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particularly those with digestive and respiratory system 
cancers, is cancer-associated cachexia which directly 
causes around 20 to 30% of cancer deaths [4]. This com-
plex metabolic syndrome, characterized by irreversible 
weight loss, muscle wasting, and systemic inflamma-
tion, arises from a mix of tumor factors, metabolic dis-
turbances, and immune dysfunction [5]. The resulting 
imbalance in energy and protein metabolism leads to 
poorer prognosis, lower survival rates, and diminished 
quality of life.

Similarly, chemotherapy, a critical treatment modal-
ity in cancer care, employs anti-cancer drugs to target 
rapidly dividing cells [6]. These drugs include alkylating 
agents that damage DNA, antimetabolites that interfere 
with the building blocks of DNA and RNA, anti-tumor 
antibiotics that alter DNA, topoisomerase inhibitors 

Introduction
Cancer, a leading cause of mortality worldwide, is a com-
plex disease marked by the uncontrolled proliferation and 
spread of abnormal cells [1]. Recent research advances 
have unraveled the molecular basis of tumor develop-
ment, paving the way for targeted therapies and per-
sonalized medicine [2, 3]. Despite these breakthroughs, 
challenges persist in early detection, treatment resis-
tance, and metastasis. A prevalent issue in advanced can-
cer, affecting up to 80% of patients in the terminal stage, 
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Abstract
Cancer cachexia (CC) is a debilitating syndrome that affects 50–80% of cancer patients, varying in incidence 
by cancer type and significantly diminishing their quality of life. This multifactorial syndrome is characterized 
by muscle and fat loss, systemic inflammation, and metabolic imbalance. Extracellular vesicles (EVs), including 
exosomes and microvesicles, play a crucial role in the progression of CC. These vesicles, produced by cancer 
cells and others within the tumor environment, facilitate intercellular communication by transferring proteins, 
lipids, and nucleic acids. A comprehensive review of the literature from databases such as PubMed, Scopus, and 
Web of Science reveals insights into the formation, release, and uptake of EVs in CC, underscoring their potential 
as diagnostic and prognostic biomarkers. The review also explores therapeutic strategies targeting EVs, which 
include modifying their release and content, utilizing them for drug delivery, genetically altering their contents, 
and inhibiting key cachexia pathways. Understanding the role of EVs in CC opens new avenues for diagnostic and 
therapeutic approaches, potentially mitigating the syndrome’s impact on patient survival and quality of life.
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that disrupt enzymes involved in DNA separation, and 
mitotic inhibitors that hinder structures involved in cell 
division [7]. Their mechanisms of action involve killing 
rapidly dividing cells, damaging the DNA of cancer cells, 
or interfering with their metabolism, effectively halt-
ing their growth and spread [7]. Recent advancements 
in chemotherapy have led to the development of tar-
geted therapies that focus on specific molecules in can-
cer cells [8], immunotherapies that enhance the immune 
system’s ability to fight cancer [9], and nanotechnology-
based drug delivery systems that aim to improve treat-
ment efficacy while reducing side effects [10]. However, 
a significant challenge associated with chemotherapy is 
cachexia, a condition characterized by significant weight 
loss, muscle wasting, and fatigue, affecting an estimated 
20–80% of patients [11, 12]. Cachexia is exacerbated by 
the direct impact of chemotherapeutic agents on mus-
cle and fat metabolism, which not only diminishes the 
patient’s quality of life but also affects the tolerability 
and effectiveness of chemotherapy, increasing the risk of 
complications.

Weight loss and muscle wasting, whether caused by 
cancer cachexia or chemotherapy-induced cachexia, 
reduce patients’ tolerance to anti-cancer therapy and 
increase the risk of post-operative complications [13–15], 
and enervated cardiac and diaphragm muscles can nor-
mally be prone to earlier deaths from heart and lung 
failures [5, 16]. Furthermore, Patients with cancer asso-
ciated cachexia often suffer from irreversible fatigue, 
decreased food intake and mobility, leading to reduced 
physical and emotional activity, impaired daily activ-
ity abilities and consequently a reduced quality of life 
[17, 18]. The complex interplay of tumor-derived factors 
and host responses orchestrates the development and 
progression of cachexia [19]. Effective management of 
cachexia requires early identification and a comprehen-
sive approach, including nutritional support, targeted 
pharmacotherapy, and tailored exercise interventions, to 
improve patient outcomes and quality of life. Recently, 
EVs have emerged as momentous mediators in intercel-
lular communication and have captured considerable 
attention in cancer studies. These small, membrane-
bound particles released by cancer cells can encapsule 
pro-inflammatory cytokines and bioactive molecules that 
promote systemic inflammation, metabolic reprogram-
ming, and muscle wasting. They facilitate communication 
between cancer cells and the tumor microenvironment, 
exacerbating the cachexia syndrome. Understanding the 
mechanisms of EVs in cachexia could lead to novel thera-
peutic strategies for this debilitating condition (Fig. 1).

