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Abstract
In cancer treatment, therapeutic strategies that integrate tumor-specific characteristics (i.e., precision oncology) are 
widely implemented to provide clinical benefits for cancer patients. Here, through in-depth integration of tumor 
transcriptome and patients’ prognoses across cancers, we investigated dysregulated and prognosis-associated 
genes and catalogued such important genes in a cancer type-dependent manner. Utilizing the expression 
matrices of these genes, we built models to quantitatively evaluate the malignant levels of tumors across cancers, 
which could add value to the clinical staging system for improved prediction of patients’ survival. Furthermore, 
we performed a transcriptome-based molecular subtyping on hepatocellular carcinoma, which revealed three 
subtypes with significantly diversified clinical outcomes, mutation landscapes, immune microenvironment, and 
dysregulated pathways. As tumor transcriptome was commonly profiled in clinical practice with low experimental 
complexity and cost, this work proposed easy-to-perform approaches for practical clinical promotion towards 
better healthcare and precision oncology of cancer patients.
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Introduction
Cancer is the second leading cause of mortality globally, 
responsible for as many as 10 million deaths every year. 
In China, there are 4.8  million newly diagnosed cases 
and 3.2  million deaths per year [1]. Carcinogenesis is a 
very complex process with many genes and pathways 
dysregulated, which leads to high heterogeneity among 
tumors (including those of the same cancer type) [2]; 
hence, unraveling the genetic heterogeneity of tumors 
is widely considered to be pivotal in precision oncology, 
especially for guiding patient-specific targeted therapies 
to improve clinical outcomes [3]. Various genes that are 
considered particularly important in cancers have been 
identified, and most of them are classified as oncogenes 
or tumor suppressors based on their molecular functions 
in tumorigenicity and tumor progression [4]. However, 
the current catalogue of such cancer-associated genes is 
far from being complete, and the nexus between molecu-
lar landscape of these genes in tumors (i.e., basic science) 
and guidance for precision oncology of cancer patients 
(i.e., translational medicine) also requires more compre-
hensive investigations and explorations [5].

In clinical practice, the tumor malignant level and sub-
types are highly informative in guiding the therapeutic 
interventions of the patients. Conventional methods to 
evaluate the tumor malignant level mostly rely on tumor 
size, number of affected lymph nodes and metastatic sta-
tus (i.e., TNM staging). For example, the Barcelona Clinic 
Liver Cancer (BCLC) staging system is the most widely 
used approach for Hepatocellular carcinoma (HCC) [6, 
7]. BCLC system is considered informative for optimiz-
ing treatment strategies in early-stage HCC patients, 
while its guidance for advanced-stage patients is lim-
ited [8–10]. One shortage of current staging systems is 
that the molecular characteristics of the tumors are not 
fully utilized [11]. In fact, tumors at the same stage may 
possess drastically distinct biological traits that impact 
the responses to drugs [12], hence, investigations on 
the molecular profiles of the tumors are of high clinical 
potential. For example, breast cancer can be categorized 
into four subtypes based on the gene expression pat-
terns, each exhibiting distinct prognostic and therapeutic 
responses [13, 14]. However, clinically validated molecu-
lar subtyping methods are only available for a limited 
number of cancer types. In particular, HCC exhibits both 
high morbidity and mortality but without efficient sub-
typing approaches; moreover, considering that Chinese 
HCC patients frequently suffer from Hepatitis B Virus 
infections while alcoholic liver disease is more com-
mon in western countries [15], such essentially different 
genetic background makes HCC subtyping more chal-
lenging. Recently, various HCC subtyping approaches 
based on proteogenomic landscape [16], gene mutation 
[17], non-coding RNA [18], and immune signatures [19] 

had been proposed, while the experimental complexity 
and high cost had adversely affected large-scale validation 
and promotion of these methods. Thus, it is of urgent 
demand to develop simple and effective approaches to 
meet the clinical needs.

In previous studies, we and others have demonstrated 
that the transcriptomes contain massive molecule infor-
mation of tumors with high clinical values [20–22]. For 
instance, we showed that using transcriptome data from 
tissue biopsies alone, one could predict its malignant sta-
tus, evaluate its purity, as well as predict its tissue origin 
with very high accuracy [23, 24]; Song et al. proposed that 
gene expression is sufficient to catch the major biological 
discrepancies among different subgroups in pancreatic 
cancer [25]. More importantly, as transcriptome profil-
ing is inexpensive and easy-to-perform (e.g., through 
RNA-seq), it has been widely used in clinical practice, for 
example, to screen for known druggable targets. There-
fore, in this study, we further explored the translational 
value of tumor transcriptome, including investigations 
on key genes in cancers as well as developments of tumor 
malignant level evaluation and subtyping approaches.

