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Abstract
The persistence of coronavirus disease 2019 (COVID-19)-related hospitalization severely threatens medical systems 
worldwide and has increased the need for reliable detection of acute status and prediction of mortality. We 
applied a systems biology approach to discover acute-stage biomarkers that could predict mortality. A total 247 
plasma samples were collected from 103 COVID-19 (52 surviving COVID-19 patients and 51 COVID-19 patients 
with mortality), 51 patients with other infectious diseases (IDCs) and 41 healthy controls (HCs). Paired plasma 
samples were obtained from survival COVID-19 patients within 1 day after hospital admission and 1–3 days 
before discharge. There were clear differences between COVID-19 patients and controls, as well as substantial 
differences between the acute and recovery phases of COVID-19. Samples from patients in the acute phase 
showed suppressed immunity and decreased steroid hormone biosynthesis, as well as elevated inflammation and 
proteasome activation. These findings were validated by enzyme-linked immunosorbent assays and metabolomic 
analyses in a larger cohort. Moreover, excessive proteasome activity was a prominent signature in the acute phase 
among patients with mortality, indicating that it may be a key cause of poor prognosis. Based on these features, 
we constructed a machine learning panel, including four proteins [C-reactive protein (CRP), proteasome subunit 
alpha type (PSMA)1, PSMA7, and proteasome subunit beta type (PSMB)1)] and one metabolite (urocortisone), to 
predict mortality among COVID-19 patients (area under the receiver operating characteristic curve: 0.976) on the 
first day of hospitalization. Our systematic analysis provides a novel method for the early prediction of mortality in 
hospitalized COVID-19 patients.
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Background
Since 2019, coronavirus disease 2019 (COVID-19), 
caused by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), has emerged as a global public 
health threat because of its widespread dissemination. By 
June 2023, there were > 700 million confirmed cases and 
> 6.9 million deaths; thus, COVID-19 has caused one of 
the worst pandemics in human history [1]. Although vac-
cination and antiviral therapies have shown considerable 
promise, the crude mortality risk among hospitalized 
COVID-19 patients remains high (4.9%) [1, 2]. Clinical 
manifestations of SARS-CoV-2 infection substantially 
vary, ranging from asymptomatic infection to severe 
disease [3]. Several epidemiological factors are report-
edly associated with adverse outcomes, such as male 
sex, older age, and certain comorbidities [4, 5]. However, 
these factors only partially explain the broad clinical 
spectrum of COVID-19 manifestations among affected 
patients. Thus, there is an urgent need to clarify host fac-
tors that contribute to susceptibility to adverse outcomes, 
or to predict which COVID-19 patients have a high risk 
of adverse outcomes.

The blood ecological information bank is a com-
plex network of highly coordinated interactions among 
diverse molecules, including proteins and metabolites. 
These molecular interactions offer insights concern-
ing the specific characteristics of disease onset and pro-
gression. Multi-omics analysis of the blood molecular 
interaction can provide a complete picture of the patho-
physiological landscape. Recent research has shown that, 
in addition to the involvement of viral factors, disease 
severity largely depends on host status; thus, it is impor-
tant to consider molecular responses in each patient 
[6–9]. Changes in host metabolism and the plasma pro-
teome are presumably involved in viral pathogenesis 
and multiorgan failure; an understanding of these fac-
tors could facilitate the discovery of key factors driv-
ing infectious disease progression [9, 10]. Our previous 
study investigated proteomic and metabolomic changes 
in community-acquired pneumonia patients and identi-
fied a panel of indicator proteins for severe pneumonia 
[11]. Additionally, we explored immune responses and 
molecular mechanisms induced by SARS-CoV-2 vac-
cines using a multi-omic approach [12]. Thus, proteomic 
and metabolomic analyses have provided comprehen-
sive insights into the pathogenesis of various infectious 
diseases, including Ebola virus disease, community-
acquired pneumonia, and Staphylococcus aureus bactere-
mia [13–15], establishing a foundation for similar studies 
concerning COVID-19.

Thus far, metabolomic and proteomic analyses 
have mainly focused on the identification of biomark-
ers for COVID-19 diagnosis and severity assessment 
[16–19], rather than specific disease features associated 

with different disease trajectories among hospitalized 
patients. Proteomic and metabolomic analyses have 
revealed the dysregulation of multiple immune factors 
and metabolites that are correlated with disease severity 
[16]. Moreover, the IMMuno Phenotyping Assessment 
in a COVID-19 Cohort study defined the immune and 
biological states of COVID-19 patients during the first 
28 days of hospitalization [20]. Richard et al. combined 
multi-omic data with a machine learning model to pre-
dict outcomes among hospitalized COVID-19 patients, 
but their study was hindered by a relatively small sam-
ple size and lack of disease controls [21]. To our knowl-
edge, there have been few comprehensive and unbiased 
multi-omic analyses to elucidate dynamic changes across 
COVID-19 phases, especially concerning factors that can 
distinguish recovery from deterioration.

The present study assessed changes in host response 
and defined precise features of disease trajectories, with 
the goal of establishing a multivariate module for mortal-
ity prediction. Accordingly, we integrated proteomic and 
metabolomic analyses of plasma samples from a cohort 
of surviving hospitalized COVID-19 patients [acute 
COVID-19 (COVID-19-A) and recovered COVID-19 
(COVID-19-R)], COVID-19 patients with mortality 
(COVID-19-M), other infectious disease controls (IDCs), 
and healthy controls (HCs). Machine learning models 
were constructed to identify specific patterns of COVID-
19 and to discover acute-stage biomarkers that could 
predict mortality; these results were validated by enzyme-
linked immunosorbent assays (ELISAs) and metabolomic 
analyses in an independent cohort. Integrated proteomic 
and metabolomic analyses further helped to elucidate 
mechanisms underlying the pathogenesis of COVID-19. 
Overall, our results can promote progress in screening 
and treatment strategies for COVID-19.

