation (Fig. 6L), and we subsequently observed cellu-
lar composition at different time points and found that 
Gpnmb+Fabp5+ macrophages appeared on days 5–7 
post-MI, whereas most monocytes and cluster 1 mac-
rophages appeared on days 1–3 post-MI (Fig.  6M). We 
then used Slingshot to infer the differentiation trajec-
tory. Combining the results of the PAGA analysis and 
the time point at which Gpnmb+Fabp5+ macrophages 
appeared, we set it as the end point of the trajectory 
and set the monocyte as the start point. The results of 
Slingshot analysis showed four different differentiation 
trajectories. Lineage 3 depicts a trajectory from mono-
cytes to cluster 1 and finally to cluster 4, whereas line-
age 4 depicts a trajectory from monocytes to cluster 1 
and later to cluster 0 (Fig. 6N and 6O). This result sug-
gested that Gpnmb+Fabp5+ macrophages may originate 
from monocytes. Meanwhile, we observed a decrease in 
the expression of Ccr2 and an increase in the expression 
of Spp1 during the differentiation from monocytes to 
Gpnmb+Fabp5+ macrophages, which is consistent with 
previous studies (Fig. 6P) [47].

Analysis of cell–cell communication reveals 
an important role for TGFB1, TNF and IL1B signaling 
in macrophage‑fibroblast interactions
To better understand the interactions between fibro-
blasts and macrophages in MI and ICM, we performed 
NicheNet analysis, which allowed us to predict cellular 
interactions by linking ligand and target gene expres-
sion. We first performed the analysis using a scRNA-seq 

Fig. 6  Dynamic transition of macrophage subsets in acute phase of MI. A UMAP plots of RNA velocity results (left) and the recovered latent time 
(right) in the single cell data sets at control group. B The velocity length (left) and velocity confidence (right) of the macrophages at control group. 
C UMAP analysis of all macrophages clusters at control group embedded with PAGA connectivities for trajectory inference. D UMAP plots of RNA 
velocity results (left) and the recovered latent time (right) in the single cell data sets at subacute group. E The velocity length (left) and velocity 
confidence (right) of the macrophages at subacute group. F UMAP analysis of all macrophages clusters at subacute group embedded with PAGA 
connectivities for trajectory inference. G UMAP plots of RNA velocity results (left) and the recovered latent time (right) in the single cell data sets 
at acute group. H The velocity length (left) and velocity confidence (right) of the macrophages at acute group. I UMAP analysis of all macrophages 
clusters at acute group embedded with PAGA connectivities for trajectory inference. J UMAP plots of differentiation levels and the distribution 
of macrophages clusters (left). Boxplot showing the comparison of CytoTRACE score between different macrophages clusters (right). K UMAP 
plots of cardiac macrophages and monocytes in acute stage, macrophages contain 8 clusters. L RNA velocity analysis showing the transition 
potential among macrophages clusters and monocytes. M UMAP plots of macrophages clusters and monocytes showing time distribution. 
N Slingshot differentiation trajectory analyses of macrophages-monocytes in the lineage 4. O Slingshot differentiation trajectory analyses 
of macrophages-monocytes in the lineage 3. P Violin plots showing the expression of Ccr2 and Spp1 in the macrophages-monocytes dataset

