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Abstract 

N6-methyladenosine (m6A) stands as the most prevalent modified form of RNA in eukaryotes, pivotal in various 
biological processes such as regulating RNA stability, translation, and transcription. All members within the YT521-B 
homology (YTH) gene family are categorized as m6A reading proteins, capable of identifying and binding m6A modi-
fications on RNA, thereby regulating RNA metabolism and functioning across diverse physiological processes. YTH 
domain-containing 2 (YTHDC2), identified as the latest member of the YTH family, has only recently started to emerge 
for its biological function. Numerous studies have underscored the significance of YTHDC2 in human physiology, 
highlighting its involvement in both tumor progression and non-tumor diseases. Consequently, this review aims 
to further elucidate the pathological mechanisms of YTHDC2 by summarizing its functions and roles in tumors 
and other diseases, with a particular focus on its downstream molecular targets and signaling pathways.
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Background
N6-methyladenosine (m6A), the predominant form of 
RNA modification, plays a crucial role in various cellular 
biological processes by regulating transcription, transla-
tion, stability, processing, splicing, and degradation of 
target RNA [1, 2]. The regulation of m6A modification 
primarily involves three key factors: methyltransferases 
(writers), demethylases (erasers), and m6A RNA-bind-
ing proteins (readers) [3]. These proteins are capable of 
adding, removing, and recognizing m6A modifications 

on RNA molecules, thereby altering RNA structure and 
function (Fig. 1) [4]. The addition of m6A methylation is 
primarily catalyzed by the m6A methyltransferase com-
plex (MTC) [5], with methyltransferase like 3 (METTL3) 
and methyltransferase like 14 (METTL14 serving as cru-
cial enzymes within this complex [6]. Additionally, cofac-
tors such as Wilms tumor 1-associated protein (WTAP) 
and RNA-binding motif protein 15 (RBM15) are involved 
in m6A methylation [7], collectively working to recog-
nize specific adenine bases on RNA and transfer methyl 
groups from S-adenosylmethionine (SAM) to RNA ade-
nine, thus forming m6A methylation modification [8]. 
M6A demethylases primarily include fat mass and obe-
sity-related protein (FTO) and alkylation repair homolog 
protein 5 (ALKBH5), which reduce m6A modification 
on RNA to unmodified adenine, thereby removing m6A 
methylation modification [9]. These two m6A demethyl-
ases play vital roles in cellular processes by regulating the 
level of m6A methylation modification, thereby influenc-
ing RNA function and stability [10].
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M6A reading proteins are a class of proteins that can 
recognize and bind to m6A RNA modifications, playing 
an important role in regulating RNA metabolism and 
function [11, 12]. Among these, the YT521-B homol-
ogy (YTH) domain family stands as the most conserved 
and widely distributed m6A reading proteins, playing a 
significant role in RNA metabolism and regulation [13, 
14]. Comprising the YTH domain family are five pro-
teins with YTH domains: YTHDF1, YTHDF2, YTHDF3, 
YTHDC1, and YTHDC2 [15]. The YTH domain, a com-
mon feature among members of this family, typically 
consists of 130 ~ 140 amino acids and features con-
served domain characteristics, including specific amino 
acid residue sequences and domain folding [16, 17]. The 
YTH domain typically encompasses multiple β-folding 
structures and specific RNA-binding pockets capable 
of directly accommodating modified m6A residues in 
hydrophobic pockets to exert their effects [18]. Members 
of the YTH domain family regulate the effects of m6A 
modification on RNA within cells, thereby influencing 
gene expression and cellular function [19, 20]. As the 
most recently discovered member of the YTH domain 
family, the expression, role, and function of YTHDC2 in 
the human body have only gradually emerged in recent 
years [21], enriching our understanding of RNA function 
regulation by m6A modification. This article will review 
the research progress of YTHDC2 and explore its poten-
tial role in future research.

Overview of YTHDC2
YTHDC2 encompasses multiple functional domains, 
with its most notable feature being the YTH domain, 
enabling recognition and binding of m6A-modified RNA 
molecules, thus regulating RNA stability, transcription, 
and translation processes (Fig.  2A) [22, 23]. The YTH 

domain surface is characterized by four basic residues 
crucial for RNA backbone binding (Fig.  2B) [14]. Typi-
cally, conserved amino acid sequences within the YTH 
domain form tryptophan cages facilitating interaction 
with specific RNA bases [24]. However, unlike other pro-
teins with YTH domains, YTHDC2 exhibits a weaker 
binding affinity with m6A RNA [25]. Research utilizing 
crosslinking immunoprecipitation (CLIP) to investigate 
the YTHDC2 binding site in the transcriptome indicated 
a minimal overlap with the m6A site, differing from other 
YTH domain proteins [26]. Hence, YTHDC2 may bind to 
specific m6A sites or employ different binding modes to 
influence RNA.