As of now, three major subsets of EVs have been 
authenticated according to their diameter [20, 21]. Exo-
somes, the most well-studied subtype of EVs, partici-
pate in intercellular communication that are secreted 

by almost all kinds of cell types [22–24]. Enclosed in 
lipid bilayer structures, these EVs transport multifunc-
tional biomolecules, with their bioactive cargo influenc-
ing every stage of human cancer development [25, 26], 
including cancer-induced cachexia (Fig.  2A). They play 
a role both locally and systemically in regulating a wide 
array of physiological and pathological processes, par-
ticularly in cell-to-cell communication [27, 28]. Recent 
studies have shed light on the distinct roles of tumor-
derived EVs compared to those derived from host tis-
sues, particularly in the context of cancer progression 
and potential implications for cachexia development [29]. 
Cancer cell-derived EVs are implicated in various key 
aspects of tumor biology, such as promoting tumor pro-
gression, facilitating immune escape, and contributing to 
drug resistance [30]. They have been shown to alter met-
abolic processes, including glycolysis and lipid metabo-
lism, through interactions with different cells within the 
tumor microenvironment. This includes influencing the 
behavior of cancer-associated fibroblasts and immune 
cells in ways that favor tumor growth and metastasis [31]. 
Furthermore, research tracking tumor cell-derived EVs in 
vivo has demonstrated that these EVs exhibit a specific 
distribution pattern and significantly alter the immune 
cell composition in target organs of metastasis [32]. Such 
findings emphasize the importance of tumor cell-derived 
EVs in cancer biology and offer insights into their poten-
tial role in cachexia development in cancer patients.

In addition to their role in the cachexia driven by EVs 
derived from tumors, EVs originated from host tissues, 
such as skeletal muscle, adipose tissue, and immune 
cells, have also been implicated in the pathogenesis of 
cancer-induced wasting. Studies have highlighted the 
contribution of muscle-derived EVs in promoting muscle 
wasting and systemic metabolic alterations observed in 
CC [33, 34]. These EVs have been shown to contain spe-
cific miRNAs, long non-coding RNAs, and proteins that 
can modulate crucial cellular processes, such as dynamic 
changes, and immune responses [35]. Furthermore, mus-
cle-derived EVs can be taken up by neighboring cells, 
including adipocytes [36] and macrophages [37]. These 
interactions indicate a potential role in adipogenesis, 
influencing the metabolic profile and modulating inflam-
matory conditions that may be linked to cachexia.

Here, we will explore the emerging role of EVs in CC, 
highlighting their involvement in the intercellular com-
munication network and their potential as diagnostic 
and prognostic markers, as well as therapeutic targets. 
Furthermore, we will discuss recent advancements in EV 
research, identify key challenges and opportunities in the 
field, and propose future directions for investigating the 
complex biology of EVs in the context of CC.
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Biogenesis, release, and uptake of EVs
EVs are diverse and can be categorized into several sub-
sets based on their size and origin. Currently, three pri-
mary classes are recognized: exosomes (30–100  nm), 
microvesicles (100–1000  nm), and apoptotic bodies 
(1000–5000  nm) [38]. Exosomes, particularly well-
researched, are formed through a unique process involv-
ing the budding of endosomal multivesicular bodies 
(MVBs) and the release of intra-luminal vesicles (ILVs) 
containing exosomes into the extracellular space [39]. 
This process contrasts with microvesicles, which are 
generated by the outward budding of the plasma mem-
brane (Fig.  1A) [40]. On the contrary, apoptotic bodies 
form through the outward blebbing of the plasma mem-
brane in cells undergoing apoptosis [41]. Before being 
released from parent cells, EVs encapsulate a wide variety 
of biological molecules, including proteins (e.g., TSG101, 
CD9, CD63, CD81, HSPs), lipids, nucleic acids, and non-
coding RNAs (Fig. 1B). The role of these EVs, especially 

exosomes [42] and microvesicles [43], is increasingly 
linked to the development of cachexia in cancer patients. 
During apoptosis, cells form apoptotic bodies containing 
cellular components, often leading to anti-inflammatory 
effects upon uptake by antigen-presenting cells or phago-
cytes (Fig. 1C) [44].