(See figure on next page.)
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dataset of mouse divided into control and MI groups, 
and the DEGs in fibroblasts between the two groups 
were considered as the gene set of interest. Consist-
ent with some previous findings [13,48], we found that 
Tgfb1 has an important role in fibrosis, as evidenced by 
its top-ranked predictive power (Fig. 7A). It is important 
to note that Pf4 also has a high predictive capacity and 
may interact with fibroblasts through the Pf4-Cxcl1 and 
Pf4-Ccl2 axes. A recent study suggested that Pf4 is a pro-
youth factor that reduces age-related neuroinflammation 
[49]. Next, we used the human dataset for analysis, which 
we categorized by disease into two groups: MI and ICM. 
For MI, the results of the NicheNet analysis were simi-
lar to the mouse dataset, with TGFB1 ranking the top in 
terms of the interaction counts between macrophages 
and fibroblasts (Fig. 7B). At the same time, we found that 
TNF had a high degree of rankedness, and NicheNet 
analysis predicted that macrophages-derived TNF could 
activate JUNB and PLAU in fibroblasts (Fig.  7B). We 
next analyzed the possible ligands of macrophages and 
fibroblasts in ICM and their target genes. In addition to 
TGFB, macrophage-derived IL1B also showed higher 
association with CCL2, JUNB, and NFKBIA in fibro-
blasts (Fig.  7C). We also analyzed the receptors of top-
ranked ligands between macrophages and fibroblasts, 
TGFB1-TGFBR1, TGFB1-TGFBR2, TNF-TNFRSF1A, 
AREG-EGFR, and EREG-EGFR have high interaction 
possibilities between macrophages and fibroblasts in MI 
pathologies (Fig.  7D). Whereas in ICM state, TGFB1-
TGFBR1, TGFB1-TGFBR2, IL1B-IL1R1, CD55-ADGRE5 
and ALOX5AP-ALOX5 had higher interaction potential 
between macrophages and fibroblasts (Fig. 7E).

Cross‑talk analysis between subclusters reveals that SPP1hi 
macrophages interact with RCFs to promote scar formation 
during human MI
Given that we saw some variability in the interactions 
between macrophages and fibroblasts in MI and ICM, 
we believed that the interactions between different mac-
rophage subpopulations and fibroblast subpopulations 
also varied. To decipher the receptor-ligand interac-
tions in different macrophage and fibroblast subsets, 
we introduced the CellPhoneDB ligand-receptor com-
plexes database to calculate the interactions between 

them. To better distinguish between mouse and human 
fibroblast and macrophage subpopulations, we named 
mouse fibroblast cluster0-cluster11 as fibro0-fibro11 and 
human fibroblast cluster0-cluster11 as Fibro0-Fibro11. 
The mouse macrophage subpopulations cluster0- clus-
ter7 were named macro0-macro7, and the human mac-
rophage subpopulation cluster0-cluster8 were named 
Macro0-Macro8. For the mouse scRNA-seq dataset, 
we observed a total of 301 interactions of macrophages 
with fibroblasts during the acute phase of MI (Fig.  8A). 
There were 24 significant interactions between macro0 
(Gpnmb+Fabp5+macrophage) and fibro5 (mouse RCFs), 
including TNFSF12-TNFSF12A, CD74-APP and CD74-
COPA (Fig.  8B). There were a total of 29 significant 
interactions between macro0 and fibro10 (Mki67+ fibro-
blasts), including CCR5-CCL7, TGFB1-TGFbeta recep-
tor1, TNFSF12-TNFRSF12A and SPP1-CD44 (Fig.  8C). 
Integration of scRNA-seq datasets from various tissues 
and organs revealed that SPP1+ macrophages increase 
during fibrotic disease in various human tissues [50]. It 
is important to note that LGALS9 may be extensively 
involved in the interaction of macro0 and macro1 with 
different fibroblast subpopulations, as shown by Cell-
phoneDB results (Fig. 8B and 8C; Figure S7A and S7B). 
Next, we analyzed the interaction between fibroblast 
subpopulations and macrophage subpopulations under 
different disease stages of MI in humans (Fig. 8A; Figure 
S7C through S7F). Cellphonedb analysis showed a total 
of 107 interactions in the MI group, 242 interactions in 
the control group, and 525 interactions in the ICM group 
(Fig.  8A). There were 91 interactions between Macro 6 
(SSP1hi macrophages) and Fibro 3 (human RCFs) in the 
MI group, most of which were associated with collagen 
deposition and ECM production (Fig.  8D and 8E). This 
is consistent with the rapid activation of fibroblast sub-
populations during the acute phase to prevent cardiac 
rupture by repairing damaged areas through collagen 
deposition. Of note, we found that FN1 is extensively 
involved in macrophage-fibroblast interaction in MI 
(Figure S7A). However, these connections were reduced 
in the control and ICM groups, suggesting that FN1 
may be involved in macrophage activation of fibroblasts 
in early stage after MI injury. There were 44 interac-
tions between Macro 1 and Fibro 6 in the ICM group. 

