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Abstract
In recent years, single-cell analyses have revealed the heterogeneity of the tumour microenvironment (TME) at 
the genomic, transcriptomic, and proteomic levels, further improving our understanding of the mechanisms of 
tumour development. Single-cell RNA sequencing (scRNA-seq) technology allow analysis of the transcriptome at 
the single-cell level and have unprecedented potential for exploration of the characteristics involved in tumour 
development and progression. These techniques allow analysis of transcript sequences at higher resolution, thereby 
increasing our understanding of the diversity of cells found in the tumour microenvironment and how these 
cells interact in complex tumour tissue. Although scRNA-seq has emerged as an important tool for studying the 
tumour microenvironment in recent years, it cannot be used to analyse spatial information for cells. In this regard, 
spatial transcriptomics (ST) approaches allow researchers to understand the functions of individual cells in complex 
multicellular organisms by understanding their physical location in tissue sections. In particular, in related research 
on tumour heterogeneity, ST is an excellent complementary approach to scRNA-seq, constituting a new method 
for further exploration of tumour heterogeneity, and this approach can also provide unprecedented insight into 
the development of treatments for pancreatic cancer (PC). In this review, based on the methods of scRNA-seq 
and ST analyses, research progress on the tumour microenvironment and treatment of pancreatic cancer is further 
explained.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) is a highly 
malignant neoplasm with a poor 5-year survival rate of 
less than 5% [1]. To improve the outcomes of treatment 
strategies for PDAC, it is first necessary to understand 
how cancer cells develop and spread to neighbouring 
tissues. The TME plays a crucial role in tumour progres-
sion, as cells respond sensitively to changes in local cues 
[2]. The TME encompasses all noncancerous host cells in 
tumours, including fibroblasts, immune cells, and endo-
thelial cells. In addition, the TME contains some noncel-
lular components, including extracellular matrix (ECM) 
and soluble products, such as chemokines, cytokines, and 
growth factors [3]. All of these cells and their associated 
secreted factors and molecules have a significant impact 
on tumour resistance, immune escape, and metastasis 
[4].

ScRNA-seq plays an important role in furthering our 
understanding of the TME but the process of sequence 
analysis of tissue samples eliminates spatial information 
about cells, which hinders our ability to explore inter-
actions among cells in the tumour microenvironment. 
In recent years, the problem of loss of spatial informa-
tion for RNA analytes has been addressed by combin-
ing scRNA-seq with ST [5]. With this combination of 
approaches, we can analyse RNA expression at its native 
location to enhance our understanding of factors that 
determine cell morphology, genotype, and the microen-
vironment, which in turn allows us to further deepen our 
understanding of the mechanisms of pancreatic cancer 
development and develop more effective treatments for 
pancreatic cancer [6].

Single-cell RNA sequencing and spatial 
transcriptomics
Single-cell RNA sequencing (scRNA-seq)
Bulk RNA sequencing is a traditional sequencing 
method, which mixes RNA together for sequencing by 
extracting RNA from cells or tissues. The key distinction 
between Bulk RNA-seq and scRNA-seq lies in the scale 
and sensitivity of the analysis [7]. Unlike traditional bulk 
RNA sequencing, scRNA-seq can be used to detect rare 
or heterogeneous cell populations by analysing individual 
cells that would otherwise be masked by bulk sequencing 
approaches (Fig. 1) [8]. Common procedures in scRNA-
seq include the isolation of single cells, RNA extraction, 
reverse transcription, preamplification and detection [9]. 
In recent years, great progress and breakthroughs have 
been made in the use of scRNA-seq in cancer research, 
and its high resolution at the single-cell level allows it to 
be used to explore rare cell subsets that we previously 
knew little about as well as the heterogeneity and molec-
ular subtypes of tumour cells, and it is also of great help 
in the identification of circulating tumour cells (CTCs) 
and cancer stem cells (CSCs) [10, 11, 12]. In addition, the 
advent of scRNA-seq has led to a deeper understanding 
of the TME and the tumour immune microenvironment 
(TIME), which has reciprocally led to the wider use of 
scRNA-seq for identifying mechanisms associated with 
tumour development, progression, metastasis, evolution, 
recurrence, and treatment resistance [13–16]. At pres-
ent, several cutting-edge sequencing platforms, including 
10× Genomics, have been widely used by researchers. Via 
scRNA-seq, researchers can now perform high-through-
put analysis of thousands of single cells simultaneously 

Fig. 1  Comparison plot of scRNA-seq and bulk RNA-seq approaches. ScRNA-seq can reveal cellular heterogeneity, while bulk RNA-seq cannot. ScRNA-
seq, single-cell RNA sequencing. *Figure 1 was generated with Figdraw
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and high-resolution analysis of the transcriptome and 
genome of individual cells [17]. Single-cell sequenc-
ing offers numerous benefits compared to conventional 
bulk sequencing techniques. These advantages include 
the ability to specifically identify uncommon cell types 
or subgroups and the ability to uncover genetic and 
epigenetic changes at the individual cell level. Further-
more, it can provide valuable perspectives on cellular 
diversity and clonal development within complex tis-
sues and has the ability to identify innovative biomark-
ers and define therapeutic objectives. Currently, the use 
of single-cell sequencing has become prevalent in diverse 
areas of medical research [18]. ScRNA-seq is particularly 
crucial in the field of cancer research because it can be 
used to reveal the diversity of cancer cells and track the 
progression of tumour growth. Furthermore, examining 
the transcriptomes of immune cells within tumour tis-
sues enables the investigation of immune cell behaviour, 
including evasion strategies and resistance to drugs. This 
research is beneficial for advancing the development of 
improved clinical targeted therapy and immunotherapy 
approaches. Via analysis at the single-cell level, scRNA-
seq enables the exploration of cell‒cell communication 
and interactions among malignant and nonmalignant 
cells in the TME, allowing us to gain a comprehensive 
view of diverse tumour microenvironments [19]. 

