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Abstract
Background  Cancer stem-like cells (CSCs) have been extensively researched as the primary drivers of therapy 
resistance and tumor relapse in patients with breast cancer. However, due to lack of specific molecular markers, 
increased phenotypic plasticity and no clear clinicopathological features, the assessment of CSCs presence and 
functionality in solid tumors is challenging. While several potential markers, such as CD24/CD44, have been proposed, 
the extent to which they truly represent the stem cell potential of tumors or merely provide static snapshots is still 
a subject of controversy. Recent studies have highlighted the crucial role of the tumor microenvironment (TME) 
in influencing the CSC phenotype in breast cancer. The interplay between the tumor and TME induces significant 
changes in the cancer cell phenotype, leading to the acquisition of CSC characteristics, therapeutic resistance, and 
metastatic spread. Simultaneously, CSCs actively shape their microenvironment by evading immune surveillance and 
attracting stromal cells that support tumor progression.

Methods  In this study, we associated in vitro mammosphere formation assays with bulk tumor microarray profiling 
and deconvolution algorithms to map CSC functionality and the microenvironmental landscape in a large cohort of 
125 breast tumors.

Results  We found that the TME score was a significant factor associated with CSC functionality. CSC-rich tumors 
were characterized by an immune-suppressed TME, while tumors devoid of CSC potential exhibited high immune 
infiltration and activation of pathways involved in the immune response. Gene expression analysis revealed IFNG, 
CXCR5, CD40LG, TBX21 and IL2RG to be associated with the CSC phenotype and also displayed prognostic value for 
patients with breast cancer.

Conclusion  These results suggest that the characterization of CSCs content and functionality in tumors can be used 
as an attractive strategy to fine-tune treatments and guide clinical decisions to improve patients therapy response.
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Introduction
Inside breast tumors, a complex and dynamic environ-
ment comprising heterogeneous populations of cancer 
cells, stromal cells, and immune infiltrates drives tumor 
growth, promotes metastatic spread [1], and hinders 
patients’ therapeutic response [2]. Among these cells, 
breast cancer stem-like cells (CSCs) [3], a population 
of slowly proliferating cells that exist within the tumor 
bulk and are usually quiescent in the G0 phase for long 
periods of time, are increasingly believed to drive breast 
tumor heterogeneity [4], promote metastasis [5], evade 
immune surveillance [6] and augment resistance to stan-
dard radiation and chemotherapy [7]. Current anticancer 
therapies target either the proliferation of tumor cells or 
the immune response against tumors; hence, quiescent 
CSCs may escape conventional treatments. CSCs are 
also preferentially selected during current therapies, and 
under favorable microenvironmental signals and cellular 
interactions within their niche, they can self-renew, driv-
ing tumor progression and metastasis [8].

CSCs have been isolated from human breast tumor 
samples and cancer cell lines mainly based on the expres-
sion of surface markers (e.g., CD44, CD24, and CD133) 
(rev in [9]). Several studies have shown that CD44+/
CD24- cells increase therapeutic resistance [10] and 
invasiveness [11] and are correlated with a poor prog-
nosis in breast cancer patients [12]. However, emerging 
evidence suggests that cancer cells exhibit high plasticity 
and that even cells that initially express a CD44low phe-
notype might be able to convert into CD44high CSCs in 
vivo [13]. Thus, culture adaptation and long-term subcul-
ture of individual CSC populations may induce genetic 
and phenotypic alterations in isolated cells that may 
not completely reflect all the biological features of pri-
mary CSCs [14]. Moreover, recent work has shown that 
CSCs are dynamically regulated by niche and microen-
vironmental cues, upon which they also exert regulatory 
effects [13, 15, 16]. Thus, instead of looking solely at the 
marker expression in these populations, the critical next 
steps should include understanding the factors that drive 
the CSC state and the emerging role of the surrounding 
multicellular architecture in determining CSC character-
istics. There is a limited understanding of the degree to 
which CSC models can accurately recapitulate the dis-
tribution and functionality of CSCs observed in patients, 
and even though they are difficult to obtain, patient sam-
ples remain the gold standard for CSC investigations.

In this study, we explored the presence, functionality 
and microenvironmental landscape of CSCs in breast 
tumors from patients. We integrated in vitro mammo-
sphere formation assays with transcriptomic profiling 
and deconvolution methods. We used matched breast 
tissues to perform both high-resolution transcriptional 
profiling via microarray analysis [17] and to generate 

matched CSC cultures [18]. This approach enabled a 
structured dissection of the CSC phenotype versus the 
TME-induced contribution to self-renewal and prolifera-
tion under anchorage-independent conditions. We calcu-
lated that CSC states are associated with distinct TMEs, 
suggesting that TME signals are critical regulators of the 
CSC state, plasticity, and response to therapy.

Materials and methods
Patients and biopsy samples collection
A total of 125 female patients diagnosed with invasive 
breast cancer at The Oncology Institute “Ion Chiricuță”, 
Cluj-Napoca, Romania (IOCN), were included in this 
study. American Joint Committee on Cancer (AJCC) 
TNM system was used for both clinical and histo-
pathological staging of the patients. The study was 
approved by the IOCN ethical committee (Approval No. 
59/29.11.2016), and all patients provided written con-
sent for participation in the study in accordance with the 
Declaration of Helsinki. Two or three fresh breast tissue 
biopsies were collected via core needle aspiration under 
ultrasound guidance before patients received any treat-
ment. The first biopsy samples were sent for pathologic 
analysis, while the second biopsy samples were used for 
mammosphere assays. Whenever possible, third biopsies 
were collected in RNAlater (Invitrogen, Waltham, MA, 
USA) and stored in liquid nitrogen for transcriptomic 
profiling.

In vitro mammosphere formation assay
Biopsies were disaggregated mechanically into fragments 
of approximately 1 mm3 and digested enzymatically for 
20 min at 37 °C in a collagenase solution to maximize the 
retrieval of single cells. After filtration through 70 μm Fil-
con filters, single-cell suspensions were cultured under 
anchorage-independent conditions according to the 
methods of Dontu et al. [18], with modifications. Mam-
mospheres were grown in Ultra-Low Attachment plates 
(Corning, Corning, NY, USA) in specific growth media 
supplemented with serum-free RPMI w/o phenol red 
(Thermo Scientific, Waltham, MA, USA), 100 units/mL 
penicillin, 100  µg/mL streptomycin (Lonza, Basel, Swit-
zerland), 2 mM glutamine (Lonza, Basel, Switzerland), 
20 ng/mL basic fibroblast growth factor (b-FGF) (R&D 
Systems, Minneapolis, MN, USA), 10 ng/mL epidermal 
growth factor (EGF) (Sigma‒Aldrich, Saint Louis, MO, 
USA), 1X B27 and 1X N2 (Gibco, Thermo Scientific, 
Waltham, MA, USA) and incubated in a 37  °C incuba-
tor containing 5% CO2. Mammosphere formation was 
monitored by phase-contrast microscopy for 7 to 30 days 
using a Zeiss Zen inverted microscope with an attached 
Nikon camera. Spheroids size was assessed using the 
integrated measurement tool of the microscope-camera 
software (Zeiss-Zen).
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RNA extraction
Frozen biopsies were homogenized in TRIzol Reagent 
(Ambion, Life Technologies, Carlsbad, CA, USA) using a 
Miccra D-1 (Miccra GmbH, Mullheim, Germany) poly-
tron and processed for total RNA extraction accord-
ing to the manufacturer’s instructions. The total RNA 
concentration was analyzed with a NanoDrop ND-1000 
(Thermo Scientific, Waltham, MA, USA), and the quality 
was assessed with a 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA).