Results
Various types of prognosis-related genes across cancers
We collected RNA-seq data and patients’ prognosis infor-
mation from The Cancer Genome Atlas (TCGA) [26]. As 
we were mostly interested in differential expression and 
prognosis analysis, only the cancer types with at least 10 
adjacent normal samples and 100 tumor samples were 
selected (N = 13, Suppl. Tables S1-S2) for achieving sta-
tistical power in downstream analyses: Bladder urothe-
lial carcinoma (BLCA), Infiltrating duct carcinoma of the 
Breast (BRCA), Colon adenocarcinoma (COAD), HCC, 
Laryngeal cancer (LC), Tongue cancer (TC), Kidney renal 
clear cell carcinoma (KIRC), Kidney renal papillary cell 
carcinoma (KIRP), Lung adenocarcinoma (LUAD), Lung 
squamous cell carcinoma (LUSC), Stomach adenocarci-
noma (STAD), Thyroid carcinoma (THCA), Endome-
trial endometrioid adenocarcinoma (UCEC). For each 
cancer type, we mined the genes that were differentially 
expressed (DEGs) in the tumors compared to adjacent 
normal samples (Suppl. Fig. S1). As shown in Fig.  1a, 
the number of DEGs varied drastically, ranging from 
5,511 in TC to 12,736 in KIRC. Then, for each DEG in 
each cancer type, we divided the tumor samples into 
2 categories based on the median normalized expres-
sion of this DEG in the corresponding cancer type (i.e., 
samples with expression values of the DEG higher than 
the median were defined as “higher-expression” cat-
egory, and the rest samples were “lower-expression” cat-
egory) and performed prognosis analysis between these 
two categories. As a result, we found that only a small 
proportion of DEGs (< 10% in most cancer types) were 
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Fig. 1  Identification of dysregulated and prognosis-associated genes across cancers. (a) Frequency of differentially expressed genes; (b) The associations 
of the gene expression with prognosis. The dysregulated and prognosis-associated genes were categorized into 4 groups with illustrations using genes 
in hepatocellular carcinoma (HCC): (c) oncogene-like, (d) up-regulated-saver, (e) down-regulated-saver, and (f) suppressor-like. For c-f, the upper panels 
showed normalized gene expression levels (by DESeq2) between tumor (red) and adjacent normal (blue) samples, and the adjusted p-values (P) were 
calculated by DESeq2. The lower parts showed the prognosis of patients divided into 2 groups: red and blue curves stand for patients with relatively 
higher and lower expression, respectively. P-values and Hazard Ratios (HR) were calculated using Cox regressions

 



Page 4 of 15Hu et al. Journal of Translational Medicine          (2024) 22:512 

associated with patients’ survival (Fig.  1b). Interest-
ingly, for DEGs that were up-regulated in tumors, higher 
expression (i.e., higher than median expression level in 
all the tumors) did not always link to poorer survival but 
could correlate with better survival of patients; similarly, 
lower expression (i.e., lower than median expression 
level in all tumors) of DEGs that were down-regulated in 
tumors could also associate with better survival (Fig. 1c-
f ). Hence, we categorized the prognosis-associated DEGs 
into 4 groups: “oncogene-like”, “up-regulated-saver”, 
“down-regulated-saver” and “suppressor-like”. For any 
gene that was up-regulated in tumors, if patients with 
relatively higher expression showed worse prognosis, 
then these genes could be categorized as “oncogene-like”, 
such as BRSK1 (Fig. 1c); in contrast, if higher expression 
led to better prognosis in cancer patients, such as RFX8 
(Fig. 1d), then this gene would be categorized as “up-reg-
ulated-saver”. For any gene that was down-regulated in 
tumors, if patients with lower expression showed better 
survival, this gene would be categorized as “down-regu-
lated-saver”, such as CD81 (Fig. 1e), otherwise, it would 
be categorized as “suppressor-like”, such as CCDC38 
(Fig.  1f ). Distributions of these 4 types of DEGs varied 
significantly among cancer types. For example, for the 
down-regulated and prognosis-associated genes, most 
of them were “suppressor-like” in LUAD; as a contrast, 
in LUSC, “down-regulated-saver” was the majority. The 
data thus revealed intricated relationships between gene 
dysregulation and patients’ survival, which could be 
worthwhile for further explorations.

Revisiting oncogenes and tumor suppressors
We then explored genes that were frequently associ-
ated with prognosis across cancers, as these genes might 
be highly related to cancer. We first investigated known 
cancer-related genes in the Network of Cancer Genes 
(NCG), a high-quality manually curated database for 
oncogenes and tumor suppressors [27]. The results were 
summarized in Fig. 2a and Suppl. Table S3. Surprisingly, 
among the 256 oncogenes annotated in NCG, only 73 
(28.5%) were found to be differentially expressed and 
associated with prognosis in at least 1 cancer type; more-
over, only 38 (52.1%) showed “oncogene-like” behavior 
in at least 1 cancer type, while 35 (47.9%) showed incon-
sistent dysregulation and prognosis associations. For 
instance, HLF gene was down-regulated in COAD and 
LUAD, and in both cancers, lower expression was associ-
ated with worse survival of the patients (i.e., it was “sup-
pressor-like”). Similarly, among the 251 tumor suppressor 
genes annotated in NCG, only 48 (19.1%) were found to 
be differentially expressed and associated with progno-
sis in at least 1 cancer type; moreover, only 12 (25.0%) 
showed “suppressor-like” behaviors in at least 1 cancer 
type, while 36 (75.0%) showed inconsistent prognosis 

associations. Moreover, the number of prognosis-associ-
ated NCGs varied among cancer types, showing higher 
frequencies in kidney cancers while lower in digestive 
system cancers, e.g., STAD and LC.