YTHDC2 is also known as Probable ATP-dependent 
RNA helicase YTHDC2, which belongs to the DEAD box 
helicase family [27], featuring an RNA helicase domain 
akin to RNA helicases that regulate translation, suggest-
ing a potential role in the promotion of mRNA transla-
tion [28]. YTHDC2 has been shown to interact with 
ribosomal 18s rRNA and simultaneously enhance the 
RNA translation efficiency of its target gene while reduc-
ing its mRNA abundance [21]. Furthermore, YTHDC2 
could mediate mRNA degradation by directly interacting 
with its companion proteins XRN1, UPF1, MOV10 and 
Meioc [21, 29, 30]. Moreover, YTHDC2 enhanced mRNA 
translation efficiency by recognizing m6A methylation in 
the coding region (CDS), with knockdown or silencing of 
YTHDC2 resulting in a significant reduction in protein 
synthesis [31].

Distinct from other widely expressed YTH pro-
teins in human tissues, YTHDC2 has been shown to 
be notably enriched in the testes [21], where it played 
a crucial role in the development and maturation of 
germ cells, particularly in sperm development. Of 
note, YTHDC2 gene knockout mice exhibited defects 

Fig. 1  The methylation process of m6A and the role of YTHDC2 in m6A. M6A methylation is involved in a series of enzymes, including m6A 
methyltransferases and m6A demethylases. YTHDC2 can bind to m6A modified RNA and participate in regulating RNA translation or degradation. 
Created with BioRender.com
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in spermatogenesis and infertility, without significant 
developmental defects elsewhere [21]. Male mice dis-
played markedly smaller testicles compared to litter-
mates, while female mice exhibited similarly smaller 
ovaries [32]. Depletion of YTHDC2 in mouse testes 
could slightly upregulate mRNA levels with higher 
m6A content. YTHDC2 maintained a favorable gene 
expression program for meiosis by regulating tran-
scriptome levels of m6A-modified germ cell lines [32]. 
YTHDC2-deficient germ cells could initiate meiosis but 
underwent premature and abnormal metaphase apop-
tosis without following a typical meiotic gene expres-
sion program [33]. In addition, YTHDC2 participated 
in chicken embryonic gonadal development sex dif-
ferentiation process by regulating the expression of 
gender-related genes, particularly HEMGN and sex 
determining region Y-box  9 (SOX9) [34]. Addition-
ally, YTHDC2 exhibited a unique subcellular localiza-
tion, existing in both the nucleus and cytoplasm, unlike 
YTHDC1 mainly in the nucleus and YTHDF protein 
primarily in the cytoplasm [34]. These characteris-
tics position YTHDC2 as a crucial regulatory factor in 
intracellular RNA metabolism, vital for normal cellular 
function and developmental processes.

The role of YTHDC2 in tumors
The role of YTHDC2 in respiratory system tumors
Currently, multiple studies have confirmed the multi-
faceted role of YTHDC2 in either promoting or inhibit-
ing the occurrence and progression of cancer through 
diverse mechanisms (Fig.  3). Notably, reduced expres-
sion of YTHDC2 has been observed in lung cancer and 
cigarette smoke-exposed cells, correlating with smok-
ing history, advanced stage, invasion depth, lymph node 
metastasis, and poor outcomes. Both in vitro and in vivo 
studies also demonstrated that YTHDC2 enhances the 
mRNA stability of cylindromatosis (CYLD) in an m6A-
dependent manner, thereby inhibiting the activation of 
the NF-κB signaling pathway through CYLD’s deubiqui-
tination activity, consequently suppressing the prolifera-
tion and migration of malignant lung cells [35].

The transportation of cysteine primarily occurs 
through various transport proteins and transporters, 
possessing antioxidant properties that protect cells from 
oxidative damage and ferroptosis [36–38]. Ma et  al. 
found that decreased YTHDC2 expression correlates 
with poorer prognosis in lung adenocarcinoma (LUAD) 
[39]. Mechanistically, YTHDC2 was shown to bind 
directly to the mRNA of m6A-modified solute carrier 

Fig. 2  Structure of YTHDC2 domain and its YTH domain. A. Schematic of human YTHDC2 domain structure. B. Three-dimensional model of the full 
length human YTHDC2 and its YTH domain. The four basic residues Arg1318, Arg1289, Lys1294, and Arg1401 on the surface of the YTHDC2 YTH 
domain are crucial for binding to the RNA backbone. The 3D carton was generated with PyMol (http://​www.​pymol.​org)

http://www.pymol.org
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7A11 (SLC7A11), promoting its decay and thereby inhib-
iting cysteine uptake, which blocks downstream antioxi-
dant programs, contributing to its anti-tumor activity. 
Additionally, YTHDC2 has also been shown to m6A-
dependently bind to the 3’-untranslated region (UTR) 
of Homeobox A13 (HOXA13) mRNA, reducing its RNA 
stability and inhibiting the transcription of solid carrier 
3A2 (SLC3A2), leading to ferroptosis [40].