(See figure on next page.)
Fig. 7  NicheNet analysis of communication between macrophages and fibroblasts. A Heatmaps (NicheNet) of ligand activity of top-ranking ligands 
expressed by macrophages (left) and their regulatory potential on predicted target genes expressed by fibroblasts (right). B Heatmaps (NicheNet) 
of ligand activity of top-ranking ligands expressed by macrophages (left) and their regulatory potential on predicted target genes expressed 
by fibroblasts (right). C Heatmaps (NicheNet) of ligand activity of top-ranking ligands expressed by macrophages (left) and their regulatory potential 
on predicted target genes expressed by fibroblasts (right). D Heatmaps of ligands expressed by macrophages and their potential receptors 
expressed by fibroblasts. E Heatmaps of ligands expressed by macrophages and their potential receptors expressed by fibroblasts
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Among these interactions, we identified a number of 
TNF-related interactions, which, combined with the 
results of previous NicheNet analyses, suggest that IL1B 
and TNF signaling play an important role in fibroblast-
macrophage communication in the MI and ICM. There-
fore, we explored whether inflammatory macrophages 
were present in the infarct zone in the later stages of the 
disease. Immunofluorescence results showed that some 
macrophages expressing TNF and IL1B were still present 
in the infarcted area 28 days after MI (Fig. 8F and 8G), a 
result suggesting that persistent inflammation is still pre-
sent in the scarred area.

Discussion
Fibrosis is characterized by the deposition of collagen 
and other ECM molecules, in which activated fibroblasts 
play an important role. Fibrosis is an important cause of 
organ and tissue dysfunction in many chronic diseases 
[51,52]. Cardiac fibrosis is an important part of cardiac 
remodeling, accompanied by changes in the extracellu-
lar matrix and interaction with a variety of mesenchymal 
and immune cells. The heterogeneity of cardiac fibro-
blasts is described in several articles using scRNA-seq, 
including MI, DCM, and HCM.

Our study identified fibroblast subpopulations with 
distinct transcriptional phenotypes by integrating multi-
ple MI scRNA-seq datasets. We identified a total of four 
fibroblast subpopulations that increased substantially 
after MI, including cluster 5 (RCFs), cluster 7 (matri-
fibrocytes), cluster 9 (Ccl2+ fibroblasts) and cluster 10 
(Mki67+ fibroblasts). The high expression of Mki67 in 
cluster 10 compared to the other fibroblast subsets rep-
resents its high proliferative activity. This is corroborated 
by the results of CytoTRACE that cluster 10 has a greater 
differentiation potential compared to other fibroblasts. 
Cluster 5 high expression of Postn and Acta2 represents 
activated fibroblasts, and the results of GO enrichment 
analysis also focused on ECM formation and collagen 
deposition. In addition, cluster 5 highly expressed Cthrc1, 
which is consistent with the results of a previous study 
that a fibroblast subpopulation activated during the acute 
phase of MI represents reparative cardiac fibroblasts. 
The results of RNA velocity analysis and PAGA graph 
abstraction suggest that RCFs were mainly derived from 

Mki67+ fibroblasts. Genes highly expressed in cluster 7 
included Comp, Wisp2, Ctgf and Meox1, some classical 
marker genes for myofibroblasts, represent matrifibro-
cytes that appear in the late stages of MI. GO enrichment 
showed that these genes were predominantly enriched in 
the ECM. We hypothesize that, unlike RCFs, this subset 
of fibroblasts, which appears in the later stages of MI, 
may be involved in the persistent inflammation and fibro-
sis in cardiac tissues and have an important role in patho-
logical myocardial remodeling.