Materials and methods
Study design and patient information
In total, 155 plasma samples were collected from 103 
patients with confirmed COVID-19 at Beijing Chao-
Yang Hospital. Of these patients, 52 were discharged 
from the hospital and 51 died. Among the 52 discharged 
patients, samples were collected in both the acute phase 
(1 day after admission) and the recovery phase (1–3 days 
before discharge, Supplementary Data 1.1). Among the 
51 COVID-19-M patients, plasma samples were col-
lected at the time of hospitalization (Supplementary Data 
1.2). COVID-19 patients were included in this study after 
implementation of the Diagnosis and Treatment Plan for 
Novel Coronavirus Infection (Trial Version 10).

Additionally, 51 patients with other infectious diseases 
(IDCs) were included in the study. These patients had 
respiratory symptoms and COVID-19-negative results 
in reverse transcription polymerase chain reaction 
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(RT-PCR) assays (Supplementary Data 1.3). Forty-one 
healthy volunteers from the period before the SARS-
CoV-2 pandemic, with COVID-19-negative results in 
RT-PCR, were included as the HC group (Supplemen-
tary Data 1.4). This study protocol was approved by 
the Ethics Committee of Beijing Chao-Yang Hospital 
(2021-KE-500). Informed consent was obtained from all 
participants.

Clinical measurements and sample handling
Patients’ electronic medical records were reviewed to 
collect demographic and clinical information. Metadata 
variables collected in this study included demographics 
and clinical laboratory results [white blood cell (WBC), 
neutrophil (Neu), lymphocyte (Lym), red blood cell 
(RBC), hemoglobin (Hgb), platelet (Plt), lactic acid (Lac), 
and oxygenation index (PaO2/FiO2)]. Disease severity 
was evaluated using an eight-category ordinal scale after 
participants had enrolled in the study [22].

Proteomic data acquisition
In total, 50 samples from 40 participants [10 surviv-
ing COVID-19 patients (acute and recovery phases), 10 
COVID-19 patients with mortality (COVID-19-M), 10 
IDCs, and 10 HCs] were subjected to proteomic analy-
sis as previously described [11, 12]. Each specimen was 
denatured in 100 µL of buffer (8 M urea in 100 mM tri-
ethylammonium bicarbonate) at 25℃ for 30  min. The 
mixture was reduced with 5 mM Tris phosphine (Pierce, 
Rockford, IL, USA) and then alkylated using 15 mM 
iodoacetamide (Sigma-Aldrich, St. Louis, MO, USA). 
The protein extract was mixed with Trypsin Gold, Mass 
Spectrometry Grade (Promega, Madison, WI, USA) and 
digested overnight at 37℃. The resulting peptides were 
dried and solubilized in 20 µL of loading buffer (1% for-
mic acid and 1% acetonitrile). Ten microliters of sample 
were analyzed by liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) in the data-dependent acqui-
sition mode to construct a high-quality library. The peak 
area obtained from MS1 intensity was used to quantify 
each peptide.

ELISA analysis
The levels of selected biomarkers were determined by 
ELISA in samples from the proteomic cohort (n = 40) and 
an independent cohort (n = 155). Inflammation-related 
proteins [C-reactive protein (CRP), serum amyloid A-1 
(SAA1), SAA2, and alpha-1-acid glycoprotein 1 (ORM1)], 
three immunity-related proteins [immunoglobulin heavy 
constant gamma 1 (IGHG1), immunoglobulin lambda-
like polypeptide 5 (IGLL5), and IGHG3] and four pro-
teasome subunit proteins [proteasome subunit alpha 
type-1 (PSMA1), PSMA6, PSMA7 and proteasome sub-
unit beta type-1 (PSMB1)] kits were investigated. Protein 

abundances were determined in accordance with the 
manufacturer’s instructions.

Metabolomic data acquisition
All plasma samples were subjected to untargeted metab-
olomics. 400 µL of Methanol (MeOH)/ acetylcholine 
(ACH, 1:1, v/v) solvent mixture were added to each 100-
µL plasma sample. After incubation and centrifugation, 
the supernatant was collected and divided into three 
groups, as previously described [12]. All ultra perfor-
mace liquid chrmatography-electrospray tandem mass 
spectrometry (UPLC-MS/MS) methods were performed 
using an ACQUITY 2D UPLC system (Waters, Milford, 
MA, USA) and Q Exactive HF hybrid Quadrupole-Orbi-
trap (Thermo Fisher Scientific, San Jose, USA) with an 
electrospray ionization source and a C18 column (UPLC 
BEH C18, 2.1 × 100 mm, 1.7 μm; Waters) in positive and 
negative mass analyzer modes. The mass range extended 
from 100 to 1,000  m/z. For full MS scans, the resolu-
tion was set to 70,000; for higher-energy collisional dis-
sociation MS/MS scans, the resolution was set to 17,500. 
Collision energies were set to 10, 20, and 40 eV. Quality 
controls were injected after every 20th sample to pro-
vide a dataset that could be used to assess repeatability 
throughout the analysis.

Statistical analysis
Categorical and continuous variables were analyzed by 
Student’s t-test and the Chi-square test, respectively. 
Fold changes in proteins and metabolites were calculated 
using the mean relative abundance across patients in each 
pair of comparison groups. Two-sided unpaired Welch’s 
t-tests were used to calculate the statistical significance 
of differences in proteins and metabolites. We recorded 
differentially expressed proteins (DEPs) and differentially 
expressed metabolites (DEMs) with P-values < 0.05 and 
fold changes ≥ 1.5 or < 0.67. P-values were adjusted by 
Benjamini–Hochberg correction (P adjust < 0.05). Statis-
tical significance in multigroup analyses were calculated 
by one-way analysis of variance (ANOVA) and Tukey’s 
honestly significant difference (HSD) test. Partial least 
squares discriminant analysis (PLS-DA) was performed 
for classification using MetaboAnalyst 5.0 (https://www.
metaboanalyst.ca/).