However, the high cost of scRNA-seq discourages 
some researchers when large-scale samples need to be 
sequenced. To address this issue, the researchers con-
structed single-cell gene expression profiles by inte-
grating scRNA-seq data and then deconvoluted bulk 
RNA-seq based on reference profiles. Cell type deconvo-
lution is a computational method to determine the pro-
portion of various cell types from bulk RNA-seq data, 
and it has now been increasingly used to analyze different 
cell types in tumor tissues [20, 21]. In summary, research-
ers can deconvolute RNA-seq bulk samples by referring 
to smaller scRNA-seq datasets, so as to obtain specificity 
information for various cells while obtaining transcrip-
tional profiles of a large number of samples [22]. How-
ever, deconvolution also has its limitations, mismatched 
scRNA-seq references or references with inaccurately 
annotated cells can severely deconvolution performance 
[23]. Some of the latest online tools developed based on 
deconvolution algorithms are BayesPrism [24], MuSiC2 
[25], TIMER2.0 [26], Bisque [27], Coex [28].

Spatial transcriptomics (ST)
The development of ST constitutes a breakthrough in 
the field of medical biotechnology, and it can be used 
for high-throughput analysis of spatial localization and 
related analysis of transcripts in biological systems for 
various applications [29]. Compared with traditional 
biological studies, ST can provide spatial information at 

the transcriptome level. This method was first applied to 
mRNA analytes in 2016, and its increased resolution and 
increased sensitivity compared to the previously exist-
ing approaches rapidly attracted interest [30]. The study 
of RNA analytes using spatial transcriptomics can be 
performed with different methods [31]. Overall, spatial 
transcriptomics methods can be divided into four broad 
categories [32, 33, 34]: (1) next-generation sequencing 
(NGS), in which the advances made in sequencing by 
NGS platforms are obvious, and we can use NGS plat-
forms to restore spatial location data for transcripts by 
constructing RNA sequencing libraries; (2) imaging-
based techniques, including fluorescence in situ hybrid-
ization and in situ sequencing-based methods, in which 
transcripts are analysed using imaging probes sequen-
tially hybridized in tissue [35–37]; (3) a probe-based 
method that counts barcode probes of known targets to 
obtain spatial information; and (4) image-guided spatially 
resolved single-cell RNA sequencing; in which individ-
ual cells in a region of interest (ROI) based on micros-
copy images are selected and isolated prior to single-cell 
sorting and state-of-the-art single-cell omics sequenc-
ing [34–39]. Many spatial transcriptomics methods 
have been commercially developed, and many platforms 
have been developed to perform spatial transcriptomics 
approaches with unique characteristics, each of which 
has its own advantages in spatial resolution and scope 
of application [40]. To date, with the in-depth study of 
spatial transcriptomics, additional commonly used spa-
tial transcriptomics research methods have been devel-
oped. Among the related platforms is the 10 × Genomics 
Visium platform; in 2019, 10 × Genomics launched the 
Visium spatial transcriptomics platform, which uses 
microarrays containing spatial barcode oligonucleotides 
(dT) to capture mRNA from tissues covered on chips 
prior to processing for sequencing to generated unbiased 
spatial transcriptomics data [30]. Another mainstream 
platform for spatial transcriptomics analysis is GeoMx 
DSP, which was introduced by NanoString. Because of 
the unprecedented high-throughput and single-cell reso-
lution of these platforms, researchers are better able to 
explore spatial information at the transcriptome level. In 
recent years, the development of sequencing technology 
has been rapid, and sequencing technology itself is also 
continuously improving [41]. The wide application of sin-
gle-cell transcriptome analysis is obvious, but it also has 
an intrinsic disadvantage; that is, all information related 
to the spatial organization of cells in tissues is perma-
nently lost due to the need for tissue dissociation [42]. 
In response to the shortcomings of single-cell transcrip-
tomics approaches, spatial transcriptomics reveals infor-
mation about the spatial distribution of gene expression 
profiles, which provides researchers with information 
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about tissue characteristics that cannot be obtained by 
scRNA-seq [43, 44, 45, 46].

Application of scRNA-seq and ST in pancreatic 
cancer
Combined scRNA-seq and ST analysis of cancer-associated 
fibroblasts (CAFs) in PDAC
In seeking to understand the tumour microenvironment, 
researchers have found that cell‒cell interactions are an 
important part of the tumour ecosystem; that is, there are 
cellular interactions between groups of cells in the same 
region and that these interactions are involved in cer-
tain responses. It is generally accepted that CAFs play an 
important role in the tumour microenvironment and that 
they promote PDAC progression [47, 48, 49].

CAFs can be transformed from a variety of cells, such 
as pancreatic stellate cells (PSCs), resident fibroblasts, 
mesenchymal stem cells (MSCs), etc [50–54]. These cells 
are transformed into CAFs upon stimulation with mod-
ulators including cytokines such as IL-6, TGF-β, IGF-1, 
PDGF, FGF, etc. In addition, some chemokines, such as 
CCL5 and CXCL12, have also been demonstrated to be 
involved in the process of CAFs activation. There are 
other factors, such as the modifications of mechanical 
properties of the ECM (e.g., stiffness), mechanical and 
other forms of physical stress or tissue damage [55–57, 
58–62] (Fig.  2). Although the role of CAFs in PDAC 
remains to be further explored, it has already been shown 

that therapeutic strategies targeting CAFs are feasible 
[47, 63, 64].