Microarray analysis
Twenty-four biopsy samples were subjected to pheno-
type-associated transcriptomic analysis via microarray 
analysis. Biopsy samples were selected based on RNA 
quality. Microarray probes labeled with Cy3 were synthe-
sized from 100 ng of total RNA with a Low Input Quick 
Amp Labeling Kit (Agilent Technologies, Santa Clara, 
CA, USA), and the quality and quantity were checked 
with a NanoDrop ND-1000 (Thermo Fischer Scientific, 
Wilmington, DE, USA). The probes were hybridized for 
17 h at 65 °C on Agilent SurePrint G3 custom GE 4 × 180k 
arrays (Agilent Technologies, Santa Clara, CA, USA), 
which contained 100,744 unique sequences correspond-
ing to mRNAs and lncRNAs. The slides were scanned 
with an Agilent G2505C Microarray Scanner (Agilent 
Technologies, Santa Clara, CA, USA) at 3 μm resolution, 
and the microarray images were processed with Agilent 
Feature Extraction software v. 11.5.1.1 (Agilent Technol-
ogies, Santa Clara, CA, USA).

Bioinformatic analysis
Bioinformatic analysis was performed in R/Bioconduc-
tor using the raw median signals as input. Control and 
flagged spots were systematically removed. The data were 
quantile normalized between arrays, and the median 
signal value for the replicate probes on each array was 
computed. The differential expression was assessed using 
linear models and empirical Bayes statistics implemented 
in the limma package/R. The Bayesian model smooth-
ens the standard errors of log-fold changes across genes, 
squeezing the gene-specific variances towards a com-
mon value derived from the entire dataset [19]. A mini-
mum 1.5-fold decrease or increase in gene expression 
between groups with different mammosphere-forming 
capacities and a p value less than 0.05 were considered 
significant. Ingenuity Pathway Analysis software (IPA, 
Qiagen, Hilden, Germany) was used to map the differen-
tially expressed genes (-1.5 ≥ FR ≥ 1.5) between the mam-
mosphere formation groups into canonical pathways and 
biological functions as well as to visualize the upstream 
regulators of each pathway. An enrichment score [Fish-
er’s exact test (FET) P value] measuring the overlap of 
the observed and predicted regulated gene sets and a Z 

score assessing the match between the observed and pre-
dicted up- and downregulation patterns were automati-
cally calculated by IPA algorithms [20]. The two scores 
were considered to indicate the most significant path-
ways (p < 0.05, -2 ≥ Z score ≥ 2) that were differentially 
regulated between groups. The abundance of specific 
cell types in breast cancer biopsies was estimated based 
on individual gene expression profiles by using the xCell 
deconvolution algorithm developed by Aran et al. [21]. 
This webtool (https://comphealth.ucsf.edu/app/xcell) 
uses gene expression signature to infer the abundance 
of immune and stromal cell types within bulk transcrip-
tomics data, with the highest accuracy.

Gene expression validation by qRT‒PCR
Biopsy samples collected from 60 breast cancer patients 
were used for microarray gene expression validation. 
Total RNA (500 ng) was reverse transcribed using a Tran-
scriptor First Strand cDNA Synthesis Kit (Roche, Basel, 
Switzerland) following the random hexamer primer pro-
tocol. A total of 2.5  µl of 1:10 (v/v) diluted cDNA was 
amplified with a Light Cycler TaqMan Master Kit (Roche, 
Basel, Switzerland) in a final volume of 10  µl using a 
LightCycler 480 II Thermocycler (Roche, Basel, Switzer-
land). PCR was performed according to the following 
program: activation step at 95 °C for 10 min; followed by 
amplification step of 40 cycles: denaturation at 95 °C for 
10 s, annealing at 55 °C for 20 s, and extension at 72 °C 
for 1 s; ending with a cooling step at 40 °C for 30 s. The 
relative expression levels of the target genes were quan-
tified using the ΔΔCt method after normalization to the 
18 S housekeeping gene.

Clinical and TCGA data analysis and integration
The mRNA expression of breast invasive carcinoma 
(TCGA, PanCancer Atlas) and clinical information were 
obtained from the cBioPortal for Cancer Genomics 
(https://www.cbioportal.org/). For clinical data associa-
tions, gene expression was analyzed and plotted in rela-
tion to clinical parameters, while for survival curves, 
patients were divided into high versus low-expression 
groups based on the median value of each gene.

Immunohistochemical staining
Biopsy specimens obtained in the pathology department 
were fixed with 10% neutral buffered formalin for 6–72 h 
at room temperature and routinely processed. The par-
affin blocks were sectioned at 4 μm, and the slides were 
immersed for five minutes in xylene for deparaffiniza-
tion and twice in histology-grade alcohol for one minute 
for dehydration. Manual and automated IHC were used. 
The manual IHC protocol used the heat-induced epitope 
retrieval (HIER) method for antigen retrieval and solu-
tions based on citrate, with a pH = 6 for most antibodies 

https://comphealth.ucsf.edu/app/xcell
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or a pH = 9 for CD15 and SMA. The antibodies used 
were CD4 (Novocastra, Leica Biosystems, Wetzlar, Ger-
many), clone [4B12], dilution 1:50, CD1a (Dako, Agilent 
Technologies, Santa Clara, CA, USA)-clone [010], dilu-
tion 1:50, smooth muscle actin (SMA) (Dako, Agilent 
Technologies, Santa Clara, CA, USA) clone [1A4], dilu-
tion 1:100, 2D7- anti-Basophil antibody (Abcam, Cam-
bridge, UK) clone [2D7], dilution 1:50, ready to use CD15 
(Dako, Agilent Technologies, Santa Clara, CA, USA), 
clone [Carb-3], CD1c (Abcam, Cambridge, UK), clone 
[OTI2F4], dilution 1:350, CD66b (BioLegend, San Diego, 
CA, USA), clone [G10F5], 1:50, Langerin (Novocastra, 
Leica Biosystems, Wetzlar, Germany), and clone [12D6], 
dilution 1:50. The mixture was incubated for 30  min at 
37 °C. A Novolink Polymer Detection System (Novocas-
tra, Leica Biosystems, Wetzlar, Germany) was used for 
visualization. CD8 staining was performed by automated 
IHC using a Ventana BenchMark Ultra and an SP57 
clone (ready to use). Automated IHC staining was per-
formed using a Ventana OptiView Dab (Ventana Medical 
Systems, Oro Valley, AZ, USA) detection kit. Following 
the visualization step, the slides were coverslipped and 
analyzed. Slides were reviewed by a pathologist. The eval-
uation protocol included slide review and selection of the 
area with the highest IHC expression. A semiquantitative 
method was used to assess the percentage of cells in the 
peritumoral stroma that expressed the IHC markers. The 
assessment was performed in the area with the highest 
expression.