To investigate biological processes, Gene Ontology 
(GO, http://geneontology.org/) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway (http://www.
genome.jp/kegg/) analyses were conducted based on 
DEPs and DEMs. To explore dynamic patterns, clustering 
trends were constructed using the Mfuzz package (ver-
sion 2.46.0) in R software. For gene set enrichment analy-
sis (GSEA), clusterProfiler was utilized; the Path view 
package was used to visualize protein-level changes in 
the indicated pathways.

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
http://geneontology.org/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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Model construction and evaluation
Survival prediction was performed using the survival 
[3.3.1], survminer, and ggplot2 [3.3.6] packages in R soft-
ware to establish a machine learning model. Area under 
the receiver operating characteristic curve (AUC-ROC) 
values (determined with the pROC [1.18.0] package in 
R software) were used to evaluate model performance. 
Random forest model evaluation was performed using 
the entire validation cohort. For Kaplan–Meier survival 
curves, P-values were analyzed by two-tailed log-rank 
tests.

Results
Research plan
Identification of acute phase characteristics can provide 
insights concerning key factors involved in the onset 
of acute COVID-19, with the potential to prevent dis-
ease progression. Thus far, few studies have investigated 
molecular changes in plasma samples between acute and 
recovered COVID-19 patients. Thus, we collected plasma 
samples from COVID-19 patients in the acute phase 
(COVID-19-A) and recovered phase (COVID-19-R), 
along with samples from IDCs and HCs, to analyze the 
molecular signatures of acute COVID-19 (Fig.  1A and 
Supplementary Data 1). Paired plasma samples were 
obtained from these COVID-19 patients within 1  day 
after hospital admission (COVID-19-A, red box, Fig. 1B) 
and 1–3 days before discharge (COVID-19-R, pink box, 
Fig. 1B). To ensure data reliability, typical molecular fea-
tures were validated in an independent test cohort.

Next, we performed a comprehensive molecular anal-
ysis of COVID-19-M patients, with the goal of predict-
ing mortality during the acute phase of disease (Fig. 1A). 
COVID-19-M samples were collected from COVID-19 
patients with mortality at the next day of hospitalization, 
as red box represents the samples collected from this 
group of patients (Fig. 1B). Omics analyses indicated that, 
other than immunosuppression, impaired steroid hor-
mone biosynthesis, and elevated inflammation, excessive 
proteasome activity was the most prominent signature in 
the acute phase of disease among patients with mortal-
ity. Based on these data, we developed a new biomarker 
panel using machine learning algorithms to predict 
COVID-19 mortality among surviving patients during 
the acute phase of disease. This plasma biomarker panel 
was then validated in a larger independent cohort.

Clinical characteristics
We evaluated differences in basic clinical factors (includ-
ing patient age, sex, and clinical indicators) among groups 
(Supplementary Data 2). In particular, we analyzed dys-
regulated clinical laboratory biomarkers in COVID-19 
patients. Compared with HCs, IDCs and COVID-19 
patients showed higher Neu counts. Conversely, there 

were decreases in the Lym and RBC counts, as well as the 
Hgb level, in IDCs and COVID-19 patients.

Compared with surviving COVID-19 patients, patients 
with mortality showed increased WBC and Neu counts, 
as well as a decreased Lym count. Moreover, the Lac level 
was higher, and the PaO2/FiO2 percentage was lower in 
patients with mortality than in surviving patients. Over-
all, the clinical indicator profiles indicated that break-
through cases of COVID-19 were associated with the 
dysregulation of inflammation and immunity.

Omics features of COVID-19 in patients with acute disease
Suppressed immunity and metabolism in the acute phase
We examined the characteristics of COVID-19 in patients 
with acute disease, primarily focusing on the underly-
ing mechanisms of host dysfunction after SARS-CoV-2 
infection. PLS-DA was used to demonstrate separation 
among these groups (Fig.  2A). Our proteomic analysis 
showed that 262 proteins were differentially expressed 
in samples from COVID-19-A patients compared with 
controls (HCs, IDC and COVID-19-R samples, Fig.  2B 
and Supplementary Data 3.1). To characterize groupwise 
progressive changes in protein expression, we conducted 
unsupervised clustering of DEPs. This analysis revealed 
five distinct expression patterns across patients with dif-
ferent phases of disease, including an increasing cluster 
(1), two acute phase low clusters (2 and 5), an acute phase 
high cluster (3), and a “V” cluster (4) (Fig. 2C).

Intriguingly, DEPs in clusters 2 and 5 were signifi-
cantly decreased in the COVID-19-A group compared 
with the COVID-19-R, HC, and IDC groups. GO analy-
sis revealed that these proteins are related to the adap-
tive immune response, suggesting that the immune 
system is suppressed in the acute phase of COVID-19 
(Fig.  2D). Key immunoglobulin proteins [Immuno-
globulin heavy constant gamma (IGHG)1, IGHG2, 
IGHG3, IGHG4, Immunoglobulin lambda-like poly-
peptide (IGLL)5, Immunoglobulin heavy constant alpha 
(IGHA)1, Immunoglobulin heavy constant mu (IGHM), 
Immunoglobulin kappa constant (IGKC), Immuno-
globulin lambda constant (IGLC)2, Immunoglobulin 
kappa variable (IGKV)4 − 1, Immunoglobulin heavy vari-
able (IGHV)1–46, IGHV3-74, Immunoglobulin lambda 
variable (IGLV)3–19 and Immunoglobulin J chain 
(JCHAIN)] in the adaptive immune response shared this 
expression pattern (Fig. 2E and Fig. S1A). These protein 
expression patterns were positively correlated with the 
Lym, Neu, and WBC counts (Fig.  2E). Notably, KEGG 
analysis showed that proteins in cluster 4, which rap-
idly decreased before returning to normal levels, were 
associated with the suppressed metabolic function in 
the acute phase of COVID-19 (Fig.  2F). Moreover, the 
expression of these DEPs in COVID-19-A/COVID-19-R 
groups were higher than that in IDC group, implying 
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Fig. 1 Study Overview. (A) Overview of assay modalities and validation methods. (B) Summary of COVID-19 COVID-19-A patients (n = 52) and COVID-
19-M patients (n = 51). The y-axis displays patient identification numbers; the x-axis shows days since disease onset
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Fig. 2 (See legend on next page.)
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that the expression of these DEPs might be more suscep-
tible to other pathogens. Overall, these findings suggest 
that innate immunity proteins and metabolic proteins 
are highly suppressed in the acute phase of COVID-19, 
compared with the recovery phase and other control 
conditions.