To date, many groups have focused their attention on 
the interactions among cancer-associated fibroblasts 
(CAFs) and other types of cells. In the analysis of these 
interactions, single-cell RNA sequencing has unique 
advantages and can help us gain a better understand-
ing of different cell subsets. In a recent cross-species 
single-cell analysis of PDAC, Elyada et al. confirmed the 
presence of myofibroblastic CAFs (myCAFs) and inflam-
matory CAFs (iCAFs) using single-cell RNA sequencing 
and discovered a new CAF population, i.e., “antigen-pre-
senting CAFs” (apCAFs) (Fig. 2). By analysing the genetic 
profiles of these subsets, they found that the iCAF sub-
cluster expressed high levels of the lectin Clec3b as well 
as chemokines and inflammatory mediators such as 
IL-6, Cxcl1, and Ly6c1. The myCAF subcluster exhibited 
robust expression of the smooth muscle-specific genes 
Acta2 and Tagln, along with Igfbp3, Thy1, Col12a1, and 
Thbs2. The newly defined apCAF subcluster showed 
unique upregulation of pathways related to antigen pre-
sentation and processing, fatty acid metabolism, MYC 
targets, and MTORC1 signalling [65, 66]. The discovery 
of the different subpopulations of CAFs and differences 
in the function of each subpopulation constitutes an 
immense breakthrough in the study of the PDAC tumour 
microenvironment, indicating the possibility of a preci-
sion PDAC therapy targeting CAFs [67]. 

Fig. 2  Several factors contribute to the activation of CAFs. Activated CAFs are further divided into different subtypes such as myCAFs, iCAFs, and apCAFs
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However, the loss of spatial information remains 
an inevitable limitation of scRNA-seq.  By combining 
scRNA-seq with ST, we can gain an understanding of the 
functional interactions of cells and how they differ among 
tissue regions. Some groups have defined the transcrip-
tomes of cancer-associated fibroblasts (CAFs) proximal 
and distal to tumours by combining spatial transcrip-
tomics and single-cell RNA sequencing (scRNA-seq) 
datasets and linking the transcriptome data to clinical 
outcomes. These studies showed that the tumour-proxi-
mal CAF population contained numerous myofibroblas-
tic CAFs (myCAFs) with robust expression of podoplanin 
and Wnt ligand signalling. In contrast, inflammatory 
CAFs (iCAFs) dominated the tumour-distal subset of 
CAFs and expressed complement components and the 
Wnt inhibitor SFRP2. Although poor clinical outcomes 
are associated with elevated HIF-1α and podoplanin 
expression, inflammation and the expression of comple-
ment genes are predictors of prolonged survival [68]. 
This ability to analyse the spatial distribution of different 
subtypes of CAFs is a unique advantage of ST that has 
allowed us to determine that the transcriptional activity 
of different subsets of CAFs is strongly regulated by their 
relative proximity to tumours.

An ST analysis by Ren et al. revealed that fibroblasts 
in the stroma of tumour-adjacent tissue exhibit tumour-
promoting effects and generate a tumour-limiting state, 
and FGG + CRP + inflammatory fibroblasts associated 
with cancer-replaced islets in pancreatic cancer were first 
discovered in this ST analysis [69]. In addition, Moncada 
et al. developed a cross-modal analysis method (MIA) 
for integrated analysis of scRNA-seq and ST data. They 
defined three gene expression modules in PDAC can-
cer cells by analysis of scRNA-seq datasets: the hypoxia 
response, oxidative phosphorylation and stress response 
modules. Moreover, they used MIA to show that inflam-
matory fibroblasts and cancer cells expressing stress 
response gene modules exhibit regional colocalization 
[70]. This finding provides a new understanding of the 
role of inflammatory fibroblasts in PDAC tumours in 
the tumour microenvironment. It is evident that ST is a 
powerful complement to scRNA-seq. Combining ST and 
scRNA-seq analyses can reveal a more complete land-
scape of the TME.

Application of scRNA-seq and ST in studies of the hypoxic 
tumour microenvironment of PDAC
Hypoxia is an important feature of solid tumours, includ-
ing PDAC. It is closely associated with tumour invasion, 
metastasis, and drug resistance. Many previous studies 
have shown that various molecules and signalling path-
ways activated by hypoxia may contribute to the induc-
tion of the malignant phenotype of PDAC, which has a 
great impact on promoting tumour proliferation and 

invasion [71, 72]. Targeting hypoxia-activated molecules 
and signalling pathways may constitute a new treat-
ment approach for refractory PDAC. The application of 
scRNA-seq in the study of tumour heterogeneity and 
novel cell subsets in PDAC has provided new insights 
into therapeutic strategies for the development of new 
targeted therapies [73–75]. However, the use of scRNA-
seq for the evaluation of endothelial cell heterogeneity 
remains limited. Chen et al. performed transcriptomic 
analysis of endothelial cells in PDAC by scRNA-seq 
and found that the DEGs in PDAC compared with nor-
mal pancreatic tissue were associated with hypoxia and 
angiogenesis. By further investigating the effects of 
exosomes on endothelial cells, it was later found that 
exosomes released from pancreatic cancer cells under 
hypoxic conditions promote angiogenesis through the 
miR-30b-5p/GJA1 pathway [76, 77]. Although the advan-
tage of scRNA-seq lies in its intrinsically high single-cell 
resolution, it is a very important approach for the mecha-
nistic exploration of the hypoxic microenvironment of 
PDAC.