Different cell types in the tumor microenvironment, 
including cancer cells, stromal cells, and immune cells, 
secrete EVs [20, 45]. Their release is influenced by condi-
tions common in cancer cachexia, such as hypoxia, cel-
lular stress, oncogenic signaling, and cell proliferation, 
as well as interactions within the tumor microenviron-
ment [45–50]. For instance, hypoxia can trigger endo-
plasmic reticulum (ER) stress, leading to the activation 
of the unfolded protein response (UPR). This response 
enhances EV secretion as a means of removing misfolded 
proteins from the cell [51]. It can also activate onco-
genic signaling pathways, including PI3K/Akt, MAPK, 
and mTOR, known to regulate EV secretion in cancer 

Fig. 1 EVs: Composition and origins. EVs are small, membranous structures of varying contents, released by cells into the extracellular space. The com-
position and formation of EVs vary: (A) Exosomes: These vesicles, ranging from 30 to 100 nm in diameter, originate from the endocytic pathway. Multi-
vesicular bodies (MVBs), which form from early endosomes, have two potential fates. They can fuse with lysosomes for degradation, or merge with the 
plasma membrane, releasing exosomes into the extracellular space. (B) Microvesicles: These are larger, with diameters between 100 and 1000 nm, and 
form directly through the outward budding and shedding of the plasma membrane. The figure also illustrates a typical EV cargo system, encompassing 
diverse components such as proteins (e.g., CD9, CD63, CD81), lipids, nucleic acids, and non-coding RNAs. (C) Apoptotic bodies: These particles, typically 
ranging in diameter from 1 to 5 micrometers, are produced during the final stages of apoptosis through a complex process involving caspase activation, 
cellular morphological changes, and blebbing, which culminates in their engulfment and digestion by phagocytes to prevent inflammation and ensure 
tissue homeostasis.The endoplasmic reticulum (ER) is indicated for context
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cells [51, 52]. EVs harbor molecules that can enhance 
tumor progression, metastasis, and drug resistance, and 
modulate the behavior of adjacent cells and the immune 
response.

Once released, EVs can be taken up by recipient cells 
through mechanisms such as endocytosis, micropinocy-
tosis [53], and direct fusion with the plasma membrane 
[54]. The uptake is influenced by the EVs’ cargo compo-
sition, surface proteins, and the type of recipient cell. In 
CC, EVs from cancer cells can be absorbed by different 
cell types, including skeletal muscle cells, adipocytes, and 
immune cells, delivering bioactive molecules that affect 
their function and phenotype. For example, cancer cell-
derived EVs can induce muscle wasting by affecting mus-
cle physiology, including myofibrillar protein degradation 
[55, 56]. and mitochondrial function in muscle cells [57]. 
Another study underscores the importance of the cargo 
carried by different types of tumor-derived EVs, as they 
can mediate various pathways of internalization into 
recipient cells and induce similar phenotypes through 
different mechanisms [58].They relatively contribute 
to adipose tissue dysfunction, such as lipolysis [58] and 

adipocyte atrophy [59], and can reach organs like the 
liver to induce metabolic changes [60] and inflammation 
[61], exacerbating cachexia. Overall, while it’s clear that 
EVs play a role in cancer progression and potentially in 
the development of cachexia, the specific differences in 
EVs between cachectic and non-cachectic cancers remain 
an area for further investigation.

EVs and pathogenesis of CC
Although research on EVs in relation to CC is still in its 
early stages, there has been a significant enhancement in 
the depth and breadth of related studies. These studies 
offer new insights into the potential mechanisms driving 
the onset and progression of cancer-associated cachexia. 
The impact of tumor-derived EVs and their contents 
on cancer progression and the development of CC has 
become a focal point of considerable scientific inter-
est and concern. Pitzer and colleagues have extensively 
reviewed the direct effects of tumor-derived exosomes on 
skeletal muscle and adipose tissue, as well as their inter-
cellular communication, which are principal factors in 
the weight loss associated with cancer cachexia [62]. In 

Fig. 2 Impact of cancer cell-derived extracellular vesicles on recipient cells. This figure illustrates the role of EVs released by cancer cells in interacting with 
various recipient cells, affecting their functions and behaviors: (A) Intercellular Communication: EVs from cancer cells can travel to adjacent or distant cells. 
These EVs deliver a range of molecules, thereby modulating the behavior of recipient cells. (B) Muscle Cell Interaction: EVs originating from cancer cells 
carry specific cargoes that can trigger signaling pathways in muscle cells. This interaction influences muscle homeostasis and functionality. (C) Adipose 
Tissue Effects: Cancer-derived EVs can exert a direct or indirect impact on adipose tissue, contributing to adipose atrophy. (D) Metabolic Alterations: 
Tumor cell-derived EVs can transport bioactive molecules that affect metabolism, leading to decreased energy intake and increased energy expenditure, 
consequently causing body weight loss. (E) Appetite and Inflammation: Cancer cells may release EVs containing hormones, neurotransmitters, and pro-
inflammatory factors. These contents can lead to diminished appetite or anorexia
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the following section, we will delve into the interactions 
between EVs and cancer-induced cachexia, focusing on 
skeletal muscle wasting, loss of adipose tissue, systemic 
inflammation, metabolic alterations, and the regula-
tion of central nervous system (CNS) homeostasis. Our 
aim is to provide a more comprehensive overview of the 
intricate interplay among these factors. Please refer to 
the specific role by which EVs contribute to cachexia in 
Fig. 2.