Enhanced inflammation and proteasomal activation in the 
acute phase
Next, we investigated proteins that were increased in the 
acute phase of COVID-19. Our results showed that DEPs 
in cluster 3 were enriched in the acute-phase response 
(Fig.  2D). The expression levels of these proteins were 
specifically increased in COVID-19-A patients com-
pared with the other three groups. Important proteins in 
the acute-phase response, including CRP, SAA1, SAA2, 
ORM1, ORM2, Alpha-1-antitrypsin (SERPINA)1, Alpha-
1-antichymotrypsin (SERPINA)3, haptoglobin (HP), 
and lipopolysaccharide-binding protein (LBP), showed 
this expression pattern (Fig.  2D). In addition to their 
increased expression levels in the COVID-19-A group, 
most of these proteins exhibited substantial decreases 
in the COVID-19-R group (Fig. 2G and Fig. S1B). More-
over, digital cytometry revealed lower WBC, Lym, and 
Neu counts in the acute phase of COVID-19. The levels 
of proteins in cluster 3 were negatively correlated with 
Lym and WBC counts. Thus, we concluded that pro-
teins in cluster 3 reflect enhanced inflammation in the 
acute phase of COVID-19. Multiple proteasome subunits 
(e.g., PSMA1, PSMA5, PSMA6, PSMA7, and PSMB1) 
were upregulated in COVID-19 patients, especially dur-
ing the acute phase of disease, potentially contributing to 
the dysregulation of proteasome activity (Fig. 2H). These 
results were supported by the GSEA findings (Fig. 2I).

Suppressed steroid hormone biosynthesis in the acute 
phase
Considering that metabolic inhibition may be a signifi-
cant feature of the acute phase of COVID-19 (Fig. 2F), we 
performed metabolomic analyses, which revealed 2888 
metabolites in the training cohort. Of these, 727 DEMs 
were significantly different in the COVID-19-A group, 
compared with the other three groups (Fig.  3A). PLS-
DA was conducted to demonstrate separation among the 
groups (Fig.  3B). Moreover, we found that most DEMs 

in the COVID-19-A and COVID-19-R groups showed 
similar trends compared with HCs and IDCs (Fig.  3C); 
detailed data are provided in Supplementary Data 3.2.

We observed three distinct metabolite expression pat-
terns across patients with different phases of disease, 
including two decreasing clusters (1 and 4), an increas-
ing cluster (2 and 5), and a “V” cluster (3) (Fig.  3C). 
KEGG pathway analysis of DEMs from each cluster pat-
tern indicated that the decreased expression in clusters 
1 and 4 reflected a substantial impact of COVID-19 on 
steroid hormone biosynthesis (Fig.  3D). Steroid hor-
mone metabolites have anti-inflammatory properties, 
which are important for the maintenance of immune 
homeostasis [23]. In the present study, several interme-
diates in the steroid hormone biosynthesis pathway (e.g., 
dehydroepiandrosterone sulfate, deoxycorticosterone, 
androsterone, 21-deoxycortisol, and urocortisone) were 
downregulated in COVID-19-A patients (Fig. 3E). Other 
metabolites, including 20α, 22β-dihydroxycholesterol, 
cholesterol sulfate, 21-hydroxypregnenolone, pregnane-
diol, 5α-pregnane-3,20-diol, and cortexolone, showed a 
decreasing trend in the COVID-19-A group compared 
with HCs. Additionally, compared with levels in COVID-
19-A patients, the expression levels of many metabolites 
in COVID-19-R patients exhibited a slight shift toward 
levels observed in HCs. Overall, our findings suggest that 
steroid hormone metabolism is disrupted in the acute 
phase of COVID-19, which could contribute to COVID-
19 pathogenesis by influencing host anti-inflammatory 
pathways.

Validation of COVID-19-A features
Thus far, our analyses revealed numerous changes in 
host plasma proteins and metabolites that may contrib-
ute to COVID-19 pathogenesis. To confirm the reliabil-
ity of features identified in COVID-19-A patients, we 
conducted a larger-scale omics analysis of a validation 
cohort comprising COVID-19-A patients, COVID-19-R 
patients, HCs, and IDCs. We selected four inflammation-
related proteins (CRP, SAA1, SAA2, and ORM1), three 
immunity-related proteins (IGHG1, IGLL5, and IGKV4-
1), and four PSM proteins (PSMA1, PSMA6, PSMA7, 
and PSMB1) for ELISA-based validation in the training 
and test cohorts (Fig. 4A). These DEPs were chosen based 
on the following screening criteria: high fold change and 

(See figure on previous page.)
Fig. 2 Plasma Proteome Analyses Reveal the Landscape of Host Responses in Patients with Acute COVID-19. (A) PLS-DA score plots for COVID-19-A, 
COVID-19-R, IDC, and HC groups. (B) Venn diagram of the numbers of DEPs among COVID-19-A, COVID-19-R, IDC, and HC groups. (C) Heatmap of 262 
DEPs clustered using Mfuzz into five discrete significant clusters. (D) GO-BP enrichment analysis of all DEPs in each cluster, showing the top 5 GO terms. 
Green box highlights suppressed immunity in clusters 2 and 5. Blue box highlights enhanced inflammation in cluster 3. (E) Heatmap showing expression 
levels of DEPs related to suppressed immunity. Correlation analysis of immunity-associated proteins and clinical indexes. (F) KEGG terms for all DEPs in 
each cluster, showing the top 5 GO terms. Red box highlights metabolic suppression in cluster 4. (G) Heatmap showing expression levels of DEPs related 
to enhanced inflammation. Correlation analysis of inflammation-related proteins and clinical indexes. (H) Expression levels of altered proteasome sub-
units across the four groups. Statistical significance was determined by one-way ANOVA and Tukey’s HSD. *P < 0.05; **P < 0.01; ***P < 0.001. (I) GSEA to 
assess the enrichment of acute phase and adaptive immunity proteins during the acute phase of disease in COVID-19-A patients, compared with HCs
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association with the proteomic features of COVID-19-A 
discussed above.