Given that the CTHRC1 gene ranks first in RCFs in 
acute MI, we were interested in exploring CTHRC1 gene 
expression in a model of chronic fibrosis and heart fail-
ure. CTHRC1 expression was also elevated in a TAC-
induced heart failure model, as well as in a mouse model 
three months after MI, and these results suggest that 
CTHRC1 may be persistently expressed in a subset of 
fibroblasts. Some fibroblasts in both DCM and HCM 
also expressed CTHRC1. Interestingly, fibroblasts with 
high expression of CTHRC1 also expressed high levels 
of POSTN, further demonstrating that this is an acti-
vated class of fibroblasts. CTHRC1-expressing fibroblasts 
have been found in other diseases including keloids [44], 
lung injury caused by COVID-19 [53], prostate can-
cer [54] and idiopathic pulmonary fibrosis (IPF) [55]. In 
lung disease, CTHRC1+ fibroblasts exhibit a pro-fibrotic 
population and expand in damaged lung tissue and are 
characterized by high expression of collagen along with 
TGFB1 [55,56]. According to the results of our scRNA-
seq datasets analysis, CTHRC1+ fibroblasts also have 
a pro-fibrotic phenotype in acute and chronic cardiac 
injury, but this fibroblasts with ECM deposition have dif-
ferent outcomes in different states of the disease, such as 
MI.

Many studies summarize the relationship between 
fibrosis and macrophages, and the most recently men-
tioned SAMs are a subpopulation of macrophages 
expressing CD9 and TREM2 [7,8]. In liver fibrosis, dif-
ferent types of macrophages have different roles, and 
they have both fibrosis-promoting and matrix degrada-
tion roles [57]. In another liver fibrosis study, Liu et  al. 
found that fibrolytic SAM-derived CXCL9 in turn leads 
to extracellular matrix degradation through MMP13 pro-
duction [58]. In human liver cirrhosis, TREM2+CD9+ 

Fig. 8  SPP1hi macrophages interact with RCFs to promote scar formation during MI. A CellphoneDB analysis showing the interaction 
between macrophage clusters and fibroblast clusters. B Dot plot showing the ligand-receptor pairs among macro0 and fibro5 (mouse). C Dot 
plot showing the ligand-receptor pairs among macro0 and fibro10 (mouse). D Dot plot showing the ligand-receptor pairs among Macro6 
(SPP1hi macrophages) and Fibro3 (RCFs) (human). E GO enrichment analysis of linkage-related genes between SPP1hi macrophages and RCFs. F 
Immunofluorescence staining of CD68 and TNF on mouse cardiac MI tissue. Scale bars: 20 µm. G Immunofluorescence staining of CD68 and IL1B 
on mouse cardiac MI tissue. Scale bars: 20 µm

(See figure on next page.)
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macrophages, exhibit a pro-fibrotic phenotype and are 
spatially located close to the scarred areas of collagen 
deposition [8]. A subpopulation with high expression 
of CD9 and TREM2 was also identified in our study, we 
also found that a subset of TREM2+CD9+ macrophages 
highly expressed Gpnmb, Fabp5, Ctsd, Cd63 and Spp. 
Cardiac Gpnmb+Fabp5+ macrophages began to increase 
on day 3 after MI, peaked on day 7, and decreased dra-
matically on day 14, a trend consistent with RCFs. In a 
larger CD45+ scRNA-seq dataset we observed similar 
findings, with Gpnmb+Fabp5+ macrophages appear-
ing in the acute phase but decreasing 14  days after MI. 
However, different results were obtained in our inte-
grated human dataset, where the population character-
izing Gpnmb+Fabp5+ macrophages appeared in cardiac 
tissue from ICM patients but not in MI cardiac tissue. 
Nevertheless, concordant with the results obtained in 
the mouse MI dataset, macrophages highly expressing 
SPP1 were predominantly found in MI tissues. Trajectory 
analysis indicates that this macrophage is derived from 
monocytes rather than resident macrophages, consistent 
with previous findings [47,59].