EVs and skeletal muscle wasting
Muscle wasting and atrophy are significant character-
istics of CC [63, 64]. Recent evidence indicates that EVs 
play a crucial role in the muscle wasting associated with 
CC [65]. Research has demonstrated that EVs originating 
from cancer cells directly influence skeletal muscle cells, 

leading to muscle wasting (Fig. 2A, B) [55, 56]. Further-
more, research has shown that EVs derived from cancer 
cells contain specific molecular cargo that can impact 
various cellular processes, especially those relevant to 
muscle tissue.

Cancer cell-derived EVs may contribute to muscle 
wasting through the transfer of specific molecules, such 
as non-coding RNAs. Notably, several studies have iden-
tified particular microRNAs (miRNAs) in EVs from can-
cer cells that are closely linked to muscle wasting [42, 43, 
66–70]. Mechanistically, miRNAs transferred to skeletal 
muscle cells via EVs play a pivotal role in regulating gene 
expression linked to muscle protein synthesis and deg-
radation. They influence key pathways, including TLR7 
signaling [43, 66], Forkhead Box O (FoxO) Transcrip-
tion Factors [70], the ubiquitin-proteasome system, and 
autophagy-lysosome pathways [71]. Additionally, EV-
associated miRNAs impact essential signaling routes 
critical for muscle growth and atrophy, notably the 
insulin-like growth factor-1 (IGF-1) and mTOR path-
ways [72], which are vital for muscle protein synthesis. 
The specific roles and mechanisms of EV-encapsulated 
microRNAs in these processes are detailed in Table  1, 
highlighting their integral part in muscular function and 
health. Additionally, recent research has explored the 
role of EV-based circular RNAs (circRNAs) derived from 
tumor cells in contributing to muscle wasting [73].

In addition to non-coding RNAs, EVs from cancer 
cells can induce pro-inflammatory responses and acti-
vate inflammatory pathways. Two key pro-inflammatory 
cytokines that can be upregulated are tumor necrosis 
factor-alpha (TNF-α) and interleukin-6 (IL-6) [74]. The 
activation of the NF-kB (Nuclear Factor-kappa B) path-
way, a key event in this process, leads to the upregula-
tion of pro-inflammatory genes [75]. Additionally, the 
IL-6-mediated STAT3 (signal transducer and activator of 
transcription 3) pathway is implicated in muscle inflam-
mation and wasting [75, 76]. These EVs also impact other 
cell types within the muscle microenvironment, such as 
fibroblasts and adipocytes, leading to tissue remodeling 
and metabolic changes that further contribute to muscle 
wasting [77]. Moreover, cancer cell-derived EVs interfere 
with muscle regeneration by affecting the activation and 
differentiation of muscle cells [57]. These EVs can trans-
port bioactive molecules like oxidized proteins, which, 
when internalized by muscle cells, disrupt the cellular 
redox balance, leading to oxidative stress and the deg-
radation of contractile proteins [47, 78]. Furthermore, 
cancer cell-derived EVs may influence the contractile 
properties of muscle cells. These vesicles can carry fac-
tors that modify the expression and activity of proteins 
crucial for muscle contraction and force generation 
[58, 79, 80]. Collectively, these studies shed light on the 
molecular mechanisms by which tumor cell-released EVs 

Table 1 EV-encapsulated miRNAs from cancer cell in muscle 
wasting
Cancer 
type

Potential 
source

EV cargos Targets Functions Ref-
er-
ences

Colon 
cancer

C26 miR-195a-
5p ↑
miR-125b-
1-3p ↑

Bcl-
2-apoptotic 
signaling.

Muscle 
atrophy ↑

[42]

Lung 
cancer
Pan-
creatic 
cancer

LLC, A549
PC1, 
Panc-2, 
Miapaca-2

miR-21 ↑ TLR7 Myoblast 
apoptosis ↑

[43]

Lung 
cancer
Pan-
creatic 
cancer

LLC
AsPC1

miR-21 ↑
miR-29a ↑

TLR7 Myoblast 
apoptosis ↑
and cell 
death ↑

[66]

Colon 
cancer

C26 miR-183-
5p ↑

Smad3 Protein 
degrada-
tion ↑
Mitochon-
drial respi-
ration ↓

[67]

Oral 
squa-
mous
cell 
carci-
noma

SCC7 miR-181a-
3p ↑

ERS Muscle at-
rophy and 
apoptosis ↑

[68]

Breast 
cancer

MCF-7 miR-122-
5p ↑

TP53 Mito-
chondrial 
homeosta-
sis ↓
Function 
of skeletal 
muscle ↓

[69]

Pan-
creatic 
cancer

PDAC Nine miR-
NAs ↑

PI3K/Akt/
FoxO1

Insulin 
resistance 
of skel-
etal muscle 
cells ↑

[70]
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mediate muscle wasting and affect muscle function in 
distally located muscles.