Hypoxia-inducible factor 1α (HIF-1α) is a potent regu-
lator of the transcriptional response to hypoxia homeo-
stasis and is significantly overexpressed in pancreatic 
cancer [78]. HIF-1α promotes transcriptional activa-
tion in a variety of ways, including activating metabolic 
switches that promote glycolysis and the expression of 
various proangiogenic cytokines, including VEGF-A, 
which acts on surrounding endothelial cells to induce 
the formation of new blood vessels [79]. Current evi-
dence suggests that HIF-1α can promote tumour pro-
gression and distant metastasis and that it is also strongly 
associated with poor prognosis in pancreatic cancer 
patients [78]. Maruggi et al. constructed a mouse xeno-
graft model of pancreatic cancer with HIF-1α silenc-
ing, and by scRNA-seq, they found that hypoxic cancer 
cells inhibited glycogenolysis, which promoted glycogen 
accumulation and promoted the secretion of inflamma-
tory cytokines such as interleukin 1β (IL-1β) and 8 (IL-
8). In addition, scRNA-seq analysis revealed enrichment 
of two bone marrow dendritic cell (cDC) subsets that 
secrete proangiogenic cytokines, i.e., the cDC1 and cDC2 
subsets. This finding suggested that glycogen accumula-
tion associated with the clear cell phenotype in hypoxic 
cancer cells lacking HIF-1α could activate alternative 
pathways through which cytokines and DCs could drive 
angiogenesis [80]. This was an entirely novel finding that 
revealed that even pancreatic cancer cells lacking HIF-1α 
have proangiogenic effects under specific conditions. 
Ref-1 is a redox signalling protein that can regulate the 
transition of HIF-1α from an oxidized to a reduced state, 
thereby increasing its ability to bind DNA [81]. Gampala 
et al. investigated the effects of Ref-1 on metabolic path-
ways under hypoxic conditions by integrated analysis 
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of scRNA-seq data and identified significant transcrip-
tional variations in genes related to central metabolism, 
apoptosis, and immune responses, as well as in genes 
downstream of a series of signalling pathways, in Ref-1 
knockdown cells compared to scrambled control cells 
[81].

However, tumour spatial heterogeneity remains very 
difficult to investigate by scRNA-seq, and the ability of 
spatial transcriptomics to provide spatial information 
allows us to obtain a more in-depth understanding of the 
tumour microenvironment under hypoxic conditions at 
the spatial regional level. Elyada et al. used ST to anal-
yse the relationships between prognosis and gene tran-
scriptional characteristics at the spatial level in patients 
with pancreatic cancer. They found that patients with 
poor prognosis exhibited ubiquitous PDPN expression 
in the tumour microenvironment, whereas HIF-1α and 
VEGF expression also extended into the distal stroma 
and immune regions, possibly indicating more extensive 
hypoxia in this patient subgroup [82]. Previous stud-
ies showed that HIF-1α expression reflects the hypoxic 
environment of PDAC tumours and that the degree of 
hypoxia is an independent determinant of clinical out-
come [83, 84]. The results of ST analyses suggest that, 
from a spatial distribution perspective, the spatial exten-
sion of HIF-1α expression into the distal stroma and 
immune microenvironment is an additional risk factor, 
indicating that the extent of hypoxia is important for the 
prognosis of PDAC patients. In a study conducted by 
Sun and his colleagues to analyse the tumour microenvi-
ronment of pancreatic cancer under hypoxic conditions 
using spatial transcriptomics [85], subsets of tumour cells 
were found to be changed under hypoxic conditions, that 
these new cell subsets exhibited spatial and gene expres-
sion characteristics different from the original charac-
teristics, and that the expression of the hypoxia-related 
genes LDHA, TPI1 and ENO1 induced changes. The 
authors concluded that the hypoxic microenvironment 
induced changes in pancreatic cancer heterogeneity and 
the generation of new functional subsets of tumour cells 
[86]. The new functional subsets may be responsible for 
PDAC cell survival, proliferation and invasion under 
hypoxic stress. The Sun group was the first to character-
ize the changes in PDAC spatial heterogeneity induced 
by the hypoxic microenvironment and to highlight the 
latent intercellular communication network under dif-
ferent hypoxic conditions [85]. In addition, the expres-
sion and spatial distribution of the hypoxia marker genes 
HIF-1α and MIF in PDAC xenografts were investigated 
by ST, and the spatially resolved expression profiles and 
locations of the HIF-1α and MIF genes showed approxi-
mately the same expression levels and overlapping loca-
tions, verifying that hypoxia is an effective inducer of MIF 
expression in PDAC [87]. ScRNA-seq and ST facilitate 

the exploration of the pancreatic cancer tumour micro-
environment under hypoxic conditions at the single-cell 
and spatial levels, revealing the landscape of the TME in 
a wider dimension.

Tumour immunity in PDAC
The tumour immune microenvironment (TIME) is a 
complex ecosystem composed of various types of cells, 
such as tumour cells and immune cells, and other cellu-
lar components. All the cells have specific connections 
and interact with each other [88]. Changes in the TIME 
can induce the progression of cancer and impact the 
effectiveness of cancer treatment [89]. Relevant studies 
have shown that changes in the level of T-cell infiltration 
and the abundance of tumour-associated macrophages 
(TAMs) can have different effects on the prognosis of 
patients [90]. In addition, differences in the expression 
and mutation of PD-1 and PD-L1 in the TIME and dif-
ferences in the drug response of malignant cells among 
patients may be related to differences in the efficacy of 
immune checkpoint blockade (ICB) therapy [91, 92]. 
PDAC, on the other hand, is highly resistant to immuno-
therapy, a characteristic thought to be largely related to 
the impairment of CD8 + T-cell infiltration and activation 
in tumours [93]. Yousuf et al. demonstrated dysregula-
tion of CD8 + T and natural killer T-cell functions in the 
TIME of PDAC based on analysis of scRNA-seq datasets. 
Furthermore, to explore the spatial arrangement of differ-
ent types of immune cells in PDAC and their correlations 
with cancerous epithelial cells, this group conducted ST 
analysis on tissue sections. The findings indicated that 
there were notable variations in the presence of mono-
cytes, C2Q + macrophages, and CD1 + CD4 + T cells 
between the basal-like and classical regions. C1Q + mac-
rophages were concentrated in close proximity to basal-
like cancerous cells. CD4 + CD52 + T cells were plentiful 
in basal-like areas but absent from classical tumour sites, 
consistent with the observed heightened aggressiveness 
of basal-like tumours [93, 94, 95]. These findings provide 
additional clarification of the spatial composition of the 
immune microenvironment in PDAC and its correlation 
with the local transcriptional state in epithelial cells.