Furthermore, YTHDC2 interacts with various 
mRNA targets to regulate LUAD progression. By bind-
ing directly to ADIRF mRNA in LUAD, YTHDC2 have 
been shown to attenuate its expression, while ALKBH5 
counteracted this effect, leading to inhibition of LUAD 
cell proliferation and metastasis [41]. YTHDC2 also tar-
geted m6A-modified mitochondrial ribosomal protein 
L12 (MRPL12) mRNA, inhibiting LUAD tumor growth 
and metastasis, while promoting apoptosis, and ulti-
mately suppressing tumor occurrence [42]. Additionally, 
YTHDC2 inhibited drug resistance in non-small cell lung 
cancer (NSCLC) by upregulating the expression of the 
tumor suppressor gene Inhibitor of DNA-binding 3 (ID3) 

in cisplatin-resistant NSCLC cell lines [43]. Moreover, 
YTHDC2 modulated LUAD development by regulating 
the levels of cell division cycle-related protein CDCA4, 
thereby inhibiting the malignant phenotype and altering 
the M1/M2 cell ratio in tumor tissue [44].

Beyond mRNA regulation, YTHDC2 have also been 
shown to inhibit the malignant progression of lung can-
cer by regulating the levels of long non-coding RNAs 
(lncRNAs). Wang et  al. found that YTHDC2 promoted 
the stability and levels of lncRNA ZNRD1-AS1, which 
inhibits lung cancer cell proliferation, migration, and 
angiogenesis in  vitro and in  vivo through the miR-942/
TNS1 axis, resulting in reduced tumor growth in nude 
mice [45]. Conversely, YTHDC2 negatively regulated the 
levels of lncRNA CALML3-AS1 in an m6A modification-
dependent manner, leading to upregulation of tumor 
suppressor gene butyrophilin like 9 (BTNL9) and inhibit 
NSCLC proliferation, invasion, and migration [46].

However, contrary to previous studies, Zhang et  al. 
reported a pro-cancer effect of YTHDC2 in lung cancer. 
YTHDC2 was shown to form complexes with eukaryotic 

Fig. 3  The target gene of YTHDC2 and its role in tumors. YTHDC2 regulates the expression of multiple genes by recognizing m6A modified 
RNAs and influencing their fate. In tumors, based on the different target genes of YTHDC2, YTHDC2 can exhibit pro-cancer or anti-cancer effects 
and participate in regulating the occurrence and development of tumors. The red box represents oncogenes, and the blue box represents tumor 
suppressor genes. Created with BioRender.com
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translation initiation factor 4 gamma 1 (eIF4GI) and bind 
to the m6A methylation site of the vascular endothelial 
growth factor A (VEGFA) 5’UTR, thereby promoting its 
translation and accelerating lung cancer angiogenesis 
[47]. These contrasting roles of YTHDC2 in lung cancer 
underscore its context-dependent functions via different 
downstream targets, suggesting personalized therapeutic 
strategies based on individual patient profiles.

The role of YTHDC2 in digestive system tumors
YTHDC2 facilitates the proliferation, migration, and 
invasion of gastric cancer (GC) cells both in  vivo and 
in  vitro. It has been shown to promote the translation 
of the oncogene Yes1 associated transcriptional regula-
tor (YAP) mRNA, and YAP, in turn, directly binds to the 
YTHDC2 promoter, enhancing YTHDC2 transcription, 
thus establishing a positive feedback loop that ampli-
fies the pro-cancer effect [48]. In tumors, ferroptosis 
can lead to iron-dependent cell death, thereby inhibiting 
tumor growth and metastasis [49]. Li et  al. observed a 
significant association between ferroptosis in hepatocel-
lular carcinoma (HCC) and high levels of m6A modifica-
tion. YTHDC2 upregulated autophagy related 5 (ATG5) 
expression post-transcriptionally in an m6A-dependent 
manner, promoting ferroptosis and inhibiting HCC 
development [50]. However, contrary to the aforemen-
tioned findings, Tanabe et  al. discovered that YTHDC2 
promoted cell proliferation in HCC, and its level was reg-
ulated by TNF-α-induced transcription factors c-Jun and 
ATF-2 [51].

In pancreatic ductal adenocarcinoma (PDAC), 
YTHDC2 was shown to recognize m6A modification 
sites on super-enhancer RNA (seRNA) and recruited 
H3K4 methyltransferase lysine methyltransferase 2A 
(MLL1), enhancing H3K4me3 modification, which facili-
tated chromatin accessibility of seRNAs and promoted 
oncogene transcription [52].