EVs and adipose atrophy
Cancer cachexia frequently encompasses not only mus-
cle wasting but also the loss of adipose tissue [80]. EVs 
released by cancer cells can have a direct or indirect 
impact on adipose tissue metabolism, accelerating the 
wasting of adipose tissue (Fig.  2C). Additionally, EVs 
secreted by cancer cells may carry pro-inflammatory fac-
tors that disrupt the normal functioning of adipose tis-
sue, contributing to its degradation [59, 76]. This process 
can result in adipocyte atrophy and a significant loss of 
fat tissue, which is a hallmark of cancer cachexia.

Tumor-derived EVs may contribute to adipose wast-
ing through the transfer of non-coding RNAs (ncRNAs), 
particularly microRNAs (miRNAs). Research has shown 
that tumor EVs can deliver specific miRNAs to adipose 
tissue, impacting various functions such as adipocyte 
differentiation, the conversion of white adipose tissues 
(WATs) to a more metabolically active state, lipolysis, 
lipid metabolism, and insulin sensitivity (Table  2) [81–
87]. In addition to ncRNAs, tumor EVs may also carry 
proteins that directly influence adipose tissue biology. For 
instance, EVs from certain tumor types can contain fac-
tors that promote lipolysis, the process of breaking down 
stored fats [88, 89]. This activity can lead to an increased 
release of fatty acids from adipose tissue, contributing to 
its wasting.

EVs and systemic inflammation
EVs have been recognized as significant mediators of 
inflammation in various diseases, including cancer [90]. 
In CC, EVs released by either tumor cells or immune 
cells play a role in exacerbating inflammatory pro-
cesses. Research has linked EVs to the promotion of 

tumor-associated inflammation, muscle wasting, and 
systemic metabolic imbalances in CC [76, 91]. EVs orig-
inating from tumor cells are known to carry a range of 
pro-inflammatory molecules (Fig.  3A), including cyto-
kines such as IL-6, interleukin-1 beta (IL-1β), Inter-
leukin-10 (IL-10), interferon-γ (IFNγ), and Tumor 
Necrosis Factor-alpha (TNF-α) [92]; chemokines like 
CXCL1, CXCL8, and CCL2 [93], and growth factors 
such as Vascular Endothelial Growth Factor (VEGF) and 
Transforming Growth Factor-beta (TGF-β) [94]. These 
molecules not only promote cancer progression but also 
accelerate the onset and development of cancer-related 
cachexia (Fig. 3B) [95–98].

Recent research has also illuminated the crucial 
immune cell pathways involved in weight loss and tissue 
degradation in patients with cancer cachexia [5, 99, 100]. 
Tumor-derived factors interact with a variety of immune 
cells and endothelial cells, significantly influencing the 
tumor microenvironment [100, 101]. These factors are 
normally packaged within EVs [102–104] and modulate 
the function of immune cells such as T cells [105], macro-
phages [106], and natural killer (NK) cells [107]. This reg-
ulation results in immunosuppression and stimulates the 
release of cytokines (Fig.  3C) [104]. Furthermore, these 
EVs interplay with endothelial cells, including vascular 
endothelial cells [108], to promote angiogenesis and with 
lymphatic endothelial cells to facilitate cancer spread 
through the lymphatic system. This complex interaction 
creates a tumor microenvironment that is immunosup-
pressive, promotes angiogenesis, and enhances metasta-
sis, thereby accelerating cachexia (Fig. 3D). Additionally, 
these EVs can transport tumor-derived nucleic acids, like 
microRNAs, influencing the inflammatory response in 
recipient cells and delivering pro-inflammatory factors 
that reinforce the overall inflammatory state [109, 110]. . 
This multifaceted role of EVs in promoting inflammation 

Table 2 The roles of EV-enclosed miRNAs from cancer cell in adipose atrophy
Cancer type Potential source EV cargos Targets Functions Refer-

ences
Lung cancer A549

H1299
AGS

miR-425-3p ↑ PDE4B
cAMP/PKA

Preadipocyte proliferation and dif-
ferentiation ↓
Adipocyte lipolysis and WAT brown-
ing ↑

[81]

Colorectal cancer HCT-116
HEK293T
Patient sample

miR-146b-5p ↑ HOXC10 Lipolysis and WAT browning ↑ [82]

Chronic myeloid 
leukemia

K562 miR-92a-3p ↑ C/EBPα Adipogenesis ↓ [83]