We further explored potentially novel cancer-related 
genes using a threshold of showing prognosis association 
in at least 4 cancer types (i.e., > 30% in all cancer types 
investigated). As a result, 45 genes showed up. Interest-
ingly, only 3 of them (CCNE1, HOXC13, CPEB3) existed 
in the NCG database (Fig. 2b and Suppl. Table S4). The 
majority (77.8%) of these putative cancer-related genes 
showed “oncogene-like” behaviors among various cancer 
types. For example, PKMYT1 showed “oncogene-like” 
behavior in 5 cancer types, and DNASE1L3 recurrently 
showed “suppressor-like” behavior in 5 cancers. On the 
other hand, 27 genes showed diversified behaviors among 
cancer types. EPHA10 gene was illustrated in Fig. 2c-f as 
an example: it was annotated as an “oncogene” in NCG 
and did behave as “oncogene-like” in HCC and KIRC, but 
it also behaved as “up-regulated-saver” manner in BRCA 
and “suppressor-like” in COAD. The results echoed the 
dysregulation and prognosis-association patterns of 
genes annotated in NCG, demonstrating the complexity 
of cancer-related genes in affecting prognosis and sug-
gesting further investigations on such genes in a cancer 
type-dependent manner.

A universal approach for modeling tumor malignant level
Based on the profiles of prognosis associated genes 
revealed in Figs.  1 and 2, we wondered whether the 
expression patterns of these genes in a specific tumor 
could inform its malignant level (within the context of 
stand-of-care treatment). To do this, for each cancer 
type, we randomly split the tumor samples into 2 groups, 
1 for training and the other for testing; for each DEG in 
each cancer type, we divided the samples in the training 
dataset into “higher-“ and “lower-expression” catego-
ries based on the median normalized expression of this 
DEG and performed survival analysis between these two 
categories; then, we picked up the DEGs that were most 
significantly associated with prognosis and collected the 
corresponding hazard ratios between higher- and lower-
expressed samples; lastly, for each tumor sample, we 
calculated a parameter, named SAHR (Score of Aggre-
gated Hazard Ratio) that used the expression levels as 
“coefficients” to aggregate the hazard ratios (Fig.  3a-c, 
Suppl. Fig. S2-S13). For example, for one gene classi-
fied as “oncogene-like”, if its expression in the tumor-of-
interest was higher than the median value of all training 
samples, it would be assigned a coefficient of “+1” (red 
arrow in Fig. 3a), otherwise, it would be assigned a coef-
ficient of “-1” (blue arrow in Fig.  3a). Under such set-
tings, we hypothesized that higher SAHR value should 
indicate a higher malignant level of the tumor, and vice 
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Fig. 2  Prognostic characteristics of key cancer-related genes across cancers. (a) Genes in NCG database showing dysregulation and prognosis-asso-
ciation. (b) Genes frequently dysregulated and associated with prognosis. Genes highlighted in red (N = 3) are also reported in the NCG database. (c-f ) 
Illustration of the expression and survival association of EPHA10 gene in (c) HCC, (d) BRCA, (e) KIRC, and (f) COAD. For figure c-f, the upper panels showed 
normalized gene expression levels (by DESeq2) between tumor (red) and adjacent normal (blue) samples, and the adjusted p-values (P) were calculated 
by DESeq2. The lower panels showed the prognosis of patients divided into 2 groups: red and blue curves stand for patients with relatively higher and 
lower expression, respectively. P-values and Hazard Ratios (HRs) were calculated using Cox regressions
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versa. Indeed, we found that in all cancer types, tumors 
with positive SAHR values were associated with signifi-
cantly worse survival of the corresponding patients, as 
observed in the training datasets and validated in the 
testing datasets (Fig.  3d-e and Suppl. Fig. S3-S13). For 
cancer types with relatively large number of samples in 
the testing dataset, we found that SAHR models work 

well on patients with different genders and ethics (Suppl. 
Fig. S14). To further validate the SAHR models, 2 non-
TCGA datasets were collected: 1 colon cancer dataset 
containing 232 samples from Smith et al. [28], and 1 lung 
adenocarcinoma dataset containing 226 samples from 
Okayama et al. [29]. Of note, transcriptome profiling in 
these two datasets was both performed using Affymetrix 

Fig. 3  The SAHR (Score of Aggregated Hazard Ratio) model for tumor malignant level evaluation. (a) Formula for calculating SAHR for each sample to 
evaluate. Genes in 4 categories were used to build the model; for oncogene-like and down-regulated-saver genes, if the expression in the given sample 
was higher than the cutoff, then a coefficient of “+1” would be assigned to the corresponding Hazard Ratios (red arrow), otherwise a “-1” would be used 
as the coefficient (blue arrow); for up-regulated-saver and oncogene-like genes, if the expression in the given sample was higher than the cutoff, then a 
coefficient of “-1” would be assigned to the corresponding Hazard Ratios (HRs; red arrow), otherwise a “+1” would be used as the coefficient (blue arrow). 
The HRs of the genes were multiplied by their coefficients and then accumulated as the SAHR value. (b, c) Distribution of SAHR values among different 
clinical stages in (b) HCC and (c) BLCA. P-values were calculated using Kruskal-Wallis tests. (d) Comparison of patients’ survival with different SAHR values 
in the testing datasets of HCC and (e) BLCA. (f, g) Comparison of patients’ survival with different SAHR values in non-TCGA datasets: (f) colon cancer and 
(g) lung adenocarcinoma. The SAHR scores were calculated using models trained from TCGA’s COAD and LUAD samples, respectively. (h-k) Comparison 
of patients’ survival with different SAHR values in the early- (i.e., I and II) and late-stage (i.e., III and IV) samples in HCC and BLCA. P-values and HRs were 
calculated using Cox regressions. SAHR- and SAHR + stood for tumors with negative and positive SAHR values, respectively