Statistical analysis
Correlations between mammosphere formation and clin-
icopathological data or neo-adjuvant therapy response 
were analyzed using Fisher’s exact test in SPSS (IBM 
SPSS Statistics for Macintosh, Version 28.0; IBM Corp 
Armonk, NY, USA). The rest of statistical analyses and 
graph plotting were carried out in GraphPad Prism 
(GraphPad Software, Version 8 for Windows; Boston, 
Massachusetts USA). Chi-squared test was used to ana-
lyze the correlation between cellular subsets identified by 
deconvolution algorithm and mammosphere formation 
groups. Spearman’s rank correlation coefficient was used 
to test the relationship between the infiltration patterns 
of immune cell subsets with each other and with MSCs. 
The associations between tissue mRNAs expression and 
mammosphere formation status or clinicopathologi-
cal characteristics were evaluated with Mann-Whitney 
U test for two categorical variables or Kruskall-Wallis 
test, followed by Dunn’s multiple comparison post hoc 
test, in case of three or more categorical variables. In 
order to evaluate the association between progression-
free survival (PFS) and mRNAs of interest, each mRNA 
expression was classified according to its median value, 
based on which the patients were allocated into high- or 

low-expression group. The survival curves were esti-
mated using the Kaplan-Meier method, and log-rank test 
was used to compare the survival distributions. All analy-
ses were considered significant at p-value less than 0.05. 
The heatmap and clustering of IFNγ activated genes was 
generated using the Morpheus online tool (https://soft-
ware.broadinstitute.org/morpheus/).

Data availability
The datasets supporting the conclusions of this article 
are available in the Gene Expression Omnibus (GEO) at 
GSE244973 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE244973). The expression profile data 
analyzed in this study were obtained from the cBioPortal 
for Cancer Genomics (TCGA BRCA database).

Results
The stem-like potential of breast cancer biopsies
A cohort of 125 biopsies from breast cancer patients was 
evaluated for CSC functionality via mammosphere assay. 
Visual observation of the mammosphere cultures and 
spheroids measurements revealed 3 main phenotypes. 
Some biopsies formed cultures with large spheres (more 
than 50 μm in diameter, previously reported as mammo-
spheres with stem-like features [22]), some grew as small 
spheres (less than 50  μm in diameter) and single living 
cells that were viable but non-dividing even after one 
month of culturing, while other cultures presented no 
spheroids with mostly dead single cells and debris. There-
fore, biopsies that produced cultures containing spher-
oids with a diameter larger than 50 μm were considered 
enriched in self-renewing CSCs. The intermediate phe-
notype of cultures presenting small spheroids and single 
living cells was attributed to the presence of quiescent or 
more differentiated CSCs, which had lower self-renewal 
abilities. Tumor samples that led to cultures without any 
viable cells were considered void of CSCs. Both the mam-
mospheres and the small spheroids showed significant 
variability across samples. Some mammospheres grew 
as tight, round spheroids, whereas others formed rather 
loose and irregularly shaped conglomerates. For easier 
analysis and subsequent reference, biopsies enriched in 
proliferating CSCs were labeled with M2, biopsies with 
quiescent CSCs were labeled with M1, and biopsies 
devoid of CSCs were labeled with M0 (Fig. 1). Of all 125 
biopsies, 24% were M2, 32% were M1 and 44% were M0.

Furthermore, we analyzed the relationship between 
mammosphere formation in vitro and the clinicopatho-
logical characteristics of the breast cancer patients 
included in the study (Table  1). Statistically significant 
associations (p = 0.019) were observed only between the 
mammosphere formation potential and clinical tumor 
size. Correlations between mammosphere formation and 
pathological response to neoadjuvant therapy were also 

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE244973
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE244973
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investigated, but no statistically significant differences 
were detected (Table 2).

Molecular profiling of breast cancer biopsies
Whole-genome transcriptomic analysis was performed 
on 24 selected samples, 8 from each mammosphere for-
mation group. Samples were selected based on availabil-
ity at the time of analysis and an RNA Integrity Number 
(RIN) > 8. A single M0 sample was excluded from the 
bioinformatic data analysis, a second examination by the 
pathologist confirmed it to be a metastasis of malignant 
melanoma. To ensure the integrity of the analysis and 
prevent potential technical biases stemming from varia-
tions in microarray runs, only the 23 samples assessed in 
the same microarray run were employed for subsequent 
analysis. Microarray data containing gene expression 
information for the remaining 23 biopsies were loaded 
into the xCell deconvolution webtool [21] and subjected 
to computational dissection to estimate the cellular com-
position of the tumor microenvironment. Bulk tumor 
deconvolution algorithm revealed a distinctive mixture 
of infiltrating immune cells and mesenchymal stem cells 
within each mammosphere formation group (Fig.  2a). 
Biopsies from the M0 group displayed the highest abun-
dance scores for infiltrating innate and adaptive immune 
cells. M2 biopsies with actively proliferating stem-like 
cells exhibited a rather immune-depleted outlook and 
were enriched in cells presenting a mesenchymal stem 

cell (MSC) signature. M1 biopsies revealed an interme-
diate state of immune infiltration and lower scores for 
MSCs. Of the 15 different cellular subsets identified by 
computational deconvolution, the abundance scores of 
9 cell types, namely, basophils (χ2= 9.47, p = 0.008), den-
dritic cells, and CD4 + and CD8 + T lymphocytes (χ2= 
6.039, p < 0.05), were significantly associated with the 
mammosphere formation potential of the M0, M1 and 
M2 groups. (Fig. 2a, cell types displaying significant asso-
ciations are marked with *).

Furthermore, the infiltration of immune cells displayed 
significant positive correlations with each other, suggest-
ing potential cooperation. Several immune cell subsets 
presented opposite infiltration patterns to those of MSCs, 
with the strongest trends being observed for dendritic 
cells and activated dendritic cells (Spearman ρ=-0.68 
and ρ=-0.70, p < 0.001), neutrophils (Spearman ρ=-0.65, 
p < 0.001) and CD8 + T effector memory cells (Spearman 
ρ=-0.65, p < 0.001) (Fig.  2b). Significant inverse correla-
tions (p < 0.03) were also detected between the abun-
dance of MSCs and immature dendritic cells, basophils, 
CD4 + T cells, CD4 + memory T cells, CD8 + T cells and 
CD8 + central memory T cells (Spearman ρ= -0.57, -0.5, 
-0.55, -0.48, -0.54 and − 0.57, respectively) (Fig. 2b).

Next, using immunohistochemical staining, we 
explored the abundance of the significantly associated 
immune and stromal cells within matching formalin-
fixed, paraffin-embedded (FFPE) tissues collected for 

Fig. 1  Mammosphere cultures from breast cancer biopsies. a M0 cultures lacking cells with stem potential. b M1 cultures containing mostly single cells 
and quiescent clusters (< 50 μm). c M2 cultures with self-renewing cells in mammospheres (> 50 μm)
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Table 1  Correlations between mammosphere formation and clinicopathological data
Distribution by clinical characteristics M0 M1 M2 Fisher’s exact test

p valuen = 55 (44%) n = 40 (32%) n = 30 (24%)
Age
(Median = 61)

≤ 60
> 60

24 (19.2%)
31 (24.8%)

22 (17.6%)
18 (14.4%)

13 (10.4%)
17 (13.6%)

0.505

Grading
(biopsy)

1 7 (5.6%) 8 (6.4%) 3 (2.4%) 0.805
2 34 (27.2%) 22 (17.6%) 17 (13.6%)
3 14 (11.2%) 10 (8%) 9 (7.2%)
NA 0 (%) 0 (%) 1 (0.8%)

ER + 42 (33.6%) 31 (24.8%) 25 (20%) 0.818
- (≤10%) 13 (10.4%) 9 (7.2%) 5 (4%)