YTHDC2 was downregulated in colorectal cancer 
(CRC), leading to increased stability and expression 
of LIM domain kinase 1 (LIMK1) mRNA in CRC cells. 
LIMK1 overexpression promoted eIF2α phosphoryla-
tion, induced endoplasmic reticulum stress, and pro-
moted stress granule formation, ultimately leading to 
resistance to 5-fluorouracil (5-FU) [53]. M6A methyla-
tion modification could influence the stability and deg-
radation rate of microRNA (miRNA), thereby regulating 
tumor progression by modulating miRNA levels [54, 
55]. YTHDC2 recognized m6A-modified miR-17-5p and 
promoted its degradation, resulting in increased expres-
sion of its downstream tumor suppressor gene Mitofu-
sin 2 (MFN2), leading to decreased mitochondrial fusion 
and increased sensitivity to 5-FU in CRC [56]. However, 
another study revealed a significant positive correlation 

between YTHDC2 expression and CRC tumor staging. 
Mechanistically, YTHDC2 promoted the translation of 
transfer-related gene proteins under hypoxic conditions, 
such as Twist1 and hypoxia-inducible factor-1 alpha 
(HIF-1α), thereby facilitating CRC metastasis [57].

The role of YTHDC2 in endocrine system tumors
Papillary thyroid carcinoma (PTC) stands as the most 
prevalent form of endocrine malignancy [58]. YTHDC2 
downregulated and exerted anti-cancer effects in both 
thyroid cancer tissues and cell lines. YTHDC2 curbed the 
proliferation of PTC cells and triggered their apoptosis by 
upregulating CYLD expression, leading to inactivation of 
the Akt pathway [59]. The METTL3-YTHDC2 axis has 
been indicated to maintain RNA stability of LINC00894 
in an m6A-dependent manner, thereby inhibiting the 
lymphangiogenesis of vascular endothelial cells and the 
proliferation of PTC cells through the Hippo signaling 
pathway [60]. Moreover, the METTL16-YTHDC2 axis 
boosted the m6A modification of stearoyl-CoA desatu-
rase-1 (SCD1) in PTC cells, accelerating its mRNA deg-
radation and inhibit lipid metabolism, thereby inhibiting 
the growth of PTC cells [61].

The role of YTHDC2 in other systems tumors
YTHDC2 was also significantly upregulated in patients 
with prostate cancer (PC), especially in those with higher 
Gleason grading and serum prostate-specific antigen lev-
els. Cell experiments have demonstrated that YTHDC2 
overexpression notably boosted the growth, migration, 
and invasion capabilities of PC cells, suggesting a poten-
tial association between YTHDC2 upregulation and 
PC prognosis [62]. YTHDC2 has also been shown to be 
highly expressed in PC tissues and cells, regulated by 
circMID1/miR-330-3p. The overexpression of YTHDC2 
activates the AKT signaling pathway by enhancing the 
expression of the oncogene IGF1R, thereby promot-
ing the proliferation, migration, invasion, and glycolysis 
levels of PC cells [63]. Furthermore, YTHDC2 has been 
found to be highly expressed in radiation resistant naso-
pharyngeal carcinoma (NPC) cells, and YTHDC2 can 
bind to the mRNA of IGF1R and promote its expres-
sion. Mechanistically, overexpressed IGF1R promotes the 
resistance of NPC cells to radiotherapy by activating the 
IGF1R/ATK/S6 signaling pathway, which may become a 
potential target for radiosensitization therapy [64]. Com-
pared to normal human skin, YTHDC2 was upregulated 
in human cutaneous squamous cell carcinoma (cSCC). 
YTHDC2 inhibited DNA damage repair induced by 
Ultraviolet B by inhibiting the expression of the tumor 
suppressor gene PTEN, suggesting its potential upregula-
tion could serve as a biomarker for cSCC [65].
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YTHDC2 as a tumor prognostic marker
YTHDC2 plays a pivotal role in cancer biology, exert-
ing varied effects on tumor progression depending on its 
downstream targets. A comprehensive pan-cancer analy-
sis underscored its significance [66], revealing impacts on 
epigenetic modifications and immune infiltration across 
diverse cancer types. Notably, mutations and methyla-
tion levels of YTHDC2 correlated with prognosis in spe-
cific cancers, with high diagnostic value demonstrated 
in cholangiocarcinoma, lung squamous cell carcinoma, 
thyroid carcinoma, ovarian serous cystadenocarcinoma, 
skin cutaneous melanoma (SKCM), testicular germ cell 
tumors, and uterine carcinosarcoma, among others. 
Additionally, it held prognostic significance for brain 
lower-grade glioma, rectum adenocarcinoma, and SKCM 
[64].

In head and neck squamous cell carcinoma, the low 
expression of YTHDC2 correlated with lower overall sur-
vival (OS), recurrence-free survival, and reduced immune 
infiltration levels, suggesting its potential as a prognostic 
and immune infiltration marker for head and neck squa-
mous cell carcinoma [67]. Similarly, in rectal adenocar-
cinoma, decreased YTHDC2 expression was associated 
with significantly lower OS rates [68]. In NSCLC, low 
YTHDC2 expression correlated with a poorer progno-
sis, increased tumor malignancy, lymph node metastasis, 
larger tumor size, and advanced staging [69].