 



Page 7 of 15Hu et al. Journal of Translational Medicine          (2024) 22:512 

Human Genome U133 Plus 2.0 Array platform, which is 
different from TCGA. For each dataset, we first picked 
up the genes used in the corresponding SAHR model 
(COAD or LUAD) that were also profiled in the micro-
array platform; we then extracted the median expres-
sion values in the tumor samples as cutoffs to determine 
“higher-” and “lower-expression” category of the tumors 
and used the same HRs in the corresponding SAHR 
model (Suppl. Table S6) to calculate SAHR scores for 
each sample. Despite the big difference in data generat-
ing platform, highly consistent results to that on TCGA 
datasets were obtained: patients with negative SAHR val-
ues still showed significantly better survival than those 
with positive SAHR values (Fig. 3f-g), demonstrating the 
robustness and generalizability of our SAHR models.

Considering that the clinical stage is the most widely 
used parameter in evaluating the tumor malignant level, 
we further explored whether our SAHR model could 
add value to the clinical stage. In general, tumors with 
advanced stages tended to show higher SAHR values, 
while statistical significance was only observed in HCC, 
KIRP, KIRC, and LUAD (Fig.  3b-c, Suppl. Fig. S2). In 
addition, high variation in SAHR values from tumors of 
the same stage was observed, so we explored the corre-
lations of SAHR values with prognosis of patients in the 
same stage. Due to the limited sample size of the testing 
datasets in most cancer types, we divided the samples 
into early- (i.e., I and II) and late-stages (i.e., III and IV) 
for each cancer type. The results for HCC and BLCA 
were shown in Fig.  3h-k and other cancer types can be 
found in Suppl. Fig. S3-S13: for both early- or late-stages 
in most cancer types, samples with positive SAHR val-
ues still showed worse survival than those with negative 
SAHR values in the same stage. These results demon-
strated the translational significance of our SAHR model 
as a universal approach to measuring the malignant level 
of tumors from the molecular side of view.

Transcriptome-based subtyping of HCC
Besides the malignant level evaluation, molecular sub-
typing is also of high significance in clinical practice, as 
it can aid patient-specific treatments for precision medi-
cine. Considering the mechanisms of HCC tumorigen-
esis are drastically different between Asian and Western 
countries [30], we picked up the HCC transcriptome data 
from Asian patients (N = 154) and conducted an unsuper-
vised dimension-reduction and clustering analysis. As 
a result, the HCC tumor samples were categorized into 
three subgroups (which were defined as C0, C1, and C2 
subtypes; Fig.  4a). No significant gender biases among 
the three subtypes were observed, while the clinical stage 
distributions were different among subtypes (P = 0.016, 
Kruskal-Wallis test); in the post-hoc analysis, we found 
that C1 subtype showed higher proportion of late-stage 

tumors compared to C0 subtype (P = 0.017, Dunn test; 
Suppl. Fig. S15b). In addition, samples in subtype C1 
showed significantly higher SAHR values than the other 
two subtypes (Suppl. Fig. S15c); indeed, patients in C1 
subtype showed significantly worse survival than the 
other two subtypes (Fig.  4b). The results suggested that 
our classification of HCC subtypes possessed clinical 
value worthwhile for further investigations.

We analyzed the somatic mutation profiles across the 
three HCC subtypes, which was independent of the tran-
scriptome data. The total somatic mutations were no 
significant differences among subtypes (P = 0.051, Krus-
kal-Wallis test), while detailed investigation showed that 
in the top 20 most frequently mutated genes in HCC, 8 of 
them (TP53, CTNNB1, PCLO, OBSCN, AXIN1, CSMD3, 
APOB, and CACNA1E) showed significant variations 
among subtypes (Fig. 4e). For instances, more than 80% 
tumors in the C2 subtype suffered from CTNNB1 muta-
tion, while the mutation frequencies of CTNNB1 were 
lower than 20% for the other two subtypes; in contrast, 
the mutation frequencies in TP53 and AXIN1 genes 
were significantly reduced in C2 subtype (Fig. 4e). These 
results suggested that differences in molecular level 
existed among the 3 HCC subtypes.