We found that the expression levels of inflammation-
related proteins (CRP, SAA1, SAA2, and ORM1) were 

substantially elevated in the acute phase of COVID-
19, consistent with the proteomic results. The lev-
els of immunity-related proteins (IGHG1, IGLL5, and 
IGKV4-1) were slightly decreased in the acute phase of 

Fig. 3 Plasma Metabolome Analyses Reveal Suppressed Steroid Hormone Biosynthesis in Patients with Acute COVID-19. (A) Venn diagram of DEMs 
among COVID-19-A, COVID-19-R, IDC, and HC groups. (B) PLS-DA score plots for COVID-19-A, COVID-19-R, IDC, and HC groups. (C) Cluster of DEMs. (D) 
KEGG terms enriched in clusters 1 and 4. (E) Many intermediates in the steroid hormone biosynthesis pathway were significantly decreased. Decreased 
metabolites are labeled in purple. Statistical significance was determined by one-way ANOVA and Tukey’s HSD. *P < 0.05; **P < 0.01; ***P < 0.001
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Fig. 4 Validation of Typical Features Related to Acute COVID-19. (A) Validation of DEPs related to enhanced inflammation, suppressed immunity, and 
proteasomal activation by ELISA in the training and test cohorts, respectively. (B) KEGG terms for DEMs among patients in the test cohort. (C) Valida-
tion of DEMs related to steroid hormone biosynthesis. Statistical significance was determined by one-way ANOVA and Tukey’s HSD. *P < 0.05; **P < 0.01; 
***P < 0.001
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Fig. 5 (See legend on next page.)
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COVID-19, confirming that immunity had been sup-
pressed. Moreover, we observed that proteasome activity 
was enhanced in the acute phase of COVID-19 (Fig. 4A).

Similarly, we found that decreased DEMs in sam-
ples from the test cohort (31 HCs, 41 IDCs, and 42 
COVID-19-A patients) were involved in three biologi-
cal processes, including steroid hormone biosynthesis 
(Fig.  4B). Key metabolite changes are summarized in 
Fig.  4C. Metabolites including dehydroepiandrosterone 
sulfate, deoxycorticosterone, 21-deoxycortisol, urocor-
tisone, androsterone, 20α, 22β-dihydroxycholesterol, 
5α-pregnane-3,20-dione, and cholesterol sulfate were 
considerably decreased in the COVID-19-A group; they 
were slightly increased in the COVID-19-R group. Col-
lectively, our results confirmed the reliability of the pro-
teomic and metabolomic data; they also validated the 
involvement of these molecules in the pathogenesis of 
acute COVID-19.

Prediction of mortality risk among patients with acute 
COVID-19
Proteomic features of patients with mortality—proteasomal 
activation
In this study, we found that patients with acute COVID-
19 could be clearly distinguished from HCs and IDCs 
using omic signatures. Next, we investigated the poten-
tial for these signatures to predict COVID-19 outcomes, 
using samples that had been collected from COVID-19 
patients with mortality (COVID-19-M) during the acute 
phase of disease. In total, 946 proteins were quantified 
through a compound library search; 367 were differen-
tially expressed among the COVID-19-M, COVID-19-A, 
and HC groups  (Supplementary Data  3.3). PLS-DA 
(Fig. 5A) and a Venn diagram (Fig. 5B) were used to visu-
alize the DEPs.

Furthermore, we observed three expression patterns 
across the comparison groups, including a decreas-
ing cluster (1), two increasing clusters (2 and 4) and an 
inverted “V” cluster (3) (Fig.  5C). Consistent with pro-
teomic features in the COVID-19-A group, suppressed 
immunity (Fig.  5D and Fig. S2A) and enhanced inflam-
mation (Fig.  5D and Fig. S2B) were present in COVID-
19-M patients.

Importantly, we observed that the abundances of 
proteasome subunits were increased in plasma from 

COVID-19-M patients. The ubiquitin − proteasome sys-
tem is essential for protein degradation and thus closely 
associated with processes such as apoptosis, cell cycle 
regulation, and the inflammatory response [24]. There-
fore, the proteasome serves as an intracellular indicator 
of health and disease. In this study, we found that DEPs in 
clusters 2 and 4, which showed rapidly increased expres-
sion in the COVID-19-M group, were mainly involved 
in the proteasomal protein catabolic process (Fig.  5D, 
GO-BP) and proteasome pathway (Fig.  5E, KEGG). As 
shown in Fig.  5F, nearly all proteasome subunits (e.g., 
PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, PSMA6, 
PSMA7, PSMB1, PSMB2, PSMB3, PSMB6, PSMB7, 
PSMB8, and PSMB9) were considerably upregulated 
in COVID-19-M patients, compared with COVID-19 
patients and HCs. These observations were supported 
by the enriched proteasome signature observed among 
COVID-19-M patients during the acute phase of disease 
(Fig.  5G). Moreover, we observed that the expression 
levels of proteasome subunit proteins were negatively 
associated with RBC and Plt counts (Fig. 5H); they were 
positively associated with the levels of Lac, a biomarker 
for disease severity. Lac is regarded as a danger signal 
that can affect the immune system [25, 26]; its association 
with proteasome subunits supports the hypothesis that 
proteasomal activation is involved in COVID-19 mortal-
ity (Fig. 5I). Thus, proteasome subunits, whose inhibitors 
reportedly are protective against SARS-CoV-2 infection, 
may be strong indicators of mortality risk in COVID-19 
patients.