PR + 31 (24.8%) 24 (19.2%) 19 (15.2%) 0.821
- (≤20%) 24 (19.2%) 16 (12.8%) 11 (8.8%)

Her2 + 3 (2.4%) 5 (4%) 3 (2.4%) 0.473
- 50 (40%) 35 (28%) 24 (19.2%)
NA 2 (1.6%) 0 (0%) 3 (2.4%)

Ki67 ≤ 20% 26 (20.8%) 16 (12.8%) 14 (11.2%) 0.708
> 20% 28 (22.4%) 24 (19.2%) 14 (11.2%)
NA 1 (0.8%) (0%) 2 (1.6%)

Molecular Subtype Luminal A 16 (12.8%) 13 (10.4%) 10 (8%) 0.856
Luminal B 24 (19.2%) 15 (12%) 11 (8.8%)
Her2+ 3 (2.4%) 5 (4%) 3 (2.4%)
TNBC 10 (8%) 7 (5.6%) 3 (2.4%)
NA 2 (1.6%) 0 (0%) 3 (2.4%)

Tumor size
(clinic)

cT1 6 (4.8%) 5 (4%) 3 (2.4%) 0.019
cT2 25 (20%) 13 (10.4%) 19 (15.2%)
cT3 6 (4.8%) 3 (2.4%) 4 (3.2%)
cT4 9 (7.2%) 15 (12%) 1 (0.8%)
NA 9 (7.2%) 4 (3.2%) 3 (2.4%)

Lymph nodes
(clinic)

cN0 11 (8.8%) 12 (9.6%) 10 (8%) 0.161
cN1 20 (16%) 7 (5.6%) 7 (5.6%)
cN > 2 14 (11.2%) 17 (13.6%) 10 (8%)
NA 10 (8%) 4 (3.2%) 3 (2.4%)

Metastasis
(clinic)

cM0 39 (31.2%) 31 (24.8%) 27 (21.6%) -
cM1 2 (1.6%) 3 (2.4%) 0 (0%)
NA 14 (11.2%) 6 (4.8%) 3 (2.4%)

Clinical stage I 2 (1.6%) 5 (4%) 2 (1.6%) 0.121
II 17 (13.6%) 9 (7.2%) 16 (12.8%)
III 22 (17.6%) 16 (12.8%) 9 (7.2%)
IV 4 (3.2%) 3 (2.4%) 0 (0%)
NA 10 (8%) 7 (5.6%) 3 (2.4%)

Tumor size (pathologic) pT0 3 (2.4%) 6 (4.8%) 4 (3.2%) 0.469
pT1 21 (16.8%) 15 (12%) 10 (8%)
pT > 2 16 (12.8%) 9 (7.2%) 11 (8.8%)
NA 15 (12%) 10 (8%) 5 (4%)

Lymph nodes (pathologic) pN0 23 (18.4%) 15 (12%) 15 (12%) 0.782
pN1 9 (7.2%) 6 (4.8%) 7 (5.6%)
pN > 2 10 (8%) 9 (7.2%) 4 (3.2%)
NA 13 (10.4%) 10 (8%) 4 (3.2%)

Lymphatic invasion (pathologic) L0 27 (21.6%) 22 (17.6%) 14 (11.2%) 0.325
L1 15 (12%) 8 (6.4%) 12 (9.6%)
NA 13 (10.4%) 10 (8%) 4 (3.2%)

Survival status Alive 46 (36.8%) 35 (28%) 25 (20%) 0.855
Deceased 9 (7.2%) 5 (4%) 5 (4%)

ER- estrogen receptor; PR- progesterone receptor; Her2 – human epidermal growth factor receptor; Ki67- cellular marker for proliferation; TNBC – triple negative 
breast cancer; cT – clinical tumor size; cN- clinical number of lymph nodes; cM – clinical metastasis; pT – pathological tumor size; pN- pathological number of lymph 
nodes; L – pathological lymphatic invasion
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diagnosis. CD8 and CD4 surface markers were used 
to stain for CD8 + and CD4 + T cells; CD1a, CD1c, and 
langerin (CD207) were used for dendritic cells; 2D7, 
for basophils; CD15 and CD66b, for neutrophils; and 
smooth muscle actin (SMA), for fibroblasts and/or mes-
enchymal stem cells. The percentage of positive cells in 
each biopsy was characterized as high or low according 
to the median value (Fig.  2c). Significant associations 
were found only between the M2 subgroup and the upper 
quartile of SMA-expressing cells (chi-square test, χ2 = 
7.693, p = 0.02).

To further explore the relevant regulators that drive 
the observed differences in mammosphere formation, 
we performed differential expression analysis of the 
transcriptomic signatures between the three groups of 
tumors. A threshold of -1.5 ≥ FR ≥ 1.5 and p value < 0.05 
was considered for filtering significantly differentially 
expressed genes (DEG). A total of 908 genes were found 
to be differentially expressed between M2 and M0, 658 
between M1 and M0 and 395 between M2 and M1, 
before applying false discovery rate correction. Adjust-
ing p-values by Benjamini–Hochberg method, further 
filtered the gene set leading to loss of statistical signifi-
cance. These results are expected when stringent correc-
tions are employed for groups that differ minimally. Thus, 
considering the distinct phenotypes used to separate the 

groups, we decided to further explore the possible under-
lying factors and retained only the FR (fold regulation) 
and unadjusted p values (-1.5 ≥ FR ≥ 1.5, p value < 0.05) as 
the significance thresholds. The gene sets were uploaded 
to IPA for functional analysis. When comparing the acti-
vation levels of several signaling pathways, the most pro-
nounced differences were detected between the M2 and 
M0 groups, with M1 exhibiting an intermediate phe-
notype. The analysis revealed the inhibition of several 
pathways associated with lymphocyte activation (ICOS-
ICOSL signaling pathway in T helper cells, Z score = 
-3.74, p < 0.001) and differentiation (Th1 pathway, Z score 
= -3.9, p < 0.001) as well as dendritic cell maturation (Z 
score = -3.5, p < 0.001) in the M2 mammosphere-form-
ing group compared with the M0 group. Additionally, 
the analysis revealed two significantly activated path-
ways (p < 0.05): the PD-1, PD-L1 cancer immunotherapy 
pathway (Z score = 2.53, p < 0.001), and the PCP pathway 
(Z score = 2, p < 0.05) in M2 biopsies compared with M0 
biopsies (Fig. 3a). Taken together, these results suggest a 
reduced immune response in tumors bearing CSCs.

Upstream regulator analysis highlighted IFNG as an 
important upstream regulator of the significant signal-
ing pathways and biological processes between the two 
groups. Network analysis of known direct interactions 
between IFGN and its target genes revealed the predicted 
mechanistic orientation between the upstream regulator 
and the target genes in our dataset (Fig.  3b). Therefore, 
we explored the IFNγ downstream signaling pathways in 
each mammosphere-forming group by mapping the tar-
get genes consistent with IFNγ activation to a heatmap 
representing the transcript abundance of each gene. This 
representation revealed individual activation patterns of 
IFNγ-stimulated genes in the M0, M1 and M2 groups.