Molecular signatures across HCC subtypes
To explore the molecular signatures of the three HCC 
subtypes, differentially expressed genes for each subtype 
were mined by comparing them with the other two sub-
types. As a result, thousands of DEGs were found for each 
subtype (Suppl. Fig. S16). Interestingly, we found that the 
expression levels of CTNNB1 and TP53 across the three 
subtypes were similar to their mutation frequencies 
(Fig.  5a), i.e., the C2 subtype showed higher expression 
level and higher mutation frequency of CTNNB1 while 
lower expression level and lower mutation frequency of 
TP53; by contrast, expression patterns of PCLO, OBSCN 
and CSMD3 were opposite to their mutation frequencies 
among the three subtypes (Fig. 5a and Suppl. Fig. S16b). 
Furthermore, proportions of various types of infiltrated 
immune cells differed significantly among the HCC sub-
types (Fig. 5b and Suppl. Fig. S16c); notably, M2 macro-
phages were significantly higher in C1 subtype, whose 
infiltration was reported to correlate with metastasis and 
a poor prognosis in HCC patients [31] and suggested a 
more repressive immune environment in this subtype. In 
addition, CD4 memory and regulatory T cells were also 
significantly higher in C1 subtypes. Functional enrich-
ments of the subtype specific DEGs were then investi-
gated, which revealed various altered signaling pathways 
in each subtype (Fig. 5c and Suppl. Fig. S16d). For exam-
ple, multiple metabolism related pathways were signifi-
cantly altered among the three subtypes: up-regulated 
genes in C0 and C2 subtypes were enriched in retinol and 
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Fig. 4  Transcriptome-based subtyping of HCC in Asian patients. (a) Dimension-reduction and clustering of HCC tumors. Dimension-reduction was 
performed using Uniform Manifold Approximation and Projection (UMAP) algorithm, and clustering was performed using Louvain algorithm. (b) Com-
parison of prognosis among patients in different subtypes. P-value and HR were based on C1 versus a pool of C0 and C2. (c) Somatic mutation landscape. 
(d) Total number of somatic mutations among tumors in different subtypes. P-value was calculated using Kruskal-Wallis test. (e) Comparison of the most 
frequently mutated genes among subtypes. P-values were calculated using Chi-squared tests. *: p < 0.05; **: p < 0.01; ***: p < 0.001
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Fig. 5  Functional annotation of HCC subtypes. (a) Illustration of differentially expressed genes among subtypes. P-values were calculated using Mann-
Whitney U tests. (b) Illustration of immune infiltrations among subtypes. P-values were calculated using Kruskal-Wallis tests. (c) Enriched pathways for 
genes up-regulated in each subtype compared to the other subtypes. (d) Expression patterns of important genes reported in previous studies among 
subtypes. *: p < 0.05, **: p < 0.01, ***: p < 0.001
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drug metabolism pathways, while up-regulated genes in 
C1 subtype were enriched in PI3K-Akt and protein diges-
tion and absorption pathway. A more detailed analysis 
showed that genes in plenty of metabolism pathways 
were down-regulated in C1 subtype, such as amino acid 
metabolism, fatty acid metabolism, and primary bile acid 
metabolism (Suppl. Fig. S16d). Moreover, a variety of bio-
logical processes were also altered: symporter activity, 
monooxygenase activity, and transmembrane receptor 
protein tyrosine kinase activity were the most enriched 
biological processes in C0, C1, and C2 subtypes, respec-
tively (Suppl. Fig. S17).

To further explore the molecular alterations behind the 
poor prognosis of patients in C1 subtype, we investigated 
the expression patterns of 9 genes known to be highly 
important to HCC as well as 2 prognosis-related genes 
identified in Gao et al. using proteomics data [16]. As 
shown in Fig.  5d, subtype C1 showed significant differ-
ential expressions compared to the other two subtypes, 
AFP, PKM, and CDK1 were up-regulated, while CPS1 
and GLYATL1 were down-regulated; in addition, ADH1A 
genes down-regulated in C1 subtype. Furthermore, a list 
of 19 plasma biomarkers clinically used in non-invasive 
HCC diagnosis was also investigated [16] and the results 
were shown in Fig. 5d: GLUL was significantly up-regu-
lated in C2 subtype, while EPCAM (epithelial cell adhe-
sion molecule) and AFP were significantly up-regulated 
in C1 subtype, which results were concordant with a 
recent study [32] and suggested that abundance of these 
genes in plasma of HCC patients might inform their 
subtypes.

Discussion
In this work, we performed an in-depth analysis on 
tumor transcriptomes through integration with patients’ 
prognoses. We showed that many genes were dysregu-
lated and associated with patients’ survival across can-
cers in a cancer type-dependent manner, which allowed 
us to build models for tumor malignant level evalua-
tion and molecular subtyping. In cancer, oncogenes and 
tumor suppressors are widely considered as the most 
important genes. Intuitively, the dysregulated oncogenes 
and tumor suppressors should play roles during carci-
nogenesis and therefore link to worse prognosis of the 
patients. However, investigations on the known onco-
genes and tumor suppressors showed that the majority 
of them were not associated with patients’ prognoses; 
moreover, some of them showed diversified and incon-
sistent prognosis-associations with their annotations, 
which were consistent with previous reports on dual-
functions of these genes [33, 34]. For instance, HOXD11 
is annotated as an oncogene in NCG database, while it 
showed multiple behaviors in patients’ survival (Fig. 2a). 
Functional studies revealed that HOXD11 could enhance 

invasion, decompose the extracellular matrix, and epithe-
lial mesenchymal transition-like phenotype metastasis 
through various downstream genes and pathways (e.g., 
JAM-A gene, NF-κB and FN1/MMP2/MMP9 signaling 
pathways) [35, 36]; however, it could also regulate the 
TGF-β signaling pathway to inhibit cell proliferation and 
cell cycle, i.e., functions like a tumor suppressor [37]. As 
another example, PTEN is a well-known tumor suppres-
sor that negatively regulates cell proliferation, migration, 
and angiogenesis by antagonizing the PI3K-Akt/mTOR 
pathway [38, 39]; however, PTEN could also enhance 
PNCK-mediated-ERK1/2 inhibition to promote cellular 
proliferation, as well as cause FOXO-dependent upreg-
ulation of p53 suppressor Bcl6 and allow tumor cells to 
escape p53- and p21-mediated cellular senescence in leu-
kemia [40]. On the other hand, the genes in NCG data-
base had been functionally validated to play important 
roles in cancer, and their differential expressions and 
associations with prognosis could be affected by small 
sample size and other cofounders in cancers analyzed in 
this study. Considering the complexity and heterogene-
ity of cancers, our results suggested that for the cancer-
related genes, their functions might not be as simple as 
an annotated label in the database and could be different 
across cancer types. Hence, investigations on the biologi-
cal mechanisms of such cancer-related genes should be 
performed in a cancer-type-dependent manner.