Additionally, genetic variations within the YTHDC2 
promoter, such as the single nucleotide polymorphism 
(SNP) rs2416282, influence YTHDC2 expression and are 
associated with esophageal squamous cell carcinoma risk 
[70]. Another SNP within YTHDC2, rs7202116, shows a 
significant association with the survival of patients with 
HCC treated with transarterial chemoembolization, 
particularly with a poor prognosis observed in patients 
with the rs7202116 GG genotype. Additionally, the study 
highlights the regulatory influence of rs7202116 on FTO 
gene expression. These findings support the potential 
significance of m6A-regulated genes in HCC treatment 
strategies [71].

In CRC, conflicting findings exist regarding YTHDC2 
expression and prognosis. While some studies using 
Kaplan Meier analysis reported reduced YTHDC2 
expression associated with poor progression-free sur-
vival and OS [72], others indicated YTHDC2 upregula-
tion linked to adverse prognosis, clinical features, and 
immune infiltration [73]. This inconsistency underscores 
the need for further investigation into YTHDC2’s role in 
CRC.

In PC, YTHDC2 was significantly upregulated, posi-
tively correlating with Gleason grading and being nota-
bly higher in lymph node metastasis castration-resistant 
prostate cancer (CRPC) compared to CRPC with bone 

metastasis [74]. While current research suggests 
YTHDC2 as a potential tumor biomarker aiding in diag-
nosis, prognostic evaluation, and treatment selection, 
further studies are essential to elucidate its mechanisms 
and clinical applications fully. With ongoing research, 
YTHDC2 holds promise for advancing personalized 
tumor treatment and precision medicine initiatives.

The role of YTHDC2 in non‑tumor pathological processes
In addition to its research in tumors, the role of YTHDC2 
in non-tumor diseases has also attracted the attention of 
researchers in recent years. Studies have shown that it 
may play an important role in reproductive system dis-
eases, neurological diseases, immune system diseases, 
and metabolic diseases.The RNA targets of YTHDC2 and 
their roles in non-tumor pathophysiological processes 
are summarized in Table 1.

The role of YTHDC2 in the reproductive system
YTHDC2 exhibits tissue-specific expression in the 
human body. The highest levels have been observed in 
the testes, underscoring their crucial role in regulating 
the development, maturation, and function of germ cells 
[21]. It has been shown to govern prophase I of meiosis 
in mammals, safeguarding against telomere aggregation 
by preserving the meiotic transcriptome and preventing 
microtubule network alterations [75]. In mice, prolonged 
meiotic prophase I maintenance requires the Meioc gene, 
a conserved germ cell-specific factor across most meta-
zoans [76]. YTHDC2 collaborated with MEIOC to drive 
the meiotic cell cycle program via post-transcriptional 
control of target transcripts [77].

Deficiencies in YTHDC2/MEIOC could trigger prema-
ture entry into aberrant stages and germ cell apoptosis, 
disrupting the transition from spermatogonia to meiotic 
gene expression programs [78]. The RBM46/YTHDC2/
MEIOC complex, comprising YTHDC2 and its partner 
MEIOC, stood as a principal post-transcriptional regu-
lator governing mitotic diversion and mitigating mitotic 
transcript levels during mammalian spermatogenesis 
[79]. YTHDC2 facilitated the transition from mitosis to 
meiosis in mammalian germ cells, regulating germ cell 
progression during meiosis by maintaining post-tran-
scriptional cyclin A2 (CCNA2) RNA levels, pivotal in 
determining cell fate [33].

Studies by Hsu et  al. revealed that YTHDC2 knock-
out in mouse testes impaired translation efficiency and 
mRNA abundance of its targets, impeding germ cell tran-
sition from mitosis to meiosis. Consequently, YTHDC2 
gene knockout mice exhibited significantly smaller tes-
tes and ovaries, alongside infertility [21]. Notably, the 
m6A binding pocket mutation in YTHDC2 minimally 
impacted germ cell development and mouse fertility, 
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indicating YTHDC2’s function was m6A-independent 
[30]. Li et  al. demonstrated that mice harboring YTH 
point mutations within YTHDC2 remained capable of 
reproduction, yet loss of their 3’ → 5’ RNA helicase activ-
ity rendered them infertile. Additionally, exonuclease 
XRN1 enhanced YTHDC2’s helicase activity, sustaining 
its function [30].