Suppressed steroid hormone biosynthesis in patients with 
mortality
Considering the differences in plasma protein lev-
els between survivors and non-survivors, we 
hypothesized that these differences could be more com-
prehensively visualized using the metabolome, which 
is widely regarded as the omics field that most closely 
resembles phenotyping. After data processing and anno-
tation, we identified 3,345 metabolites, of which 858 
were differentially expressed among the COVID-19-M, 
COVID-19-A, and HC groups  (Supplementary 3.4). 
A Venn diagram (Fig.  6A) and PLS-DA (Fig.  6B) were 
used to visualize the separation among groups; clusters 

(See figure on previous page.)
Fig. 5 Proteomic Features of COVID-19-M Patients in the Acute Phase: Proteasomal Activation. (A) PLS-DA score plots for COVID-19-A, COVID-19-M, and 
HC groups. (B) Venn diagram of the number of DEPs among COVID-19-A, COVID-19-M, and HC groups. (C) Heatmap of 367 DEPs clustered using Mfuzz 
into four discrete significant clusters. (D) GO-BP enrichment analysis of all DEPs in cluster 1, clusters 2 and 4, and cluster 3, respectively. The top 5 GO 
terms are shown. (E) KEGG analysis of all DEPs in cluster 1, clusters 2 and 4, and cluster 3, respectively. The top 5 GO terms are shown. (F) Expression levels 
of proteasome subunits among COVID-19-A, COVID-19-M, and HC groups. Statistical significance was determined by one-way ANOVA and Tukey’s HSD. 
*P < 0.05; **P < 0.01; ***P < 0.001. (G) GSEA to assess the enrichment of proteasome signatures during the acute phase of disease in COVID-19-M patients, 
compared with COVID-19-A patients. ES, enrichment score; P-values were calculated via permutation test. (H) Correlation analysis of proteasome-associ-
ated proteins and clinical indexes. Red and blue numbers represent positive and negative correlations, respectively. (I) Correlation analysis of proteasome-
associated proteins and Lac level in COVID-19 patients. *correlation P < 0.05. **correlation P < 0.01
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Fig. 6 Metabolomic Features of COVID-19-M Patients in the Acute Phase: Suppressed Steroid Hormone Biosynthesis. (A) Venn diagram of the number 
of DEMs among COVID-19-A, COVID-19-M, and HC groups. (B) PLS-DA score plots for COVID-19-A, COVID-19-M, and HC groups. (C) Hierarchical cluster-
ing illustrating four DEP patterns across the three groups. (D) KEGG terms enriched in decreased clusters (1 and 4). (E) Expression of DEMs in the steroid 
hormone biosynthesis pathway. Statistical significance was determined by one-way ANOVA and Tukey’s HSD. *P < 0.05; **P < 0.01; ***P < 0.001
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Fig. 7 (See legend on next page.)
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(Fig. 6C) were established to illustrate groupwise expres-
sion trends.

There was evidence of substantial steroid hormone 
biosynthesis suppression in COVID-19-M patients 
(Fig. 6D), although some downregulated metabolites dif-
fered from the metabolites identified in COVID-19-A 
patients. As shown in Fig.  6E, steroid hormone deriva-
tives (e.g., urocortisone, cholesterol sulfate, deoxy-
corticosterone, dehydroepiandrosterone sulfate, 20α, 
22β-dihydroxycholesterol, 5α-pregnane-3,20-dione, and 
pregnanediol) were downregulated in COVID-19-M 
patients. This downregulation probably resulted from 
macrophage modulation. Steroid hormones reportedly 
are able to promote macrophage activity, as well as the 
activities of other immune cells [27, 28] and non-immune 
cells [29]. The lack of steroid hormones, essential inter-
mediates in corticosterone synthesis [30], may be the 
main cause of the host’s inability to defend against SARS-
CoV-2 infection.

Early prediction of poor prognosis based on features of 
COVID-19-M patients
Early prediction of mortality risk is important for efforts 
to identify and avoid possible causes of death. Consid-
ering that immunity, inflammation, proteasome activ-
ity, and steroid hormone biosynthesis were key features 
influencing the outcomes of COVID-19-M patients, 
we developed a new computational pipeline that used 
these features to predict poor COVID-19 prognosis 
(Fig.  7A). As shown in Fig. S3A, 11 typical DEPs (CRP, 
ORM1, SAA1, SAA2, IGHG1, IGKV4-1, IGLL5, PSMA1, 
PSMA6, PSMA7, and PSMB1) were validated by ELISA. 
As expected, there were significant differences in these 
DEPs; the observed ratios were consistent with the pro-
teomic data (Fig. S3B, Supplementary Data 4. training 
cohort).

Based on the ELISA and metabolomic data, nine fea-
tures including six DEPs and three DEMs with AUC > 0.7 
were selected as candidates for prediction analysis. The 
AUC-ROC curves with optimal cutoffs for all features are 
shown in Supplementary Data 5 and Fig. S4. Next, three 
machine learning classifiers (logistic regression, random 
forest and linear support vector machine) were used to 
determine the optimal diagnostic model; accuracies and 
error rates were evaluated by 10-fold cross-validation. 

The diagnostic performance of these machine learn-
ing classifiers were expressed in Supplementary Data 6. 
Random forest classification identified four DEPs (CRP, 
PSMA1, PSMA7, and PSMB1) and one DEM (urocor-
tisone) as the best diagnostic model combination. As 
presented in Fig. 7B, this panel had AUC values of 0.950 
and 1.000 for distinguishing COVID-19-M patients from 
COVID-19-A patients and HCs, respectively. It was able 
to distinguish COVID-19-M patients from COVID-19-A 
patients with 90.0% sensitivity and 90.0% specificity 
(Fig. 7C). Notably, although some proteins in this model 
have been previously identified as potential biomarkers 
of COVID-19 [31, 32], this is the first study to link their 
expression levels with mortality.