Breast cancer
Gastric cancer

MCF-7
SGC7901
MGC803

miR-155 ↑ UBQLN1
C/EPBβ

Adipose loss ↑
Adipogenesis ↓
Brown adipose differentiation ↑

[84, 
85]

Gastric cancer Serum EV miR-410-3p ↑ IRS-1 Adipogenesis, lipidosis and dif-
ferentiation ↓

[86]

Breast cancer BC cell lines (MDMB231, SK-
BR-3, 4T1, E0771)

miR-204-5p ↑ Leptin signaling Lipolysis and browning ↑ [87]



Page 7 of 21Wang and Ding Journal of Translational Medicine          (2024) 22:506 

underscores their significance in the pathophysiology of 
cancer cachexia and highlights their potential as targets 
for therapeutic intervention.

In the cachectic state, tumor-derived EVs are also criti-
cal in activating inflammatory-related signaling path-
ways, notably NF-κB [111, 112], STAT3 [113, 114], and 
toll-like receptor (TLR) signaling (Fig. 3E) [115, 116]. A 
study has highlighted that EVs from LLC (Lewis Lung 
Carcinoma) and C26 tumor cells can induce adipocyte 
wasting, an effect attributed to the action of interleukin-8 
(IL-8). IL-8, present outside the adipocytes, activates the 
NF-κB signaling pathway [59]. Furthermore, extracellu-
lar vesicles from LLC tumor cells affect muscle cells by 
inducing atrophy and stimulating the breakdown of fat 
in adipocytes. These effects are mediated by the extracel-
lular presence of IL-6, which triggers the STAT3 path-
way within the target cells [76]. The interplay between 
inflammation and signaling pathways is pivotal in the 
development and progression of cachexia. Managing this 
condition often involves targeting these inflammatory 
processes. This is typically done through interventions 
such as anti-inflammatory medications or treatments 
aimed at modulating the involved signaling pathways, 
underscoring the importance of understanding these 
mechanisms for effective therapeutic strategies.

EVs and metabolic alterations
Studies have shown that EVs from cancer cells or the 
tumor microenvironment frequently contain cargo 

molecules linked to metabolic disorders (Fig.  2D) [117, 
118]. These molecules can be transferred to various 
recipient cells, including muscle cells, leading to altera-
tions in their metabolic functions. One notable impact of 
cancer cell-derived EVs is the induction of insulin resis-
tance in muscle cells, impairing their ability to uptake and 
utilize glucose [70]. This disruption in glucose metabo-
lism is a key aspect of the metabolic reprogramming 
associated with cancer cachexia. In addition to affecting 
muscle cells, EVs can also influence lipid metabolism in 
adipocytes. They promote lipolysis, contributing to the 
systemic lipid imbalances commonly seen in CC [58, 59, 
76, 81, 82, 85, 86, 119]. This alteration in lipid metabolism 
further exacerbates the wasting and systemic metabolic 
dysregulation characteristic of the condition. Moreover, 
EVs discharged by activated immune cells may transport 
inflammatory cytokines, contributing to the widespread 
systemic inflammation and metabolic dysregulation in 
CC [77].

Mitochondria, the cell’s energy-producing organelles, 
are critically linked to the development and progression 
of cancer cachexia [120]. EVs released by cancer cells can 
harbor specific cargo that directly affects mitochondrial 
function in recipient cells [57]. For instance, it has been 
demonstrated that tumor-derived EVs can induce mito-
chondrial dysfunction in skeletal muscle cells [69]. They 
also induce insulin resistance in muscle cells, leading to 
lipid accumulation and impairing glucose uptake and 
utilization [70]. A notable study uncovers the presence 

Fig. 3 The role of inflammatory factors from tumor and immune cells in cancer cachexia. (A) EVs from tumor cells carry various pro-inflammatory mol-
ecules. (B) The molecules contained within EVs, such as cytokines, chemokines, and growth factors, contribute to cancer progression and accelerate the 
onset of cancer-associated cachexia. (C) Regulating inflammatory molecules leads to immunosuppression and stimulates cytokine release, which in turn 
boosts metastasis and speeds up cachexia. (D) EVs interact with endothelial cells to encourage angiogenesis and with lymphatic endothelial cells to aid 
in cancer dissemination. (E) Tumor-derived EVs are pivotal in triggering inflammation-related signaling pathways, specifically NF-κB, STAT3, and TLR path-
ways. Abbreviations NF-κB, Nuclear Factor-kappa B; STAT3, signal transducer and activator of transcription 3; TLR, toll-like receptor
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of mitochondria within EVs, suggesting a significant role 
in intercellular communication and tissue homeostasis 
[121]. The idea that EVs can transport entire mitochon-
dria or mitochondrial components opens new avenues 
for understanding how cancer cells can influence the 
metabolism and function of distant tissues.