YTHDC2’s role extends to female germ cells (FGCs), 
crucial for meiosis initiation and progression. YTHDC2 
augmented TRA8-positive FGCs and significantly altered 
FGC distribution during zygotene and pachytene stages 
[80]. Manganese exerted toxic effects on male reproduc-
tion, with occupational exposure linked to decreased 
semen quality in male workers. Mechanistically, Manga-
nese inhibited the YTHDC2/CCNB2 signaling pathway, 
stalling the G2/M cell cycle phase. Elevated YTHDC2 
expression enhanced CCNB2 levels, ameliorating cell 
cycle arrest and mitigating reproductive toxicity post-
Manganese exposure [81]. Furthermore, YTHDC2 
expression in developing human embryonic ovaries 
and its upregulation in meiotic germ cells suggested its 

pivotal role in human meiosis. Various YTHDC2 vari-
ants, including pathogenic ones, were associated with 
primary ovarian insufficiency (POI), highlighting its sig-
nificance in human meiosis regulation [82].

In summary, YTHDC2 emerges as a critical regula-
tor in the human reproductive system, influencing germ 
cell development, function, and physiology through gene 
expression regulation and RNA processing mechanisms. 
Its role holds substantial implications for maintaining 
normal reproductive system function.

The role of YTHDC2 in the nervous system
Xu et al. found that reducing the expression of METTL3 
or METTL 14 in neural stem cells (NSCs) significantly 
reduces the abundance of m6A, cell proliferation, and 
neuronal generation, while enhancing the differentiation 
of glial cells. Meanwhile, YTHDC2 promotes neuronal 
generation by promoting the stability and translation effi-
ciency of m6A modified Lrp2 mRNA, which may reverse 
spatial memory decline and depressive like behavior, 
making it a promising antidepressant strategy [83]. 

Table 1  The role of YTHDC2 in non-tumor pathological processes

This table summarizes the RNA targets of YTHDC2 and the role of its RNA targets in non-tumor pathophysiological processes

Pathological processes Tatget RNA Effect on target RNA Roles of target RNAs References

Reproductive cell meiosis CCNA2 Promote mRNA stability Promote the transition from mitosis 
to meiosis

[33]

Spermatogenesis dysfunction CCNB2 Promote mRNA stability Reduce cell cycle arrest and improve 
reproductive toxicity

[81]

Neurogenesis LRP2 Promote mRNA stability and translation 
efficiency

Facilitates neurogenesis and elicits 
antidepressant-like effects

[83]

Neural differentiation HERV-H Revent epigenetic silencing Inhibit neural differentiation [84]

Virus infection IFN-β Promote mRNA degradation Promote innate immune response 
against viruses

[85]

KSHV infection IL-6 Promote mRNA stability Promote inflammatory response [86]

TM infection TLR2 Inhibit mRNA expression Promote inflammatory response [89]

Experimental autoimmune uveitis ASH1L Promote mRNA stability Inhibits autoreactive Th17 cell 
responses in experimental autoim-
mune uveitis

[90]

Rheumatoid arthritis AMIGO2 Promote mRNA expression Promote the proliferation and aggres-
sive behaviors of rheumatoid arthritis 
fibroblast-like synoviocytes

[94]

Diabetic peripheral neuropathy KDM5B Inhibit mRNA stability Regulate mitochondrial metabolic 
reprogramming

[95]

VSMCs dysfunction circYTHDC2 Promote RNA stability Promote the proliferation and migra-
tion of VSMCs

[96]

Obesity HIF1A Promote mRNA translation efficiency Promote the browning of white adipo-
cytes and thermogenesis

[100]

Hepatic drug metabolism CYP2C8 Promote mRNA degradation Promote hepatic drug metabolism [103]

Hepatic drug and lipid metabolism CES2 Promote mRNA degradation Promote hydrolysis of drugs 
and endogenous substrates

[107]

Osteogenic differentiation process RUNX2 Promote mRNA degradation Promote bone mesenchymal stem 
cells osteogenic differentiation

[110]

Inherited retinal dystrophies PPEF2 and PDE6B Promote mRNA translation efficiency Regulate retinal function and inhibiting 
progressive rod death

[113]
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YTHDC2 interacts with m6A modified HERV-H RNA, 
binds to the genomic site of LTR7/HERV-H, and recruits 
the DNA 5mC demethylase TET1 to prevent epigenetic 
silencing of LTR7/HERV-H. In human embryonic stem 
cells, the interaction between YTHDC2 and LTR7 inhib-
its neural differentiation [84].

The role of YTHDC2 in the immune system
YTHDC2 plays a crucial role in terminating the innate 
immune response at the late stage of infection to pre-
vent unwanted inflammation. YTHDC2 degrades m6A 
modified IFN-β mRNA in the later stage of viral infec-
tion inhibits the innate immune response against viruses, 
thereby preventing unnecessary inflammation and main-
taining the body’s homeostasis [85]. The m6A modifi-
cation plays an important role during viral infection, as 
the overall level of host methylation decreases during 
Kaposi’s sarcoma associated herpesvirus (KSHV) infec-
tion. YTHDC2 helps IL-6 resist degradation caused by 
the viral endonuclease SOX during KSHV infection by 
recognizing the m6A modification site of 3’UTR on IL-6 
mRNA, thereby playing an important role in the process 
of KSHV infection in cells [86].