The upregulated genes consistent with IFNγ signaling 
activation were predicted by IPA to be involved in solid 
tumor malignancy, while the downregulated genes con-
sistent with the inhibition of IFNγ signaling were pre-
dicted to be involved in cellular movement, lymphocyte, 
and leukocyte migration and blood cell activation. Addi-
tionally, unsupervised hierarchical clustering revealed a 
clear separation between the M0 and M2 mammosphere-
forming groups in terms of IFNγ signaling, with greater 
activation in the M0 group than in the M2 group (Fig. 3c). 
Thus, we hypothesize that impairment of IFNγ signaling 
results in the suppression of T cell mediated immunity 
(Fig. 3d) and CSC maintenance in breast tumors.

A set of 14 genes (-1.5 ≥ FR ≥ 1.5, p < 0.05 in M2 vs. 
M0), which are involved in different stem cell-related 
and immune activation signaling pathways (Fig. 4a), were 
considered for further gene expression validation via 
qRT‒PCR. The validation cohort consisted of 60 patient 
biopsies, comprising the initial 23 samples used for 
microarray analysis and 37 additional samples from the 

Table 2  Correlations between mammosphere formation and 
neoadjuvant therapy response
Neoadjuvant 
therapy

M0 M1 M2 Fisher’s 
exact 
test
p value

n = 35 
(42.16%)

n = 26 
(31.32%)

n = 22
(26.5%)

    Only CT 21 (25.3%) 16 
(19.28%)

10 (12.05%) -

    Only HT 6 (7.23%) 2 (2.41%) 8 (9.64%)
    CT + HT 4 (4.82%) 2 (2.41%) 2 (2.41%)
    Combinatory 1 (1.2%) 2 (2.41%) 0 (0%)
    Her2 + TT 3 (3.61%) 4 (4.82%) 2 (2.41%)
Pathological Response
Miller Payne
    Grade 1 8 (9.64%) 4 (4.82%) 9 (10.84%) 0.286
    Grade 2 4 (4.82%) 3 (3.61%) 1 (1.2%)
    Grade 3 8 (9.64%) 7 (8.43%) 6 (7.23%)
    Grade 4 7 (8.43%) 1 (1.2%) 1 (1.2%)
    Grade 5 4 (4.82%) 7 (8.43%) 4 (4.82%)
NA 4 (4.82%) 4 (4.82%) 1 (1.2%)
RCB
    RCB-0 3 (3.61%) 5 (6.02%) 4 (4.82%) 0.692
    RCB-I 5 (6.02%) 2 (2.41%) 1 (1.2%)
    RCB-II 16 

(19.28%)
9 (10.84%) 12 (14.46%)

    RCB-III 7 (8.43%) 6 (7.23%) 4 (4.82%)
    NA 4 (4.82%) 4 (4.82%) 1 (1.2%)
CT- chemotherapy, HT- hormonal therapy, TT-targeted therapy, RCB- residual 
cancer burden, NA- data not available
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Fig. 2  Microenvironment landscape of M0, M1 and M2 biopsies. a Heatmap displaying the abundance of microenvironment cells (DC-dendritic cells; 
aDC-activated dendritic cells; cDC- conventional dendritic cells; iDC-immature dedritic cells; CD4 + Tcm- CD4 + central memory T cells; CD4 + Tem- 
CD4 + effector memory T cells; CD4 + Tm- memory CD4 + cells; CD4 + Tn – naïve T cells; CD8 + Tcm- CD8 + central memory T cells; CD8 + Tem- CD8 + ef-
fector memory T cells; MSC – mesenchymal stem cells; ) in each tumor biopsy; * indicates the cell types with infiltrating levels significantly associated 
(chi-square test, * p < 0.05, ** p < 0.01) with the mammosphere-forming potential of breast biopsies. b Association between infiltrated immune cells and 
MSC abundance in tumor biopsies (Spearman test). c Immunohistochemical evaluation of immune and stromal cells within breast cancer biopsies
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biobank. Sample selection was based on RNA quality and 
included tissue specimens from all three mammosphere-
forming groups. The expression levels of ADIPOQ, 
CD40LG, CXCR5, EFNA1, ESRP1, FGFR1, GDF15, 
HES1, IL12RB1, IL2RG, INFG, TBX21, WNT3, and 
WNT4 were evaluated in the mammosphere-forming 

groups via qRT‒PCR. Of these, IFNG, CD40LG, TBX21, 
and IL2RG were significantly downregulated in the M2 
group compared to the M0 group. CXCR5 was signifi-
cantly downregulated in both the M2 and M1 groups 
compared to the M0 group (Fig. 4b).

Fig. 3  a Functional integration of bulk transcriptomic signatures revealed divergent activation of immunological and stemness-related signaling path-
ways between the M2 and M0 mammosphere-forming groups. b Network analysis of direct interaction between IFNG and target genes in the M2 vs. 
M0 dataset; c Expression of downstream genes consistent with IFNG inhibition in M0, M1, and M2 tumors and related biological processes; d Predicted 
regulation of the T cell receptor downstream signaling pathway in M2 vs. M0 dataset
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Next, we explored the associations between gene 
expression and clinicopathological data of our cohort 
of patients  (Fig. 5). IFNG and CXCR5 were significantly 
associated with tumor size (p = 0.032 and p = 0.047, 
respectively), and their expression was lower in invading 
tumors (T4). Additionally, IFNG and CD40LG were asso-
ciated with clinical stage (Kruskal-Wallis Test: p = 0.048 
and 0.024, respectively), with relatively lower expression 
levels in more advanced stages (stage IV vs. stage II, for 
INFG; stage III vs. II for CD40LG). No statistically sig-
nificant associations were found between TBX21 and 
clinical data in our cohort. Expression levels of CD40LG 
and IL2RG presented borderline significant association 
values with tumor size.

Furthermore, we used the TCGA BRCA dataset to 
evaluate the clinical significance of the validated genes in 
a larger patient cohort (Fig.  6a). Consistently, we found 
significant associations between lower expression of 
IFNG, CD40LG, and CXCR5 and larger tumor sizes or 
adjacent tissue invasion (p = 0.01, p = 0.03 and p = 0.01, 
respectively). Underexpressed IFNG was also associated 

with more advanced disease (p = 0.02) and the presence 
of isolated tumor cells within the lymph nodes (N0 I+, 
p = 0.04). Moreover, low CD40LG expression was asso-
ciated with distant metastasis (p = 0.002). K‒M analysis 
(Fig.  6b) revealed that patients with higher expression 
levels of all the tested genes had significantly better 
progression-free survival (PFS). Moreover, higher IFNG 
expression was also associated with disease-free sur-
vival (p = 0.038), disease-specific survival (p = 0.027) and 
overall survival (p = 0.001) before 200 months (p = 0.027). 
Additionally, the high-expression CD40LG patient group 
had better disease-specific survival before 200 months 
(p = 0.038) than did the low-expression group.

Discussion
CSCs have been previously analyzed in several solid 
tumor types [22–28], including breast cancer, but most of 
these studies have been performed on cell lines. The dif-
ferences between primary and immortalized cells are stir-
ring controversies regarding prospective characterization 
markers. For example, combinations of different markers, 

Fig. 4  Gene expression validation in an extended cohort of patient samples a The 14-gene set selected from pathways related to stem cell signaling and 
immune activation. b qRT‒PCR validation of differentially expressed genes in M0, M1 and M2 biopsies from 60 patients

 



Page 11 of 15Baldasici et al. Journal of Translational Medicine          (2024) 22:530 

such as CD133, CD44, CD24, and ALDH, have been 
reported to be associated with cancer stem cell proper-
ties [9]; however, highly sensitive and specific markers for 
CSCs remain elusive. Moreover, marker-based detection 
of CSCs can only reveal the expression of certain mol-
ecules in a single snapshot in time, without considering 
the dynamic behavior of cancer cells or their ability to 
regulate signaling patterns in response to external cues 
[10]. Furthermore, this approach neglects the selection 
pressure of different microenvironments, excluding the 
possibility of spontaneous conversion of differentiated 
tumor cells to a stem-like state [15]. Thus, cell selection 
based on single or multiple surface expression markers 
could lead to misclassification of cell populations with 
stem properties. Grimshaw et al. [22] demonstrated that 
the mammosphere assay is a highly appropriate model 
for isolating and enriching tumorigenic stem-like cells 
from breast cancer patient samples and that the ability of 

cells to form mammospheres was not correlated with the 
CD44+/CD24low/− phenotype.