In their study, Yousuf and his colleagues examined 
cell-to-cell communication using scRNA-seq data. They 
found that TGFB1-expressing B cells have stronger inter-
actions with CD8 + T cells and macrophages than with 
other cell types in the TIME. Notably, tumour-infiltrating 
naive B cells in PDAC showed significantly increased lev-
els of TGFB1 expression, despite the limited presence of 
naive B cells in PDAC [93, 95]. In a PDAC study by Aziz 
et al., using GeoMx DSP technology, B cells were found 
to infiltrate tumours in regions near T cells in long-term 
survivors, and the abundance of B cells in the tumour 
region was associated with the infiltration of T cells and 
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APCs, suggesting that CD20 + cells may act as APCs. In 
addition, relevant T-cell subsets in long-term survivors 
showed an activated effector phenotype (highly cor-
related with HLA-DR and CD45RO expression) [96]. 
GeoMx DSP technology, has unique advantages in the 
study of differences in immune infiltration at specific 
locations. The role of B cells in PDAC is not fully under-
stood [97], and in recent years, increasing evidence has 
suggested that B cells are critical regulators of tumour-
induced immune responses [98]. In a study by Meng et 
al., B cells were shown to be an important component 
of the tumour-infiltrating lymphocyte (TIL) population 
in PDAC [99]. Castino et al. reported that both the scat-
tered infiltration of B cells and their organized presence 
in PDAC tertiary lymphoid structures was associated 
with improved survival outcomes [100]. Related studies 
of B cells in PDAC have attracted increasing interest, as 
scRNA-seq can show the role of B cells in the TIME and 
their interactions with various other types of cells at the 
cellular level, while ST can reveal the number and loca-
tion of B cells in PDAC tissues at the spatial level [95]. 

Microenvironmental characteristics of precancerous 
lesions in PDAC
Pancreatic cancer is a highly malignant tumour, and 
its precursor lesions include pancreatic intraepithelial 
neoplasia (PanIN), intraductal mucinous neoplasms 
(IPMNs), intraductal tubular neoplasms (ITPNs), and 
mucinous cystic neoplasms (MCNs). These precancerous 
lesions have the potential to contribute to the develop-
ment of PDAC as cellular and molecular alterations accu-
mulate [101]. 

PanIN is the most common precancerous lesion of 
PDAC, and it can be found in more than 80% of patients 
with invasive pancreatic cancer [102, 103]. Given high 
possibility that PanIN may undergo malignant transfor-
mation to PDAC, an increasing number of researchers 
are investigating PanIN progression. To further under-
stand the composition of PanIN and its microenviron-
ment, scRNA-seq analysis of pancreatic cancer donor 
organs was performed by Carpenter et al. By compari-
son of PanIN with tumour samples, they found that both 
samples exhibited inflammatory gene expression profiles 
of macrophages. In contrast, the expression profiles of 
fibroblasts in PanINs were clearly divergent from those 
in tumours. In addition, they found that T cells were rare 
or undetectable in normal regions of the pancreas, exhib-
ited a limited presence in PanINs, and were abundant in 
pancreatic cancer tissues. This analysis revealed similari-
ties and differences in components of the microenviron-
ment among normal pancreatic tissue, pancreatic cancer 
tissue, and PanIN [104]. When they compared the tran-
scriptional characteristics of PanINs with those of nor-
mal acinar and ductal cells, tumour-associated PanINs, 

and tumour cells in healthy pancreas tissue, they found 
that accurate identification of PanIN cells in samples was 
a considerable limitation because of the loss of spatial 
information during the processing of tissues for scRNA-
seq. To address this issue, they leveraged ST, which has 
the advantage of the ability to identify tissue types at 
different locations and provide information about the 
spatial distribution of gene expression profiles [105]. By 
combining transcriptomic features from spatial data 
and datasets generated by single-cell RNA sequencing, 
Carpenter et al. found that the transcriptomes of PanIN 
cells from normal pancreatic tissue are highly consistent 
with those of PanIN cells from pancreatic tumour tissue 
and, most importantly, that PanINs are transcription-
ally closely related to pancreatic cancer [104], which may 
indicate that neoplastic pathways are activated early in 
tumorigenesis.

Intraductal mucinous neoplasms (IPMNs) are cystic 
lesions of the pancreatic ductal epithelium that exhibit 
varying degrees of cellular atypia; they are among the 
most common precancerous lesions of PDAC and have 
the potential to progress to pancreatic cancer [106]. 
Associated data show that progression from IPMN to 
PDAC accounts for 15–20% of all pancreatic cancer (i.e., 
PDAC) cases [107]. Therefore, it is important to investi-
gate the mechanism by which IPMN progresses to pan-
creatic cancer and to explore related interventions. Via 
ST, Eckhoff et al. found that T cells were the dominant 
CD45 + cells within the IPMN stroma (56%) and that 
most of the infiltrating immune cells in IPMNs were T 
cells and macrophages. Compared to regions of low-
grade dysplasia (LGD), regions of high-grade dysplasia 
(HGD) appear to be rich in macrophages and relatively 
depleted of T cells. These findings are supported by the 
transcriptional signatures of proinflammatory macro-
phages in HGD regions. Although it lacks single-cell 
resolution, ST is the best approach to analyse the TME 
in IPMNs [108]. In addition, Sans et al. identified the 
transcription factor NKX6-2 as a key determinant of 
gastric cell identity in low-grade IPMNs by ST analysis 
of the epithelial and microenvironmental characteristics 
of IPMNs [109]. A previous study showed that the gas-
tric foveal epithelium is one of the most common sites of 
IPMNs [110]. Thus, Sans et al. identified NKX6-2 as an 
entirely novel transcription factor that could drive indo-
lent gastric differentiation in IPMN pathogenesis, which 
in turn led to the development of PDAC [109]. Without 
single-cell resolution, it is difficult to detect gene expres-
sion in low-density cell populations via ST, but this high-
resolution spatial analysis method can reveal new ideas 
for the study of IPMNs. In the future, the combined 
application of ST and scRNA-seq in the exploration of 
the mechanisms and treatment of IPMNs is certain.
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PDAC metastasis based on the tumour microenvironment
Pancreatic cancer (PC) is a highly malignant cancer, and 
approximately 90% of PCs are PDAC [111]. PDAC has a 
great ability to metastasize to other tissues and organs, 
which is strongly related to the very poor prognosis of 
pancreatic cancer patients [112, 113]. Therefore, it is 
critical to assess the risk of metastasis in patients with 
pancreatic cancer, explore the mechanism of metastatic 
invasion, and determine the heterogeneity of pancreatic 
cancer tumours.