EVs and CNS homeostasis regulation
EVs can significantly impact CNS homeostasis in CC, 
primarily through the transfer of pro-inflammatory mol-
ecules. EVs originating from tumor cells often contain 
pro-inflammatory cytokines and chemokines, including 
TNF-α, IL-6, and IL-1β (Fig. 2E) [122]. These EVs, when 
they interact with CNS cells, can trigger an inflamma-
tory response, leading to the activation of glial cells, the 
release of additional pro-inflammatory mediators, and 
a disruption of CNS homeostasis [123]. This inflamma-
tory response in the CNS, instigated by EVs, affects sev-
eral processes that are crucial in CC. For instance, the 
pro-inflammatory cytokines released by EVs can influ-
ence hypothalamic nuclei responsible for appetite regu-
lation, potentially leading to reduced food intake and 
anorexia [122, 124]. Moreover, TNF-α from EVs can pro-
mote muscle protein breakdown by activating pathways 
that lead to the degradation of muscle proteins, espe-
cially myofibrillar proteins [125]. It is important to rec-
ognize that the regulation of muscle atrophy by the CNS 
is a multifaceted process, influenced by an array of fac-
tors. The involvement of EVs and their pro-inflammatory 
cargo provides a deeper understanding of the complex 
interactions at play in the CNS during the progression of 
cancer cachexia.

In feeding regulation, particularly in CC, the role of 
EVs is increasingly recognized. Elevated levels of growth 
differentiation factor 15 (GDF15) are often observed 
in CC, and the presence of GDF15 in exosomes may be 
a contributing factor to the appetite suppression and 
weight loss experienced by cancer patients (Fig. 2E) [126, 
127]. GDF15 is known for its role in mediating anorexic 
responses, and its presence in EVs suggests a path-
way by which tumors can systemically affect appetite 
and energy balance. Additionally, EVs can influence the 
sympathetic nervous system’s activity [128], leading to 
increased energy expenditure [129] and contributing to 
muscle wasting [130]. This interaction further exemplifies 
the complex ways in which EVs can modulate systemic 
metabolic responses in cancer cachexia. Beyond their 
effects on metabolism and appetite, EVs derived from 
tumor cells also carry molecules that can promote tumor 
growth and metastasis [45, 131]. These EVs can facilitate 
the spread of cancer cells to distant sites, including the 
CNS. Once in the CNS, cancer cells and their EVs can 
disrupt normal cellular functions and promote inflam-
mation. This can exacerbate the progression of cachexia, 

highlighting the multifaceted impact of EVs in the patho-
physiology of cancer and its systemic effects.

Additionally, research into small extracellular vesicles 
(sEVs) and their regulatory effects on hypothalamic 
AMPK (AMP-activated protein kinase) function is a case 
in point. Studies have shown that peripheral intravenous 
administration of specific sEVs can directly target neuro-
nal cell populations in the hypothalamus [132, 133]. This 
targeted approach holds potential for treating cancer 
cachexia, particularly considering the interplay between 
hypothalamic AMPK activity, elevated brown adipose 
tissue (BAT) thermogenesis, and the browning of white 
fat [134–136]. Furthermore, characterizing EVs present 
in biofluids like blood or cerebrospinal fluid could pro-
vide valuable diagnostic and prognostic insights for can-
cer cachexia. By analyzing these biofluids for specific EVs 
and their cargo, clinicians may gain a better understand-
ing of the disease’s progression and the effectiveness of 
treatments.

EVs as biomarkers of CC
Early detection and monitoring of CC are essential for 
effective management and treatment [137, 138]. Research 
on CC biomarkers has largely focused on mediators of 
skeletal muscle loss, produced by both tumor and host 
tissues. These include cachexia-inducible factors [139], 
pro-inflammatory cytokines [140, 141], lipids [142, 143], 
metabolic products of protein and fat [144], and non-
coding RNAs [145–147]. However, none of these bio-
markers have been extensively used in clinical practice 
to detect skeletal muscle wasting. Notable reviews by 
Loumaye et al. [148] and Cao et al. [149] discuss various 
CC biomarkers, emphasizing the identification of these 
markers and measuring their circulating levels in cer-
tain cancer types. In CC, the body undergoes significant 
metabolic and systemic changes, and both tumor and 
host tissues contribute to the altered profile of circulat-
ing EVs. It appears that the specific literature focusing on 
the relative contributions of tumor-derived versus host 
tissue-derived EVs in cancer cachexia, especially in the 
context of their presence in the circulation, is not readily 
accessible or may not be extensively covered in available 
research. This paper highlights recent developments in 
EVs as potential CC biomarkers, offering a foundation for 
future clinical research in this area.