The immune evasion of talaromyces marneffei (TM) 
is an important factor contributing to the high mortal-
ity rate of Marneffei’s candidiasis [87, 88]. Zhu et  al. 
found that there were dynamic changes in overall m6A 
levels and upregulation of YTHDC2 expression in mac-
rophages infected with TM. Knocking down YTHDC2 in 
TM infected cells showed a m6A dependent increase in 
TLR2 expression, leading to upregulation of inflamma-
tory factors TNF-α and IL1-β [89].

The expression of METTL3 and m6A levels were sig-
nificantly reduced in the eyeballs and T cells of experi-
mental autoimmune uveitis (EAU). YTHDC2 enhances 
the mRNA stability of ASH1L in an m6A dependent 
manner to promote its expression, thereby inhibiting the 
expression of IL-17 and IL-23 receptors and reducing the 
response of pathogenic Th17 cells. This inhibits patho-
genic Th17 cell responses both in vivo and in vitro, help-
ing to alleviate the development of EAU [90].

The translation of the genome through the internal 
ribosome entry site (IRES) dependent mechanism is 
crucial in the process of hepatitis C virus (HCV) infec-
tion [91–93]. YTHDC2 can recognize m6A methylated 
adenosine at position nt 331 in the HCV RNA gene and 
support HCV IRES dependent translation under the syn-
ergistic effect of cellular La antigen. YTHDC2 plays an 
important role in the translation initiation dependent on 
HCV IRES, providing a potential novel therapeutic path-
way for intervening in the process of HCV infection [27]. 
YTHDC2 and METTL3 jointly regulate the expression 
of adhesion molecule with Ig like domain 2 (AMIGO2), 

regulate the proliferation and invasion ability of rheuma-
toid arthritis synovial fibroblasts, and thereby affect the 
disease progression of rheumatoid arthritis [94].

The role of YTHDC2 in metabolic diseases
YTHDC2 plays a pivotal role in combating diabetic 
peripheral neuropathy (DPN) by enhancing mito-
chondrial metabolism. It does so by reducing KDM5B 
mRNA stability, thereby increasing SIRT3 expression, 
which in turn improves mitochondrial function, sug-
gests YTHDC2 as a promising target for DPN treatment 
through mitochondrial metabolic reprogramming [95]. 
The expression of circYTHDC2 increases under high 
glucose conditions, and the knockout of circYTHDC2 
significantly inhibits the proliferation and migration of 
vascular smooth muscle cells (VSMCs). YTHDC2 regu-
lates the stability of circYTHDC2 through m6A modi-
fication, while circYTHDC2 negatively regulates the 
expression of TET2 by targeting the 3’UTR unstable 
motif of TET2, promoting the differentiation of VSMCs 
into synthetic ones [96]. These findings indicate that the 
YTHDC2/circYTHDC2/TET2 pathway is an important 
target for metformin to prevent the progression of high 
glucose induced VSMCs dysfunction. Zhou et  al. found 
that the expression of YTHDC2 was significantly reduced 
in the liver of obese mice and non-alcoholic fatty liver 
disease (NAFLD) patients, and was associated with liver 
fat accumulation. Mechanistically, YTHDC2 can bind 
to the mRNA of lipid synthesis genes, thereby reducing 
their mRNA stability and inhibiting their gene expression 
[97]. This indicates that YTHDC2 also plays an impor-
tant role in regulating liver lipid synthesis and triglycer-
ide homeostasis, which has potential implications for the 
treatment of NAFLD associated with obesity. HIF1A is a 
transcription factor that can promote the browning pro-
cess of adipocytes by activating the transcription of key 
thermogenic genes, and has potential therapeutic sig-
nificance in combating obesity and metabolic diseases 
[98, 99]. The absence of FTO in adipose tissue leads to an 
increase in the m6A modification level of HIF1A mRNA, 
while YTHDC2 can promote the translation of HIF1A 
and increase the abundance of HIF1A protein in a m6A 
methylation dependent manner [100].

The role of YTHDC2 in other pathophysiological processes
CYP2C8 is a cytochrome P450 enzyme that plays an 
important role in drug metabolism [101, 102]. It mainly 
participates in the oxidative metabolism reaction of 
drugs, converting some drugs into more easily excreted 
metabolites, thereby affecting the metabolism and effi-
cacy of drugs. CYP2C8 can be methylated with m6A 
by METTL3/14 in the liver and removed by FTO, while 
YTHDC2 recognizes m6A modified CYP2C8 mRNA and 
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promotes its degradation, thereby regulating CYP2C8 
expression and affecting drug metabolism [103]. Car-
boxyesterase 2 (CES2) is a serine esterase responsible for 
the hydrolysis of drugs and endogenous substrates such 
as triglycerides and diglycerides [104–106]. YTHDC2 
downregulates the expression of CES2 by recogniz-
ing m6A in the 5 ‘untranslated region (UTR) of CES2, 
degrading mRNA containing m6A [107].