We then attempted to study macrophage-fibroblast 
communication using prevailing analytical tools includ-
ing NicheNet and CellphoneDB. Consistent with previ-
ous findings [13], we found that TGFB1 has an important 
role in macrophage-fibroblast interactions in both the 
MI and ICM groups. In addition to this, we discover that 
macrophage-derived TNF and IL1B may be involved in 
fibroblast-macrophage cross-talk in ICM and MI disease 
states. Immunofluorescence staining results supported 
the persistence of a few inflammatory macrophages in 
the scarred area. Interaction analysis between cellular 
subsets indicates differences in linkages between dif-
ferent subpopulations. Among them, LGALS9 connec-
tions were present in a variety of fibroblast-macrophage 
interactions. LGALS9 has been shown to have a signifi-
cant relationship with hepatoblastoma [60], liver cancer 
[61] and chronic myeloid leukemia [62] in some previous 
single-cell studies. Here we hypothesize that LGALS9 
has an association with MI and may serve as a diagnos-
tic and prognostic indicator, but subsequent studies are 
needed to prove that. We observed that the number of 
connections between RCFs and SSP1hi macrophages far 
exceeded the number of other fibroblast-macrophage 
connections, and GO enrichment analysis of these genes 
focused on collagen deposition and ECM generation. 
These results suggest that a subset of macrophages are 
involved in scar formation and maturation during MI, 
further extending the close relationship between SPP1 
macrophages and fibrosis.

Considering the time specificity of the different 
fibroblast and macrophage subpopulations, a few cell 

subpopulations may have diagnostic and therapeutic 
value. For example, matrifibrocytes are predominantly 
found in the late stages of MI, and previous studies have 
shown that these cells are predominantly found in the 
scar area and express Comp, Cilp, and Meox1. A pre-
vious study suggested that Cilp could serve as a novel 
biomarker for cardiac fibrosis [63]. We believe that con-
structing gene-regulatory networks (GRNs) based on 
DEGs and TFs from this subset may provide a more 
effective diagnostic and therapeutic approach for cardiac 
fibrosis. We also observed that the number of Lyve1+ 
macrophage declined rapidly after MI. This macrophage 
has also been defined as a cardiac resident macrophage 
with a protective role in cardiac physiological and path-
ological states. Therefore, increasing the number of this 
macrophage type during MI may improve cardiac repair 
and thus have potential therapeutic value. For exam-
ple, a recent study suggests that resident macrophage 
(MerTK + macrophage) transfer rescues impaired cardiac 
repair64.

Limitations of the study
Our study comprehensively depicts the dynamics of 
fibroblasts and macrophages by integrating single-cell 
datasets from multiple studies. But there are several limi-
tations in this study. First, we integrated multiple datasets 
and utilized additional datasets to validate our findings. 
Despite employing various methods, such as the har-
mony package, to mitigate discrepancies, we were still 
impacted by variability between datasets. Second, we 
experimented in  vitro to validate the role of CTHRC1. 
However, additional in  vivo experiments are needed to 
further investigate the specific role of CTHRC1 in dis-
eases such as heart failure. Overall, we expect that our 
findings at the single-cell resolution will provide further 
insights into the relationship between macrophages and 
fibrosis, and lead to new directions in the diagnosis and 
treatment of cardiac fibrosis.

Conclusions
In conclusion, our work provides a comprehensive over-
view of the dynamics of fibroblast and macrophage sub-
sets after MI. Analyze and characterize the signatures 
and differentiation trajectories of several macrophages 
and fibroblasts subsets that emerge after MI and explore 
the conserved of these signatures in human. We found 
that CTHRC1+ fibroblasts represent a repair cell in the 
acute phase of MI, whereas in the chronic disease state it 
represents an activated fibroblast involved in pathological 
fibrosis of the heart. Finally, we analyzed the interaction 
between fibroblasts and macrophages in the state of MI 
and ICM. We showed that macrophage-derived TGFB1, 
TNF and IL1B have important roles in interaction with 
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fibroblasts and identified interactions between RCFs 
and SPP1hi macrophages involved in collagen deposition 
and extracellular matrix generation. Our study provides 
a valuable reference for understanding the relationship 
between fibrosis and immunity in MI.
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