In addition, we also screened genes that were fre-
quently dysregulated and associated with patients’ sur-
vival, resulting in 45 genes discovered (42 of them were 
not annotated as oncogenes or tumor suppressors in the 
current database). Of note, some of the genes had been 
studied to infer their functions in cancer. As an example, 
DUXAP8, a long noncoding RNA that showed “onco-
gene-like” behavior in 5 cancer types, could recruit his-
tone demethylase LSD1 and histone methyltransferase 
EZH2 to repress tumor suppressors [41, 42]; in addi-
tion, it could also suppress ferroptosis and induces drug 
resistance [43], thus functions in an “oncogene” manner. 
As another example, DNASE1L3 gene behaves as “sup-
pressor-like” in 5 cancer types. DNASE1L3 is primarily 
known as an endonuclease that plays important roles 
in apoptotic DNA fragmentation [44–46]. Mechanism 
studies showed that DNASE1L3 recruits cytoplasmic 
β-catenin destruction complex components (GSK-3β and 
Axin), promotes β-catenin ubiquitination and inhibits its 
nuclear translocation, thereby reducing c-Myc, P21 and 
P27 levels and negatively regulating proliferation, inva-
sion and metastasis [47], supporting its “suppressor-like” 
behavior. Hence, these newly catalogued dysregulated 
and prognosis-associated genes could be valuable in 
cancer biology, and therefore deserve further functional 
investigations.
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In clinical practice, tumor malignant level evalua-
tion holds high significance in precision oncology. For 
example, high malignant level tumors suggest that the 
patients may not benefit too much from standard-of-
care treatments. Conventionally, the tumor stages or 
grades were widely used in this task, where the molecu-
lar level information of the tumors is not taken into con-
sideration. In this study, we developed a universal and 
quantitative measurement, i.e., the SAHR model, for 
evaluating the malignant level of tumors across cancers. 
We showed that the SAHR model worked well for all 
13 cancer types in TCGA (Fig. 3 and Suppl. Fig S3-S13) 
and it was further validated using 2 non-TCGA datasets 
with a different transcriptome profiling platform (Fig. 3f-
g); more importantly, in many cancer types, patients in 
similar stages with different SAHR values showed sig-
nificantly distinct prognoses, suggesting that the SAHR 
model could add value to the clinical stage information, 
and these two parameters could be used in combinations 
for better healthcare of the patients. Compared to tradi-
tional TNM staging system that mostly based on size and 
spread of the tumor for malignant level estimation, our 
SAHR model leveraged the molecular information of the 
tumors. Considering the high heterogeneity in tumors, 
molecular level gene expression pattern might contain 
information of different dimension than morphology. In 
fact, for cancer patients of similar stages, SAHR values 
could still differentiate patients with different progno-
ses (Fig. 3h-k), suggesting that it could add value to the 
current staging system. Hence, we think that combina-
tion of TNM stage and SAHR value could be a prefer-
able approach in clinical practice. The Fluorescence in 
situ hybridization (FISH) technology is also widely used 
in clinical practice, and such experiments may be per-
formed on the genes utilized in our SAHR models for 
tumor malignancy level estimation and prognosis predic-
tion. Moreover, tumor microenvironment is also relevant 
to patients’ prognoses [48–51]. In fact, various immune-
related genes were utilized in our SAHR model (Suppl. 
Table S5). However, inference of immune cell infiltrations 
from bulk RNA-seq data is challenging [52], therefore 
integrating RNA-seq with other data on tumor micro-
environment evaluation, such as immunohistochemistry 
staining and single-cell experiments [51], would be more 
appropriate to take advantage of the tumor environment 
in tumor malignancy level evaluation. On the other hand, 
currently SAHR should be considered as a proof-of-con-
cept to model the tumor malignancy level, while more 
complex models could be built towards higher perfor-
mances; however, it is challenging to fine-tune complex 
models with the limited sample size in hand, therefore it 
would be worthwhile trying in future studies with larger 
datasets.