The TME plays a critical role in tumour progression, 
metastasis and drug resistance, and it contains various 
cells, such as fibroblasts and immune cells, as well as 
other noncellular components, including the extracellu-
lar matrix. The high resolution of scRNA-seq at the sin-
gle-cell level is of great help in studying PDAC tumour 
cells and various cells in the tumour microenvironment 
that are involved in PDAC metastasis. A recent single-
cell-based analysis showed that different cell populations, 
including cancer cells, fibroblasts, endothelial cells, and 
immune cells, exhibit distinct phenotypic and transcrip-
tional profiles at the metastatic stage of PDAC compared 
to their profiles in primary pancreatic tumours [114]. 
Based on scRNA-seq analysis and functional enrichment 
analysis of genes, Tang et al. found that HMGB3 is a hub 
gene associated with EMT in CTCs, the formation of 
CTC clusters, and infiltration patterns of immune cells 
promoting tumour progression and metastasis to dis-
tant sites [115]. Lin et al. used scRNA-seq-based analysis 
methods to quantitatively evaluate cell types and statuses 
within PDAC primary tumours and metastatic lesions to 
understand their heterogeneity and complexity. It was 
found that the cellular landscape of PDAC metastases 
may not be as complex as that of primary tumours, and 
few cancer-associated fibroblasts were found in meta-
static tumour tissues [116]. These results indicate that 
various types of cells in the PDAC tumour microenviron-
ment are strongly associated with PDAC metastasis.

ScRNA-seq has a major role in the analysis of the 
tumour microenvironment at the single-cell level, and 
in a recent study, scRNA-seq was combined with ST to 
investigate tumour cells with metastatic characteris-
tics in PDAC. Chen et al. investigated the predominant 
cell types in PDAC by analysing scRNA-seq datasets of 
PDAC and proposed the scMetR method [7] to assess 
the risk of metastasis of tumour cells. Some features 
associated with metastasis were identified by functional 
enrichment analysis of differentially expressed genes. In 
addition, to explore the spatial characteristics of metas-
tasis-featuring tumour cells (MFTCs), Chen et al. per-
formed ST analysis and found that metastasis-related 
genes were highly expressed in cells in the ductal epithe-
lial region and that MFTCs were distributed mainly in 
the ductal epithelial region [113]. In a previous report, 

Moncada et al. concluded that inflammation-associated 
ductal cells were enriched in ductal epithelial areas by the 
MIA method for integrated ST and scRNA-seq analysis 
[96, 7]. According to the relevant findings of the analysis, 
both tumour cells with metastatic features and inflamma-
tion-associated ductal cells were enriched in the ductal 
epithelial region, and PDAC metastasis-associated genes 
were also highly expressed in this region, possibly indi-
cating that inflammation can promote PDAC metastasis. 
In a review, Padoan et al. also described the association 
of inflammatory cells with PDAC progression [117]. Peri-
neural invasion (PNI) is a phenomenon in which cancer 
cells invade the perineural space, and the presence of PNI 
often predicts local recurrence and metastasis. Weitz 
et al. provided novel insights into the aetiology and ini-
tiating cues of PNI development in PDAC through DSP 
[105]. With the further application of ST analysis of the 
TME, changes in the PDAC microenvironment during 
metastasis progression can also be identified, which is 
highly important for studying PDAC metastasis.

Application of scRNA-seq combined with ST for 
guiding PDAC therapy
Pancreatic cancer is a malignant tumour of the diges-
tive tract with an insidious onset, rapid progression, very 
poor therapeutic outcomes and poor prognosis, and 
its morbidity and mortality are significantly increasing 
worldwide. When tumours are detected early, surgical 
resection is still the best approach for curative treatment; 
however, surgical resection alone is not effective for 
the vast majority of patients. Surgical resection is often 
combined with chemotherapy and/or radiation therapy 
[118]. At present, in addition to surgical treatment, non-
surgical treatments such as chemotherapy, radiotherapy 
and immunotherapy are available. At present, the com-
monly used chemotherapeutic drugs include gem-
citabine, fluorouracil and albumin-paclitaxel [119]. The 
tumour microenvironment may weaken immune-related 
therapeutic effects but enhance the effects of adjuvant 
therapy, and the current understanding of the spatial 
structure of the tumour microenvironment and the mul-
ticellular interactions occurring therein remains limited. 
Recent advances in the integration of scRNA-seq with 
ST will greatly aid in exploring undiscovered biomarkers 
involved in tumour development, as well as undiscovered 
antitumor drugs, and will pave the way for better treat-
ment outcomes [120]. 