RUNX family transcription factor 2 (RUNX2) is a tran-
scription factor that is one of the main regulatory factors 
for osteoblast differentiation, and has a significant impact 
on bone formation and the differentiation of bone mar-
row mesenchymal stem cells (BMSCs) into osteoblasts 
[108, 109]. During the osteogenic differentiation process 
of BMSCs, the expression of YTHDC2 protein decreases 
and leads to an increase in intracellular RUNX2 (mRNA 
and protein) expression levels, indicating that YTHDC2 
is a promising molecular target for regulating the osteo-
genic differentiation of BMSCs [110]. Inherited retinal 
dystrophies are the leading cause of visual impairment 
and irreversible blindness worldwide, but their exact 
molecular and genetic mechanisms remain elusive [111, 
112]. The deficiency of YTHDC2 in rod cells leads to 
impaired translation efficiency of PPEF2 and PDE6B, 
ultimately resulting in a decrease in protein levels in the 
retina, leading to gradual cell death and impaired retinal 
function [113].

Conclusion and prospects
YTHDC2, serving as a critical RNA binding protein, plays 
a fundamental role in governing biological processes such 
as RNA translation and stability. The expression changes 
of its target genes are related to the progression of many 
diseases, including cancer and non-tumor pathological 
processes. Extensive research has established a close cor-
relation between YTHDC2 and various diseases, indicat-
ing its potential as a therapeutic target in these diseases. 
In this review, we introduced the structure and function 
of YTHDC2, with a focus on summarizing its roles and 
regulatory mechanisms in cancer and other physiologi-
cal and pathological processes. Looking forward, delving 
deeper into the specific mechanisms of YTHDC2 in RNA 
regulation and investigating its involvement in the gene 
regulatory network through more expansive research will 
be paramount. This undertaking will substantially con-
tribute to unraveling the mechanisms underpinning these 
diseases and identifying potential treatment approaches.

Recent years have seen significant advancements in 
comprehending YTHDC2, yielding crucial insights into 
its functionality and mechanism of action. These discov-
eries also open up new avenues and possibilities for devel-
oping therapeutic drugs aimed at targeting YTHDC2. 
Some small molecule compounds have been found 

to interfere with the activity of m6A readers, thereby 
affecting their regulation of RNA function. For example, 
Tegaserod, a 5-HT4 receptor agonist, has been found to 
block the direct binding of YTHDF1 to m6A-modified 
mRNA. In acute myeloid leukemia (AML), Tegaserod can 
inhibit the translation of cyclin E2 regulated by YTHDF1, 
thereby affecting the proliferation and survival abilities of 
AML cells [114]. BTYNB is a small molecule compound 
found to have an inhibitory effect on IGF2BP1. BTYNB 
can selectively inhibit the binding of IGF2BP1 to its tar-
gets, thereby reducing the expression levels of its target 
mRNA and protein. BTYNB can effectively inhibit the 
proliferation of IGF2BP1-positive ovarian cancer and 
melanoma cells, while having no effect on IGF2BP1-
negative cells [115]. CWI1-2 is a newly discovered small 
molecule compound found to inhibit IGF2BP2. Research 
has shown that by inhibiting IGF2BP2, CWI1-2 can regu-
late the expression of key targets (such as MYC, GPT2, 
and SLC1A5) in the glutamine metabolism pathway in 
an m6A-dependent manner, thereby inhibiting the devel-
opment of AML and the self-renewal of leukemia stem 
cells [116]. JX5 is a small molecule compound with an 
inhibitory effect on IGF2BP2. JX5 inhibits the binding of 
IGF2BP2 to the oncogene NOTCH1 in T-ALL, thereby 
directly suppressing the proliferation of T-ALL in an 
m6A-dependent manner. Treatment with JX5 in T-ALL 
can produce effects similar to knocking out IGF2BP2, 
inhibiting the proliferation of T-ALL cells and prolonging 
animal survival [117]. These studies indicate that m6A 
reader inhibitors can effectively inhibit tumor progres-
sion, providing new potential treatment strategies for 
cancer patients. Currently, these new m6A reader drugs 
still face some challenges in clinical application, includ-
ing issues such as drug bioavailability, toxicity, and side 
effects. Additionally, since m6A reader proteins also play 
important roles in normal cellular biological processes, 
inhibitors may have adverse effects on normal cell func-
tions, leading to off-target effects and toxic reactions.

As of now, there have been no detailed research 
reports on small molecule inhibitors targeting YTHDC2. 
With further research on the mechanisms of action of 
YTHDC2 in cancer, there may be more studies on small 
molecule inhibitors targeting YTHDC2 in the future. 
These potential small molecule inhibitors may help 
explore the role of YTHDC2 in cancer development and 
provide new insights for the development of treatment 
strategies targeting YTHDC2.
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