In addition, we proposed a molecular subtyping 
approach for HCC, which revealed three distinct sub-
types among Asian patients with different prognostic 
outcomes as well as various molecular-level discrepan-
cies. Although we only used transcriptome data, our 
subtyping result was highly consistent with previous 
studies utilizing multi-omics and proteomics [16, 30]. 
For instance, subtype C0 showed up-regulated genes 
enriched in multiple metabolism-related pathways, 
including drug metabolism, acid metabolism and glu-
cose metabolism, which was similar to the metabolism 
subgroup (named “S-Mb”) in Gao et al. [16]; subtype 
C1 highly assembled the “S-pf” (proliferation subgroup) 
HCC subtype defined in Gao et al. as they shared plenty 
of differentially expressed genes; subtype C2 has signifi-
cantly higher mutation level in CTNNB1 gene, higher 
expression level of GLUL and lower expression level of 
EPCAM, along with WNT pathway activation, which 
features are highly consistent with a specific HCC sub-
type reported in previous studies [53, 54]. Moreover, 
through functional annotations on the HCC subtypes, we 
found that genes for various metabolism pathways were 
down-regulated in the poorest prognostic HCC subtype 
(i.e., C1) compared to the other two subtypes, including 
glucose metabolism, energy generation via adenosine 
triphosphate (ATP), as well as amino acid and fatty acid 
metabolism. These alterations might enhance the tumor’s 
ability to thrive, proliferate, and metastasize, leading 
to poor survival of the patients [55]. For instance, most 
genes in the drug metabolism of cytochrome P450 path-
way were significantly down-regulated in C1 subtype, 
which mediates the metabolic activation of numerous 
procarcinogens and participates in the inactivation and 
activation of anticancer drugs [56] and associates with 
fast-growing HCC and worse prognosis [57]. Moreover, 
the primary bile acid biosynthesis pathway also varies 
among subtypes. Bile acids are critical regulators of the 
development of various liver diseases [58], and higher 
levels of glycine and taurine conjugated primary bile 
acids were associated with a 2- to 8-fold increased risk 
of HBV- and HCV-related HCC [59]. The immune infil-
tration landscape also differed among the HCC subtypes 
(Fig. 5b and Suppl. Fig. S15c). For example, the C1 sub-
type has a higher proportion of M2 macrophage, which 
is known to associate with metastasis and poor prognosis 
in HCC patients [31]. Hence, tumor subtyping could also 
enhance our understanding of the underlying mecha-
nisms that contribute to the heterogeneity and progres-
sion of the tumors [32]. Notably, compared with previous 
studies, our approach only utilized the transcriptome 
data, which was easy to obtain with low experimental 
complexity and cost, suggesting that our approach might 
possess certain advantages in clinical promotion.
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In summary, through integrative analysis of tumor 
transcriptome and patient’s prognosis, we proposed easy-
to-perform models aiming to improve the living condi-
tion of cancer patients towards precision oncology.

Methods
Data resources and curation
Transcriptome and clinical data were obtained from 
TCGA and GEO under accession numbers GSE17538 
[28] and GSE31210 [29]. To achieve statistical power in 
downstream analyses, major cancer types with more 
than 100 tumors and 10 adjacent normal tissues were 
kept (N = 13; Suppl. Table S1). For BLCA, tumors anno-
tated as “Papillary adenocarcinoma” or “Squamous 
cell carcinoma” were filtered out due to limited sample 
size, and only “Papillary transitional cell carcinoma” or 
“Transitional cell carcinoma” were kept. For BRCA, the 
infiltrating duct and lobular carcinoma were two major 
subtypes of BRCA, but in the subtype of lobular carci-
noma, only 4 adjacent normal samples were available, so 
only the “Infiltrating duct carcinoma” subtype was kept. 
For COAD, only tumors annotated as “Adenocarcinoma” 
were kept. For HCC, only included the tumors annotated 
as “Hepatocellular carcinoma”. Tumors of LC and TC 
were both selected from head and neck squamous cell 
carcinoma (HNSC) and treated as 2 cancer types. We 
studied laryngeal cancer and tongue cancer separately 
due to the tumors come from different tissues. For KIRC 
and KIRP, only tumors annotated as “Clear cell adeno-
carcinoma” or “Papillary adenocarcinoma” were kept, 
respectively. For LUAD, tumors annotated as “Adenocar-
cinoma” or “Adenocarcinoma with mixed subtypes” were 
kept. For LUSC, tumors annotated as “Squamous cell 
carcinoma” were kept. For STAD, tumors annotated as 
“Adenocarcinoma intestinal type” or “Adenocarcinoma” 
were kept. For THCA, tumors annotated as “Papillary 
adenocarcinoma” or “Papillary adenocarcinoma” were 
kept. For UCEC, tumors annotated as “Endometrioid 
adenocarcinoma” were kept.

Differential expression analysis
For each cancer type, we used the raw read counts (pro-
vided by TCGA) from all the tumors and adjacent normal 
to mine the differentially expressed genes using DESeq2 
software [60]; genes with Benjamini-Hochberg adjusted 
p-values lower than 0.01 and at least 2-fold expression 
changes between tumors and adjacent normal tissues 
were considered as differentially expressed [61]. Ribo-
somal RNA genes were removed from the analysis. Note 
that for each cancer type, DESeq2 would automatically 
normalize the expression of all the genes based on a neg-
ative binomial model, and the normalized values were 
used in the downstream expression-related plots.

Survival analysis
For each cancer type, we randomly split the tumor sam-
ples into training and testing datasets (Suppl. Table S1). 
For each gene of interest in a specific cancer type, we 
first calculated the median expression value in the tumor 
samples of the training dataset then split the samples 
into 2 groups using the median expression value: the 
group whose expression was higher than the median 
value was named “higher expression” and the other was 
named “lower expression”. Note that some genes were 
not expressed (i.e., with an expression value of 0) in 
a substantial proportion of tumors and were handled 
slightly differently: if a gene was not expressed in more 
than 30% of all tumors, then tumor samples that did not 
express this gene would be grouped as “lower-expres-
sion” and the rest samples would be grouped as “higher-
expression”. We then performed Kaplan-Meier analysis to 
compare the patients in the two groups and genes with 
P-values < 0.05 (obtained from univariable Cox regres-
sion) were considered as prognosis-related.