Chemoresistance in PDAC
Systemic chemotherapy is mandatory in the treatment 
of patients with pancreatic cancer, regardless of whether 
the patient is also treated surgically. It has been demon-
strated that the combination of fluorouracil, leucovorin 
calcium, irinotecan, and oxaliplatin (FOLFIRINOX), as a 
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first-line therapeutic regimen for patients with metastatic 
pancreatic cancer, results in a longer overall survival time 
than gemcitabine therapy [82, 45]. Conroy et al. showed 
that adjuvant therapy with the modified FOLFIRINOX 
regimen resulted in a significantly longer survival time 
but a greater incidence of toxic effects than gemcitabine 
in patients with resected pancreatic cancer [121]. How-
ever, pancreatic ductal adenocarcinoma (PDAC) is some-
what resistant to a variety of chemotherapeutic agents 
(e.g., gemcitabine, 5-fluorouracil, paclitaxel, and oxali-
platin), and this resistance is one of the leading causes 
of PDAC treatment failure [122]. Therefore, gemcitabine 
resistance has always been a topic of great concern, and 
we urgently need to find new treatments to solve the 
problem of resistance to chemotherapeutic drugs, includ-
ing gemcitabine.

ScRNA-seq, with high resolution at the single-cell 
level, can be used to screen pancreatic cancer cell lines 
and makes it possible to identify gemcitabine-resistant 
(GR) cells. In a recent study, Principe et al. used scRNA-
seq to identify a subset of gemcitabine-resistant tumour 
cells with robust activation of calcium/calmodulin sig-
nalling. In addition, enrichment analysis of differentially 
expressed genes revealed that calcium signalling-related 
genes were upregulated in GR cells. Moreover, single-cell 
RNA sequencing revealed that impaired activation of the 
RAS/ERK signalling pathway resulted in rapid loss of the 
resistance phenotype in vitro. In addition, they found 
that CCBs inhibited pro-survival ERK signalling in vitro 
and significantly enhanced the response to gemcitabine 
treatment in orthotopic xenograft and transgenic models 
of PDAC. These results suggest that CCBs may provide 
clinical benefit for PDAC patients who develop resistance 
to gemcitabine [123]. In addition, using scRNA-seq, Cui 
et al. validated three types of CAFs—iCAFs, myCAFs, 
and apCAFs—in the CAF population, consistent with the 
findings of Elyada et al. [65]; however, Cui further clas-
sified two iCAF subsets into CD133 + and CXCR4 + sub-
sets. In patients treated with gemcitabine and paclitaxel, 
they observed upregulation of the metallothionein gene 
in iCAFs. Metallothionein expression is associated with 
resistance to multiple chemotherapeutic agents and may 
indicate the activation of chemoresistance mechanisms 
[124].

William et al. constructed a high-resolution molecu-
lar landscape of the cellular subtypes and spatial com-
munities that compose PDAC using single-nucleus RNA 
sequencing (snRNA-seq) and whole-transcriptome DSP. 
This study was performed to reveal possible interac-
tions among malignant cells, CAFs, and immune com-
partments that promote therapeutic resistance. Spatially 
defined receptor‒ligand (RL) pairs were coexpressed 
across ROIs in both CRT-treated and untreated samples. 
Although some RL pairs were well correlated in both the 

untreated and CRT specimens, many pairs were differ-
entially correlated by treatment status. Therefore, the RL 
pairs identified in their study may be important to fur-
ther investigate in future studies, and a subset of intercel-
lular RL-enriched interactions in treated specimens may 
facilitate therapeutic resistance and serve as candidates 
for intervention [125]. 

Limitations of immunotherapy in PDAC
Immunotherapy, particularly the use of antibody(Ab)-
mediated PD-1 and PD-L1 blockers, has led to unprec-
edented durable clinical responses in various tumour 
types with positive or negative PD-L1 expression. PD-L1 
is expressed in 19–57% of human pancreatic cancers 
[116]. Little is known about the mechanisms of resis-
tance to immunotherapy in pancreatic cancer, which is 
a critical knowledge gap in pancreatic cancer research 
and severely hinders the development of new immuno-
therapeutic strategies. Despite rapid advances in recent 
years, the lack of appropriate models for tumours sensi-
tive to αPD-1 immunotherapy remains a major obstacle 
to progress in immunotherapy for pancreatic cancer 
[115]. ScRNA-seq revealed two subtypes of TAM (TAM1 
and TAM2) [126, 127]. Zhou et al. developed four ortho-
topic PC mouse models with different PC cell lines. 
They aimed to characterize PC responses to anti-PD-1 
immunotherapy. Eventually, they found that there was a 
significant increase in the number of TAM2 and a sig-
nificant increase in the expression of ARG-1, a marker of 
M2 macrophages, in mouse models that did not respond 
to αPD-1 therapy. We may conclude that PC tumours 
resistant to αPD-1 may have promoted macrophage to 
transform to M2 TAM, which may contribute to tumor 
resistance to immunotherapy [128–126, 130]. This is 
likely to be one of the mechanisms mediating resistance 
to αPD-1 immunotherapy in pancreatic cancer, and 
therefore, the development of therapeutic approaches 
targeting TAMs may hold promise for improving the 
unsatisfactory responses to immune checkpoint inhibitor 
therapy. In addition, in a study conducted by Pan et al., 
scRNA-seq revealed that anti-CD47 treatment induced 
changes in TAMs and upregulated the expression of 
immune checkpoint receptors such as PD-1 in effector T 
cells. In animal experiments, they also found that combi-
nation therapy targeting CD47 and PD-L1 could promote 
PDAC growth [131]. These scRNA-seq-based studies 
revealed changes in TAMs in the tumour immune micro-
environment, demonstrated the relationship between 
alterations in TAMs and immunotherapy resistance in 
PDAC, and suggested new approaches for TAM-target-
ing therapies.