Thus, combining the mammosphere assay with the 
use of primary cells obtained from biopsy samples is 
considered to be more relevant for analyzing the stem-
ness properties of individual tumors, in order to develop 
more personalized therapeutic strategies. Addition-
ally, one main advantage of using primary cell cultures 
over cancer cell lines is the availability of clinicopatho-
logical data from patients, which can be correlated 
with data obtained in vitro. To date, few studies [29, 30] 
have reported primary CSC cultures from breast cancer 
patients, and given the difficulties in establishing these 
primary cultures, these studies rely on small cohorts of 
patients.

Therefore, we used a mammosphere formation assay 
on patient-derived primary cells as a model to assess the 
presence and functionality of unsorted cancer stem-like 

Fig. 5  Associations between gene expression and clinicopathological data of breast cancer patients: (a) tumor size, (b) lymph node metastasis, (c) clini-
cal stage, and (d) molecular subtype; each graph depicts the p value of Kruskal-Wallis test, and * p-value < 0.05, **p-value < 0.01 were added where Dunn’s 
multiple-comparison test returned significant values
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cell populations in a cohort of 125 breast tumors. Our 
results revealed the heterogeneity of breast cancer 
tumors in terms of CSC content and functionality, gen-
erating three groups of primary cultures: highly enriched 
in mammospheres (M2 group), poorly enriched in small 

clusters and single living cells (M1), or devoid of living 
cells (M0). While the M0 group could be defined as a 
non-stem group, the M2 and M1 mammosphere-forming 
groups might exhibit two alternative states of cancer stem 
cell plasticity: an epithelial-like proliferative state (M2) 

Fig. 6  Relationships between immune response genes associated with mammosphere formation and clinical data from large cohorts of patients from 
TCGA. a Associations between the relative expression of genes involved in immune responses and clinical data of breast cancer patients from the TCGA 
database b Relationships between validated genes and PFS in breast cancer patients from TCGA
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and a mesenchymal-like, quiescent state (M1). Stud-
ies have shown that depending on microenvironmental 
cues, CSCs can adopt either state or can transition from a 
proliferative to a quiescent state and vice versa [5]. These 
findings suggest that breast tumor heterogeneity could be 
attributed to the presence of cancer cells with stem-like 
properties, which can proliferate and self-renew when 
seeded in the right environment [31, 32]. 

Within this context, our analysis aimed to investi-
gate the tumor microenvironment (TME) characteris-
tics associated with the maintenance of CSCs in breast 
tumors. By employing computational deconvolution 
techniques and pathway analysis of transcriptomic sig-
natures derived from tumor biopsies, we calculated dis-
tinct patterns of immune infiltration in different groups 
based on mammosphere formation. We observed high 
levels of immune cell infiltration in the M0 group, inter-
mediate levels in the M1 group, and low levels in the M2 
group. Specifically, the M0 tumors exhibited a signifi-
cantly greater abundance of lymphocytes, dendritic cells, 
and basophils than did the M2 tumors. Furthermore, we 
observed increased activation of immune response path-
ways in the M0 group, which correlated with the absence 
of mammosphere formation potential.

Conversely, the M2 biopsies showed a significant 
increase in the abundance of mesenchymal stem cells 
(MSCs) compared to that in the M0 group. Additionally, 
we observed activation of the planar cell polarity (PCP) 
developmental signaling pathway and the PD-1/PD-L1 
immune evasion pathway in the M2 mammosphere 
group.

Based on these results, we hypothesize that the milieu-
related factors specific to the TME present in each mam-
mosphere formation group may drive CSC survival and 
induce a proliferative or quiescent state through auto-
crine (cancer cells themselves) and paracrine (surround-
ing stromal and immune cells) signaling feedback loops. 
Moreover, by upregulating immune evasion pathways, 
CSCs might block the infiltration and activity of immune 
effector cells within the tumor, attract stromal cells, and 
actively shape their niche [33]. Additionally, the stromal 
cell compartment plays an important role in tumor pro-
gression by driving the migration and invasion of tumor 
cells [34], increasing cancer cell proliferation [35], pro-
moting in vitro tumorsphere formation, and promoting 
in vivo tumorigenesis [36].

Within the TME, secreted cytokines play a crucial role 
in regulating the activity of immune cells and their inter-
action with tumors. IFNγ is considered a major effector 
of immunity because it coordinates biological functions 
involved in host defense and the establishment of adap-
tive immunity and has critical roles in immune surveil-
lance [37, 38]. In addition, IFNγ has a proapoptotic effect 
on cancer cells, limiting tumor growth in vivo [39].

Our data revealed IFNG (interferon gamma) as the 
upstream regulator of the pathways associated with the 
differential expression between the mammosphere for-
mation groups. Additionally, the expression of the IFNG 
downstream genes displayed divergent activation pat-
terns in the M0 and M2 groups, indicating impaired 
immune function coupled with the activation of malig-
nancy-related pathways in the M2 biopsies. Therefore, we 
hypothesize that the immune evasion phenotype associ-
ated with the M2 phenotype might be driven by impaired 
IFNγ secretion and signaling within the TME.

Our hypothesis is supported by published data that 
demonstrate that in the context of chronic inflammation 
within the TME, cancer cells develop coping mechanisms 
designed to promote their immune evasion capabilities. 
Prolonged IFNγ exposure induces the overexpression 
of the inhibitory molecules PD-L1 and PD-L2 and their 
receptor PD-1 on tumor cells, leading to T-cell exhaus-
tion and attenuation of effector T-cell responses [40]. 
Additionally, tumor cells escape IFNγ-induced immune 
elimination by downregulating the expression of signal-
ing molecules, switching to alternative signaling path-
ways that are associated with tumor promotion and 
survival, or undergoing G0/G1 cell cycle arrest and enter-
ing a quiescent state [38]. Furthermore, some studies 
indicate that the available concentration of IFNγ might 
dictate its tumor-supportive or opposing role, with low 
levels of the cytokine inducing metastasis and tumor-
sphere formation, while high-dose infusion leads to 
tumor regression [41].