Independent validation
To estimate the predictive value of this new computa-
tional pipeline, we analyzed a randomized cohort con-
structed according to ELISA and metabolomic data (Fig. 
S3C). The diagnostic performance of the three machine 
learning classifiers were expressed in Supplemental 
Data 6. We found that the levels of PSMA1, PSMA7, 
PSMB1, and urocortisone were considerably higher in 
plasma from COVID-19-M patients than in plasma from 
COVID-19-A patients or HCs (Fig. S3B, Supplementary 
Data 4. testing cohort). Additionally, the levels of steroid 
hormone biosynthesis metabolites were lower in plasma 
from COVID-19 patients than in plasma from HCs (Fig. 
S3D, test cohort). As shown in Fig. 7D, the AUC values of 
this panel for distinguishing COVID-19-M patients from 
COVID-19-A patients and HCs were 0.976 and 1.000, 
respectively. Comparisons of each protein/metabolite 
individually or in combination showed that the individual 
DEPs and DEMs were effective in terms of distinguish-
ing COVID-19-M patients from COVID-19-A patients 
(Fig. 7D). Kaplan–Meier analysis indicated that increased 
expression of the proteasome cluster was correlated with 
mortality among COVID-19 patients, confirming the 
value of these proteins in terms of predicting poor prog-
nosis (Fig. 7E).

Finally, we evaluated the predictive value of classi-
cal disease severity indicators in comparison with our 
novel pipeline. As shown in Fig.  7F, AUC values were 
0.741 for WBC count, 0.780 for Neu count, and 0.702 for 
Lac level in distinguishing COVID-19-M patients from 

(See figure on previous page.)
Fig. 7 Identification and Validation of Potential Biomarkers for Prediction of Mortality Risk in COVID-19 Patients. (A) Workflow for predictive marker selec-
tion. (B) ROC curve illustrating the performance of classifiers based on the combination panel. The model was trained with 30 samples and evaluated by 
patient-based five-fold cross-validation. (C) Biomarker panel confusion matrix among different plasma samples. (D) AUC values for five biomarkers and 
the combined panel in distinguishing COVID-19-M patients from COVID-19-A patients and HCs in the validation cohort. The model was tested with 114 
samples collected from COVID-19 patients and HCs, then evaluated by patient-based five-fold cross-validation. (E) Kaplan–Meier survival curves were 
established according to mortality risk score; optimal cutoff values were derived from X-tile (all P < 0.0001, log-rank test). Patients were divided into two 
groups based on the median expression levels of PSMA1, PSMA1, PSMA7, and PSMB1. P-values were calculated by two-tailed log-rank tests. (F) AUC values 
for clinical indexes in distinguishing COVID-19-M patients from COVID-19-A patients and HCs. The model was trained and tested using 144 samples col-
lected from both training and test cohorts, then evaluated by patient-based five-fold cross-validation
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COVID-19-A patients. Other classical clinical indica-
tors including Lym count, RBC count, Hgb level, and Plt 
count had considerably lower AUC values (0.568–0.684) 
for the prediction of poor prognosis. Furthermore, O2 
saturation levels reportedly can explain clinical deterio-
ration and mortality in COVID-19 patients [33]. In this 
study, the AUC value of PaO2/FiO2 for predicting poor 
prognosis was 0.576, which was substantially lower than 
the AUC value for the novel pipeline (0.976). Collectively, 
our results confirmed the reliability of the multi-omics 
data. They also demonstrated that the model constructed 
in this study has great potential for predicting mortality 
risk in COVID-19 patients at the time of hospitalization, 
such that it outperformed clinical metrics.

Discussion
Highly contagious SARS-CoV-2 variants continue to 
strain health systems worldwide. Although most affected 
individuals are asymptomatic or have mild disease, 
some individuals develop severe disease with the poten-
tial for rapid death. Thus far, most studies have focused 
on plasma molecular signatures related to COVID-19 
severity [16, 20, 32, 34]. Few studies have conducted 
multi-dimensional analysis of the host response to SARS-
CoV-2 infection during the acute and recovery phases. 
Moreover, the potential for rapid disease progression 
underscores the need for methods that can reliably pre-
dict survival among hospitalized patients. Accordingly, 
we conducted untargeted MS/MS-based proteomics and 
metabolomics to evaluate the features of patients with 
acute COVID-19. Additionally, the collection of early 
clinical samples at the time of hospitalization allowed 
exploration of mortality risk in such patients. Our anal-
ysis of plasma samples showed that most COVID-19 
patients could be clearly distinguish from HCs, regard-
less of the time point or outcome. Through this omics 
analysis, we confirmed the findings of dysregulated 
inflammation, immunity, proteasome activity, and steroid 
hormone biosynthesis. We also identified a predictive 
panel that could be utilized at hospitalization to assess 
COVID-19 mortality.

A key finding in the present study was the link between 
suppressed immunity and death, despite the more pro-
nounced suppression observed in samples from patients 
with acute COVID-19; this finding suggests that the host 
response is impaired in patients with mortality. Notably, 
multiple immunoglobulin chains (e.g., IGHG1, IGKV4-
1, IGHG3, IGHV1-46, IGHA1, IGHG2, IGLC2, IGKV2-
29, and IGKC) exhibited substantially lower expression 
in COVID-19-A patients; they showed slightly higher 
expression in COVID-19-R patients. These changes in 
the levels of immunity-related proteins were negatively 
correlated with Lym, Neu, and WBC counts; changes in 

the levels of other immunity-related proteins were also 
associated with these clinical indicators.

Metabolomics data analysis also revealed that the ste-
roid hormone synthesis pathway is significantly inhib-
ited in COVID-19 patients. Up to now, a large number of 
metabolomics studies have been carried out in COVID-
19, and researchers have identified a variety of COVID-
19-related metabolites, including multiple pathways such 
as glucose metabolism, urea cycle, and lipid metabolism 
[35, 36]. Ding Shi et al. verified the predictive ability of the 
combination of 7 metabolites on the severity of COVID-
19 disease, including steroid substances, which was simi-
lar to our research results [37]. It should be emphasized 
that previous studies focused on determining the severity 
of a patient’s disease through metabolic markers. In this 
study, we mainly focus on the typical DEPs in the acute 
phase of the disease, which be able to predict the poor 
prognosis. Besides, it has been reported the close link 
between cytokine disorders in COVID-19 patients and 
certain metabolites such as choline and alpha-ketoglu-
taric acid, strongly suggesting potential therapeutic tar-
gets [34]. Kaiming Wang et al. also revealed persistent 
inflammatory responses, platelet degranulation, and cell 
activation in multiple dysregulated metabolic pathways 
with in long COVID-19 patients [38].