In an ST data-based study, Yang et al. first identified 
bridging genes with high and low expression during 
malignant transformation initiated by pancreatitis by 
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GeoMx DSP technology, and data from this analysis were 
combined with RNA-seq datasets to construct the “m7G 
score” model. They identified FN1 and ITGB1 as core 
genes in the m7G score model and found that FN1 and 
ITGB1 can also inhibit T-cell activation by increasing the 
infiltration of macrophages and neutrophils, which leads 
to immune escape of pancreatic cancer cells and reduces 
the response rate to immune checkpoint inhibitor (ICI) 
therapy [132]. This study suggested that m7G target 
genes, including FN1 and ITGB1, have the potential to be 
novel therapeutic targets for PDAC and increase the effi-
cacy of ICIs.

Conclusion
It is well-known that mutations in PC are driven by 
genomic mutations. Mutations in PDAC mainly occur 
in KRAS, TP53, CDKN2A and SAMD4. Of course, there 
are many genes that are gradually being recognized and 
studied such as BRCA, APOBEC, KDM6A, etc. [133, 
134] Although the links between these genetic mutations 
and TME have not been clearly elucidated by research-
ers, related studies have suggested that there is an inextri-
cable link between these two. For example, SAMD4 has 
an important impact on the development of PDAC by 
mediating the TGF-β pathway. The TGF-β SMAD4 sig-
nalling pathway mediates the tumour-stroma interaction. 
TGF-β secreting CAFs are involved in inducing epithe-
lial-mesenchymal transformation (EMT) and switching 
the PDAC proliferative phenotype, which leads to PDAC 
heterogeneity [135, 136]. This suggests that genetic muta-
tions in tumours not only control PDAC progression, but 
also have an impact on the metabolic phenotype of cells 
in the TME.

ScRNA-seq and ST are in a rapidly developing stage, 
especially ST, which has been increasingly used in 
tumour studies in recent years, and these novel power-
ful techniques are of great help in exploring the TME 
and tumour heterogeneity. To date, scRNA-seq has been 
widely used to study tumour biology and because of its 
ability to detect cellular and microenvironmental hetero-
geneity at single-cell resolution, it has great advantages 
over traditional sequencing techniques. It can be used 
to reveal the transcriptome profiles of cancer cells with 
malignant heterogeneity, characterize gene expression 
profile dynamics during tumour progression and identify 
novel subsets, cellular states, and phenotypic transitions 
[137, 46, 40, 5]. 

CAFs are an abundant component of the tumour 
stroma and have received considerable attention due to 
their ability to promote tumour growth and metasta-
sis, interfere with drug delivery, and increase fibroplasia 
and immunosuppression. However, some studies have 
suggested that CAFs are associated with improved out-
comes in patients with PDAC [138–140]. The differences 

in these findings may be related to the heterogeneity of 
CAFs; that is, different CAF subsets may have differ-
ent functions. Information on the different CAF sub-
sets obtained via scRNA-seq is of great help for further 
understanding their functions in the tumour microen-
vironment of pancreatic cancer. Although ST has the 
advantage of allowing analysis of the spatial distribution 
of CAFs in these different subsets, relevant ST analyses 
have revealed that transcriptional activity in the differ-
ent subsets of CAFs is strongly regulated by their relative 
proximity to tumours. The study by Ren and Moncada et 
al. provided a new understanding of the role of inflam-
matory fibroblasts in PDAC tumours in the tumour 
microenvironment.

Hypoxia is closely associated with tumour invasion, 
metastasis, and drug resistance. Various molecules and 
signalling pathways activated by hypoxia may contribute 
to the induction of the malignant phenotype of PDAC, 
which has a great impact on promoting tumour prolifera-
tion and invasion. ScRNA-seq and ST help us explore the 
microenvironment of pancreatic cancer under hypoxic 
conditions at the single-cell and spatial levels, respec-
tively, providing insight into the landscape of the tumour 
microenvironment in a wider dimension.

Immunological analysis of pancreatic tumours is key to 
understanding the progression of pancreatic cancer and 
further exploring resistance to PDAC immunotherapy. 
By using scRNA-seq and ST, we can fully understand the 
heterogeneity of immune cells and explore the distribu-
tion and function of T cells, B cells and other immune 
cells.

In addition, recent studies have shown that the use 
of scRNA-seq and ST is very important in the study of 
precancerous lesions and the metastasis of pancreatic 
cancer. This ability is important for exploring the mecha-
nisms of pancreatic cancer progression, metastasis and 
invasion.

Pancreatic cancer is a malignant tumour of the diges-
tive tract with an insidious onset, rapid progression, very 
poor therapeutic outcomes and poor prognosis, and 
its morbidity and mortality are significantly increasing 
worldwide. Recent advances in the integration of scRNA-
seq with ST will greatly contribute to the exploration 
of undiscovered biomarkers involved in tumour devel-
opment, as well as undiscovered antitumor drugs, and 
will pave the way for better therapeutic outcomes. The 
use of scRNA-seq and ST has gradually improved our 
understanding of tumour biological characteristics, and 
progress in using these techniques in pancreatic cancer 
research will lead to the identification of more precise 
potential therapeutic targets for treating PDAC in the 
future.

In summary, PDAC is an extremely aggressive can-
cer with a dismal prognosis. By designing rational 
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therapeutic strategies, we can potentially conquer this 
persistent disease by gaining an understanding of cell-
specific characteristics, spatial connections among 
diverse cells, and time-dependent changes in tumour 
growth and treatment responses. Although it is in an 
early stage compared to its progress in the context of 
other prevalent cancers, precision oncology for pancre-
atic cancer is anticipated to substantially advance with 
the combination of scRNA-seq and ST analyses discussed 
in this review. This will also lead to improved explora-
tion and refinement of adjuvant therapy approaches for 
PDAC.
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