Moreover, IFNG and 4 other genes, namely, CXCR5, 
IL2RG, TBX21, and CD40LG, were found to be signifi-
cantly differentially expressed between the M0 and M2 
mammosphere formation groups in an extended cohort 
of 60 patients. These genes are involved in the regula-
tion of different immune-related processes [41–45] and 
were downregulated in the M2 group, further supporting 
our hypothesis. In addition, these genes were evaluated 
in relation to the clinicopathological data of our cohort 
of patients as well as in an extended external TCGA 
cohort. The analysis revealed that increased expression 
of these genes was correlated with a better prognosis 
and increased progression-free survival in breast can-
cer patients. Therefore, although indirect, our data sug-
gest that the presence of CSCs in breast tumors could 
influence infiltration and immune response activity at 
the tumor site and impact the prognosis and survival of 
cancer patients. The implication of the immune context 
in patient prognosis is well supported by published data, 
which indicate that low CD8 + T-cell infiltration could be 
associated with cancer stem cell maintenance and tumor 
recurrence in pancreatic cancer [38], while in breast can-
cer, several studies have demonstrated the positive effect 
of infiltrating CD8 + lymphocytes on patient prognosis 
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and survival [46–50]. This information is particularly rel-
evant in the context of newly emerging immunotherapy 
approaches for improving breast cancer clinical man-
agement [51] and opens new perspectives regarding the 
interplay between CSCs and the tumor immune micro-
environment as an important variable to be addressed 
when designing therapeutic strategies.

Conclusion
Collectively, our findings imply a robust correlation 
between the enrichment of CSCs in primary tumor 
biopsies and the suppression of immune activity within 
breast tumors. The only clinicopathological feature asso-
ciatiated with mammosphere formation was the clinical 
tumor size, which is not surprising considering that CSCs 
presence has been solely reported in correlation with 
tumor recurrence. In light of the absence of clear clini-
copathological features that can predict CSCs presence, 
these observations not only present novel prospects, but 
also highlight potential challenges in the realm of immu-
notherapeutic approaches for breast cancer. Nonetheless, 
conducting thorough investigations through single-cell 
analysis and spatial transcriptomics holds the potential to 
yield valuable insights into the activation state of immune 
cells at the interface with CSCs. Furthermore, such anal-
yses can shed new light on the underlying mechanisms 
governing their intricate interplay, with important impli-
cations for advancing the field of immunotherapy in 
breast cancer.

Author contributions
O.B: Data curation, investigation, visualization, methodology, writing–original 
draft. O.S: Supervision, investigation, methodology. A.R: Data curation, 
investigation. C.L: Investigation. S.V: Data curation, investigation. L.M: 
Investigation. B.P: Investigation. B.F: Investigation. A.C: Investigation. L.V: 
Supervision. L.B: Investigation, supervision. O.B: Conceptualization, supervision. 
A.R: Conceptualization, supervision O.T: Conceptualization, methodology, 
supervision, funding acquisition, writing–review and editing.

Funding
This work was supported by the Competitiveness Operational Programme 
2014–2020, Contract no. 41/02.09.2016, MySMIS 103557, Project title: Genomic 
and microfluidic approaches toward blocking breast cancer cell invasion and 
metastasis –“BREASTMINCROGENOMICS”.

Declarations

Author disclosures
No disclosures were reported by any of the authors.

Conflict of interest
The authors declare no potential conflicts of interest.

Received: 19 January 2024 / Accepted: 7 May 2024

References
1.	 Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and 

metastasis NIH Public Access. Nat Med. 2013;19:1423–37.

2.	 Shaked Y. The pro-tumorigenic host response to cancer therapies. Nat Rev 
Cancer Springer US. 2019;19:667–85.

3.	 Brooks MD, Burness ML, Wicha MS. Therapeutic implications of Cellular 
Heterogeneity and plasticity in breast Cancer. Cell Stem Cell Cell Stem Cell. 
2015;17:260–71.

4.	 Liu S, Wicha MS. Targeting Breast Cancer Stem Cells. Journal of Clinical Oncol-
ogy [Internet]. American Society of Clinical Oncology; 2010 [cited 2023 Jul 
24];28:4006. /pmc/articles/PMC4872314/.

5.	 De Angelis ML, Francescangeli F, Zeuner A. Breast cancer stem cells as drivers 
of tumor chemoresistance, dormancy and relapse: new challenges and 
therapeutic opportunities. Cancers (Basel). 2019;11.

6.	 Bruttel VS, Wischhusen J. Cancer stem cell immunology: key to understand-
ing tumorigenesis and tumor immune escape? Front Immunol. Front Res 
Foundation. 2014;5:360.

7.	 Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resis-
tance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 
J Natl Cancer Inst. 2008;100:672–9.

8.	 Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al. 
Residual breast cancers after conventional therapy display mesenchymal as 
well as tumor-initiating features. Proc Natl Acad Sci U S A Proc Natl Acad Sci U 
S A. 2009;106:13820–5.

9.	 Zhang X, Powell K, Li L. Breast Cancer stem cells: biomarkers, identification 
and isolation methods, regulating mechanisms, Cellular Origin, and Beyond. 
Cancers (Basel). Cancers (Basel). 2020;12:1–28.

10.	 Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like 
cells that self-renew, give rise to phenotypically diverse progeny and survive 
chemotherapy. Breast Cancer Res BioMed Cent. 2008;10:1–13.

11.	 Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH 
et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: 
an early step necessary for metastasis. Breast Cancer Res Breast Cancer Res; 
2006;8.

12.	 Qiao GL, Song LN, Deng ZF, Chen Y, Ma LJ. Prognostic value of CD44V6 
expression in breast cancer: a meta-analysis. Onco Targets Ther. 
2018;11:5451–7.

13.	 Lenos KJ, Miedema DM, Lodestijn SC, van den Nijman LE, Romero Ros 
X, et al. Stem cell functionality is microenvironmentally defined during 
tumour expansion and therapy response in colon cancer. Nat Cell Biol. 
2018;20:1193–202.

14.	 Keysar SB, Jimeno A. More than markers: biological significance of 
cancer stem cell-defining molecules. Mol Cancer Ther Mol Cancer Ther. 
2010;9:2450–7.

15.	 Prager BC, Xie Q, Bao S, Rich JN. Cancer Stem Cells: The Architects of the 
Tumor Ecosystem. Cell Stem Cell [Internet]. Elsevier Inc.; 2019;24:41–53. 
https://doi.org/10.1016/j.stem.2018.12.009.

16.	 Scadden DT. Nice neighborhood: emerging concepts of the stem cell niche. 
Cell [Internet]. Cell; 2014 [cited 2022 Aug 25];157:41–50. https://pubmed.
ncbi.nlm.nih.gov/24679525/.

17.	 Hyman DM, Taylor BS, Baselga J. Implementing genome-driven oncology. 
Cell Cell. 2017;168:584–99.

18.	 Dontu G, Wicha MS. Survival of mammary stem cells in suspension culture: 
implications for stem cell biology and neoplasia. J Mammary Gland Biol 
Neoplasia. 2005;10:75–86.

19.	 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al. Limma powers dif-
ferential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43.

20.	 Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in 
ingenuity pathway analysis. Bioinformatics. 2014;30:523–30.

21.	 Aran D, Hu Z, Butte AJ, xCell. Digitally portraying the tissue cellular heteroge-
neity landscape. Genome Biol Genome Biology. 2017;18:1–14.

22.	 Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-
Stanke L, et al. Mammosphere culture of metastatic breast cancer cells 
enriches for tumorigenic breast cancer cells. Breast Cancer Res. 2008;10:1–10.

23.	 Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of 
pancreatic cancer stem cells. Cancer Res Cancer Res. 2007;67:1030–7.

24.	 Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identifica-
tion of a cancer stem cell in human brain tumors. Cancer Res United States. 
2003;63:5821–8.