Classification of prognosis associated genes
We explored the prognosis-associated genes for each 
cancer type separately. For each DEG mined in the dif-
ferential expression analysis, if its overall expression was 
higher in the tumors than the adjacent normal samples, 
it would be considered as up-regulated; otherwise, the 
gene would be considered as down-regulated. For the up-
regulated expressed DEG, if it was prognosis-associated 
in the survival analysis, we checked the HR of the “lower 
expression” versus “higher expression” groups of patients: 
the gene would be defined as “oncogene-like” if the HR 
was smaller than 1 (i.e., higher-expression linked to 
poorer patients’ survival; Fig. 1c), otherwise, it would be 
defined as “up-regulated-saver” (Fig. 1d). For the down-
regulated DEG, if it was prognosis-associated, it would be 
defined as “down-regulated-saver” if the HR of the “lower 
expression” versus “higher expression” groups of patients 
was smaller than 1 (i.e., lower expression linked to bet-
ter survival of the patients; Fig. 1e), otherwise it would be 
defined as “suppressor-like” (Fig. 1f ).

SAHR calculation
The SAHR is defined as a weighted accumulation of 
HRs of the four types of prognosis-associated genes 
defined in Fig.  3a. For each cancer type, 20, 20, 10 and 
10 prognosis-genes with the most significant P-values 
were picked up from the “oncogene-like”, “suppressor-
like”, “up-regulated-saver”, and “down-regulated-saver” 
categories to form a 60-gene list (genes with abnormally 
high HRs, i.e., > 20, were omitted). Then expression cut-
offs (i.e., median expressions of the tumors in the train-
ing dataset) and HRs were extracted from the expression 
data and survival analysis (note that due to different 



Page 13 of 15Hu et al. Journal of Translational Medicine          (2024) 22:512 

behaviors in survival analysis for the 4 types of genes, 
we used the patient group with worse survival versus 
the other with better survival, e.g., “higher expression” 
group versus “lower expression” group for “oncogene-
like” gene, to calculate HRs). For each sample in the test-
ing dataset, the coefficient of each gene in the 60-gene 
list was extracted and a coefficient was assigned based 
on its expression and prognosis-association category: for 
“oncogene-like” genes, if its expression was higher than 
the cutoff, then “+1” would be assigned, otherwise “-1” 
would be assigned; for “up-regulated-saver” genes, if its 
expression was higher than the cutoff, then “-1” would be 
assigned, otherwise “+1” would be assigned; for “suppres-
sor-like” genes, if its expression was higher than the cut-
off, then “-1” would be assigned, otherwise “+1” would be 
assigned; for “down-regulated-saver” genes, if its expres-
sion was higher than the cutoff, “+1” would be assigned, 
otherwise “-1” would be assigned. Then SAHR was calcu-
lated using the following formula:

	 SAHR =
∑

δi ×HRi

where δ denotes the coefficient defined above.
For each cancer type, we calculated the SAHR val-

ues for samples in their corresponding testing dataset; 
we then divided the samples into SAHR positive (i.e., 
SAHR value > 0) and SAHR negative (i.e., SAHR value < 0) 
groups to compare the prognoses of the patients between 
these two groups. To investigate the synergy between 
SAHR and clinical stage, due to the limited sample size, 
we split the patients into early (i.e., stage I or II) and late 
(i.e., stage III or IV) stages based on their clinical infor-
mation; for each stage, we divided the samples into SAHR 
positive and SAHR negative based on the SAHR scores 
then compared the prognoses between these two groups.

Subtyping of HCC tumors
HCC tumors from Asian patients (N = 154) were selected 
for subtyping analysis using the Seurat package [62]. We 
extracted the raw counts for each tumor sample and per-
formed Log-Normalization [63] on the data. Then, the 
mean variance analysis was carried out and 2000 genes 
with high variations among the samples were screened 
out. Based on the expression levels of these highly vari-
able genes, principal component analysis (PCA) was 
performed and the first 30 principal components were 
subjected to dimension reduction using the UMAP algo-
rithm [64]; then Louvain algorithm was used for unsu-
pervised clustering and each cluster was considered 
as a subtype. Kaplan-Meier analysis was performed on 
patients grouped by subtypes to investigate the prog-
nosis differences among the subtypes. For all tumors, 
somatic mutations called by Mutect algorithm [65] were 

downloaded from TCGA, and MAFtools package [66] 
was used to perform mutation burden analysis and data 
visualization.

Annotation of HCC subtypes
For each subtype, we mined the differentially expressed 
genes by comparing the transcriptomes of the tumors 
in this subtype versus all the rest samples using DESeq2 
software [60]; genes with Benjamini-Hochberg adjusted 
p-values lower than 0.01 and showed at least 2-fold 
changes in expression were considered as differen-
tially expressed. For the mined DEGs in each subtype, 
functional enrichments were performed using DAVID 
webserver [67, 68] against KEGG pathways and Gene 
Ontology (including Biological Process, Cellular Com-
ponent, and Molecular Function), and enriched items 
with Benjamin-Hochberg adjusted p-values < 0.05 were 
considered as statistically significant. Gene set varia-
tion analysis (GSVA) was also performed to identify 
the altered pathways in each HCC subtype. Functional 
annotations were downloaded from the Molecular Sig-
natures Database (MSigDB, the “c2.cp.kegg.v2023.1.Hs.
symbols.gmt” file was used). The significance of the path-
way enrichment scores in GVSA was estimated by linear 
model and moderated with F-statistic; pathways with 
Benjamin-Hochberg adjusted p-value < 0.05 were consid-
ered as differentially enriched. Immune infiltration anal-
yses were performed with CIBERSORT (the ABS mode 
was used; Fig. 5b) [69] and ssGSEA software (Suppl. Fig. 
S16c) [70].
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