Furthermore, our proteomic and metabolomic data 
enabled systematic analysis of the molecular patho-
genesis of COVID-19 in patients with mortality. We 
observed increases in many plasma proteins (e.g., CRP) 
during the acute phase, consistent with previously report 
[16]. These increases could lead to enhanced cytokine 
and chemokine secretion, possibly triggering a cyto-
kine storm; they also can cause excessive recruitment 
of macrophages from peripheral blood, contributing to 
acute injury [39, 40]. Moreover, the expression levels of 
SAA1, SAA2, ORM1, ORM2, SERPINA1, SERPINA3, 
LBP, and HP were substantially elevated in samples from 
COVID-19-A patients. Many of these proteins, such as 
SERPINA3, ORM1 and ORM2, have been used to distin-
guish between mild and severe cases of COVID-19 [32]. 
Intriguingly, the activation of inflammation was restored 
to a certain extent in COVID-19 patients with mortal-
ity than surviving patients at the time of hospitalization. 
This result is likely related to the poor physical respon-
siveness of the non-surviving patients, although their 
clinical manifestations were similar to the manifestations 
of surviving patients.

The most important findings of the present study 
were the striking changes in proteasome subunit lev-
els between surviving and non-surviving COVID-
19 patients. Although there were no significant 
differences in clinical presentation or laboratory exami-
nation among surviving patients at the time of hospi-
talization, the plasma levels of proteasome subunits 
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substantially differed. Our results suggest that pro-
teasome subunits can aid in predicting the outcomes of 
COVID-19 patients. Indeed, the proteasome has been 
described as the basis of several diseases; it has also been 
identified as an early prognostic biomarker for sepsis, 
primarily in association with lymphocyte apoptosis [41]. 
Moreover, the main roles of the proteasome are recogni-
tion, binding, and degradation of ubiquitinated proteins. 
The ubiquitin–proteasome system is closely involved in 
regulating the antiviral immune response [42]. In this 
regard, some proteasome inhibitors have shown efficacy 
in limiting the life cycles of viruses such as SARS-CoV-2 
[42, 43]. Previous studies indicated that proteasome 
inhibitors can induce apoptosis [44, 45]; this property 
underlies their frequent application in cancer treatment 
[27, 46]. In the context of COVID-19, Longhitano et al. 
demonstrated that proteasome inhibitors had therapeutic 
effects [42, 47]. Xue et al. also observed the upregulation 
of some proteasome subunits, although their associations 
with hypoxemia and hyperinflammation require clarifica-
tion [31]. We hypothesize that viral infection drives local 
and systemic hyperinflammatory responses, leading to 
dysregulated proteasome activity that could be involved 
in COVID-19 pathogenesis. Further research is needed 
to determine whether and how proteasome subunit over-
expression contributes to COVID-19 mortality.

Another critical observation was the suppression of 
steroid hormone biosynthesis in COVID-19 patients, 
especially patients in the COVID-19-M group. There is 
evidence that steroid hormones play essential roles in the 
adaptive immune response and are involved in regula-
tory processes during infection [48]. Moreover, steroid 
hormones (e.g., progesterone, androgens, and estrogens) 
reportedly can enhance the activities of many immune 
cells and non-immune cells [23]. We observed reduced 
expression of 21-hydroxypregnenolone, an important 
intermediate during corticosterone synthesis, implying 
that corticosterone biosynthesis is suppressed in patients 
with SARS-CoV-2 infection. Our results suggest that 
appropriate corticosteroid supplementation could main-
tain hormonal balance, thereby modulating the inflam-
matory response and reducing mortality risk.

After the identification of significant DEPs and DEMs 
between surviving and non-surviving COVID-19 
patients, we utilized machine learning to detect robust 
features that are predictive of COVID-19 mortality, with 
the potential to determine poor prognosis at the time 
of hospitalization. Although separate proteomic and 
metabolomic biomarkers exhibited AUC values > 0.7 for 
predicting adverse outcomes, the combination of four 
proteins (CRP, PSMA1, PSMA7, and PSMB1) and one 
metabolite (urocortisone) achieved an AUC of 0.976. 
To test the predictive power of this survival model, we 
used it to analyze a test cohort comprising 83 COVID-19 

patients and 31 HCs. The results showed that our panel 
exhibited > 90% accuracy for predicting poor prognosis 
in the test cohort. Furthermore, the diagnostic efficacy of 
this combined biomarker is significantly better than the 
efficacies of other clinical indicators (WBC, Neu, RBC, 
Lym, and Plt counts; Hgb and Lac levels; and oxygenation 
index). Thus, our combined biomarker could effectively 
predict poor COVID-19 prognosis.

Our findings have several potential clinical benefits. 
First, larger cohorts are needed to validate biomarker 
panels that can predict mortality among COVID-19 
patients at the time of hospitalization, facilitating early 
intervention. Such predictions may allow patients with 
acute COVID-19 to receive more effective preventive 
treatments. Our combined biomarker could also serve 
as a useful indicator of the therapeutic effects of poten-
tial treatments for COVID-19. Finally, our results suggest 
that specific host responses contribute to the heteroge-
neous outcomes of COVID-19.

Conclusion
This study is informative in elucidating the trajectories of 
COVID-19, with pointing to dysregulation of inflamma-
tion, immunity, proteasome activity, and steroid hormone 
biosynthesis. And machine learning panel is constructed 
to predict mortality among COVID-19 patients on the 
first day of hospitalization, providing clues for new inter-
ventions. More clinical evidence is still awaited to sup-
port the findings here.
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