25.	 Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification 
and expansion of the tumorigenic lung cancer stem cell population. Cell 
Death Differ Cell Death Differ. 2008;15:504–14.

https://doi.org/10.1016/j.stem.2018.12.009
https://pubmed.ncbi.nlm.nih.gov/24679525/
https://pubmed.ncbi.nlm.nih.gov/24679525/


Page 15 of 15Baldasici et al. Journal of Translational Medicine          (2024) 22:530 

26.	 Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. From the 
cover: prospective identification of tumorigenic breast cancer cells. Volume 
100. Proc Natl Acad Sci U S A. National Academy of Sciences; 2003. p. 3983.

27.	 Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. 
Identification and expansion of human colon-cancer-initiating cells. Nature. 
2006;445:111–5.

28.	 Herreros-Pomares A, de-Maya-Girones JD, Calabuig-Fariñas S, Lucas R, 
Martínez A, Pardo-Sánchez JM, et al. Lung tumorspheres reveal cancer stem 
cell-like properties and a score with prognostic impact in resected non-small-
cell lung cancer. Cell Death Dis Springer US. 2019;10:1–14.

29.	 Hofmann S, Cohen-Harazi R, Maizels Y, Koman I. Patient-derived tumor spher-
oid cultures as a promising tool to assist personalized therapeutic decisions 
in breast cancer. Transl Cancer Res AME Publishing Co. 2022;11:134–47.

30.	 Izadpanah A, Delirezh N, Mahmodlou R. Ex vivo optimization of glucose-
regulated protein 94/Glycoprotein 96 expressions in Mammospheres; 
implication for breast Cancer immunotherapy. Cell J Cell J. 2022;24:261–6.

31.	 Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, et al. Bio-
logical and molecular heterogeneity of breast cancers correlates with their 
cancer stem cell content. Cell Cell. 2010;140:62–73.

32.	 Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell Cell 
Stem Cell. 2014;14:275–91.

33.	 Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune 
cells: potential therapeutic targets in the tumor immune microenvironment. 
Molecular Cancer. 2023 22:1 [Internet]. BioMed Central; 2023 [cited 2023 Jun 
29];22:1–22. https://molecular-cancer.biomedcentral.com/articles/https://doi.
org/10.1186/s12943-023-01748-4.

34.	 Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. 
Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in 
breast cancer cell migration. Cell Elsevier Inc. 2012;151:1542–56.

35.	 Al-toub M, Almohawes M, Vishnubalaji R, Alfayez M, Aldahmash A, Kassem 
M et al. CXCR7 signaling promotes breast cancer survival in response to 
mesenchymal stromal stem cell-derived factors. Cell Death Discov Springer 
US; 2019;5.

36.	 Chen Y, He Y, Wang X, Lu F, Gao J. Adiposederived mesenchymal stem cells 
exhibit tumor tropism and promote tumorsphere formation of breast cancer 
cells. Oncol Rep. 2019;41:2126–36.

37.	 Hsu JM, Xia W, Hsu YH, Chan LC, Yu WH, Cha JH et al. STT3-dependent PD-L1 
accumulation on cancer stem cells promotes immune evasion. Nat Commun 
Nat Commun; 2018;9.

38.	 Hou YC, Chao YJ, Hsieh MH, Tung HL, Wang HC, Shan YS. Low CD8 + T cell 
infiltration and high PD-L1 expression are Associated with Level of CD44+/
CD133 + Cancer stem cells and predict an unfavorable prognosis in pan-
creatic Cancer. Cancers 2019. Volume 11. Page 541. Multidisciplinary Digital 
Publishing Institute; 2019. p. 541.

39.	 Thibaut R, Bost P, Milo I, Cazaux M, Lemaître F, Garcia Z, et al. Bystander IFN-γ 
activity promotes widespread and sustained cytokine signaling altering the 
tumor microenvironment. Nat Cancer. 2020;1:302–14.

40.	 Kursunel MA, Esendagli G. The untold story of IFN-γ in cancer biology. Cyto-
kine Growth Factor Rev Elsevier Ltd. 2016;31:73–81.

41.	 Sun Z, Ren Z, Yang K, Liu Z, Cao S, Deng S, et al. A next-generation tumor-
targeting IL-2 preferentially promotes tumor-infiltrating CD8 + T-cell response 
and effective tumor control. Nat Commun. 2019;Nat Commun. 10.

42.	 Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector 
responses, tolerance, and immunotherapy. Immun Immun. 2013;38:13–25.

43.	 Saravia J, Chapman NM, Chi H. Helper T cell differentiation. Cell Mol Immunol 
Cell Mol Immunol. 2019;16:634–43.

44.	 Leng RX, Pan HF, Liu J, Yang XK, Zhang C, Tao SS et al. Evidence for genetic 
association of TBX21 and IFNG with systemic lupus erythematosus in a Chi-
nese Han population. Scientific Reports 2016 6:1. Nature Publishing Group; 
2016;6:1–5.

45.	 Behrens G, Li M, Smith CM, Belz GT, Mintern J, Carbone FR et al. Helper T cells, 
dendritic cells and CTL Immunity. Immunol Cell Biol. John Wiley & Sons, Ltd; 
2004;82:84–90.

46.	 Mahmoud SMA, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AHS, et 
al. Tumor-infiltrating CD8 + lymphocytes predict clinical outcome in breast 
cancer. J Clin Oncol. 2011;29:1949–55.

47.	 Fridman WH, Pagès F, Saut̀s-Fridman C, Galon J. The immune contexture in 
human tumours: impact on clinical outcome. Nat Rev Cancer Nat Publishing 
Group. 2012;12:298–306.

48.	 Mohammed ZMA, Going JJ, Edwards J, Elsberger B, Doughty JC, McMillan 
DC. The relationship between components of tumour inflammatory cell 
infiltrate and clinicopathological factors and survival in patients with primary 
operable invasive ductal breast cancer. Br J Cancer Nat Publishing Group. 
2012;107:864–73.

49.	 Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, et al. Associa-
tion between CD8 + T-cell infiltration and breast cancer survival in 12 439 
patients. Annals Oncol Elsevier Masson SAS. 2014;25:1536–43.

50.	 Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, et al. Single-cell 
profiling of breast cancer T cells reveals a tissue-resident memory subset 
associated with improved prognosis. Nat Med Springer US. 2018;24:986–93.

51.	 Debien V, De Caluwé A, Wang X, Piccart-Gebhart M, Tuohy VK, Romano E et 
al. Immunotherapy in breast cancer: an overview of current strategies and 
perspectives. NPJ Breast Cancer [Internet]. NPJ Breast Cancer; 2023 [cited 
2023 Jun 23];9. https://pubmed.ncbi.nlm.nih.gov/36781869/.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://molecular-cancer.biomedcentral.com/articles/
https://doi.org/10.1186/s12943-023-01748-4
https://doi.org/10.1186/s12943-023-01748-4
https://pubmed.ncbi.nlm.nih.gov/36781869/

	﻿The transcriptional landscape of cancer stem-like cell functionality in breast cancer
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Patients and biopsy samples collection
	﻿In vitro mammosphere formation assay
	﻿RNA extraction
	﻿Microarray analysis
	﻿Bioinformatic analysis
	﻿Gene expression validation by qRT‒PCR
	﻿Clinical and TCGA data analysis and integration
	﻿Immunohistochemical staining
	﻿Statistical analysis
	﻿Data availability

	﻿Results
	﻿The stem-like potential of breast cancer biopsies
	﻿Molecular profiling of breast cancer biopsies

	﻿Discussion
	﻿Conclusion
	﻿References