EVs incorporating proteins as biomarkers
EVs can transport proteins that reflect cachexia-related 
processes, including systemic inflammation, muscle 
wasting, and metabolic changes. Analyzing the pro-
teomic content of EVs can pinpoint specific proteins or 
patterns related to CC. This approach holds promise for 
creating diagnostic and prognostic tools for CC.
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Inflammatory and metabolic markers
EVs carry numerous inflammatory cytokines from both 
host tissues and tumors, a process extensively studied in 
various cachexia models [138, 150]. IL-6 emerges as one 
of the most promising biomarkers for CC. IL-6 levels are 
directly associated with tumor stage, weight loss, and 
survival in lung and gastrointestinal cancer patients, as 
evidenced by studies [151, 152]. Additionally, potential 
biomarkers like TNF-alpha, β-dystroglycan, Monocyte 
Chemoattractant Protein-1 (MCP-1), IL-1β, and IL-8, 
originating from tumors and/or host tissues, show sig-
nificant potential in CC diagnostics [140, 153, 154]. These 
bioactive molecules are integral to the inflammatory and 
metabolic alterations seen in cancer cachexia. Their lev-
els in the body can provide insights into the severity of 
cachexia, and they offer potential targets for therapeutic 
interventions aimed at mitigating the devastating effects 
of this condition.

Non-inflammatory markers
Numerous studies have highlighted specific proteins car-
ried by EVs that are associated with CC. These proteins 
impact target cells and contribute to cachexia develop-
ment. Notably, EV-Growth and GDF15 from cancer cells 
emerge as key molecules in CC research [126, 155, 156]. 
Another significant protein, the Proteolysis-Inducing 
Factor (PIF), secreted by tumor cells, is known to cause 
muscle wasting [156, 157]. It can be transferred via exo-
somes, leading to muscle protein degradation. Addition-
ally, exosomal Fatty Acid Binding Protein 4 (FABP4) has 
been implicated in muscle wasting and systemic inflam-
mation in CC [158–160]. Each of these proteins con-
tributes to the multifaceted nature of cachexia through 
different mechanisms. These proteins’ interactions and 
effects underscore the complexity of cachexia, making it 
a challenging condition to manage and treat effectively. 
Further exploration in this field could yield valuable 
markers for CC prevention and treatment.

Heat shock proteins (HSPs) cargo
Recent research has also highlighted a notable link 
between EVs and heat shock proteins (HSPs) in CC [55, 
161]. It’s been discovered that certain HSPs are enclosed 
within EVs and released into the extracellular environ-
ment [162]. Furthermore, changes in HSP expression 
and activity have been noted in CC [163–165], indicat-
ing their role in cachexia’s development and progression. 
For example, increased levels of HSP70/90 are found in 
cachectic cancer patients compared to non-cachectic 
ones [166–169]. Additionally, higher EV concentra-
tions in the serum of cancer patients have been associ-
ated with poorer prognosis [170, 171]. HSP27, another 
heat shock protein, has also been studied in CC contexts, 
with heightened levels detected in the skeletal muscles of 

cachectic cancer patients [172]. Another important study 
suggests that, in muscle-related diseases, upregulation 
of HSP70 and HSP90 may occur as a cellular response 
to alleviate protein folding stress and maintain protein 
homeostasis [164], although it’s essential to emphasize 
that this result is not specifically grounded in the con-
text of CC. These insights underscore the potential of 
EV-associated HSPs as crucial molecular markers in CC 
management.

Skeletal muscle biomarkers
Research has pinpointed muscle-specific proteins as 
promising biomarkers linked to muscle wasting in CC 
[173, 174]. Myostatin, known for inhibiting muscle 
growth, is notably elevated in EVs from cachectic cancer 
patients [175]. Additionally, proteins crucial for muscle 
protein synthesis and degradation, such as Bone Mor-
phogenetic Proteins (BMPs), irisin, TGFβ, activin A, 
atrogin-1, and Muscle RING-Finger Protein-1 (MuRF1) 
[176, 177], have been identified as potential EV-derived 
biomarkers. These protein changes are closely linked to 
the progression and severity of the disease, underscoring 
their value in diagnosis and prognosis. Regular tracking 
of these EV-related muscle-specific proteins could offer 
significant insights into the effectiveness of treatments 
and the progression of CC over time.

EVs incorporating miRNAs and RNAs as biomarkers
MicroRNAs (miRNAs), long non-coding RNAs 
(lncRNAs), and circular RNAs (circRNAs) are crucial 
regulators of gene expression and cellular processes, each 
playing a distinct yet interconnected role [178]. These 
RNA types are intricately involved in the complex cel-
lular dynamics of cancer cachexia, influencing muscle 
metabolism, inflammation, and metabolic changes asso-
ciated with this condition. Their collective dysregulation 
in cancer cachexia underscores their importance in the 
pathophysiology of this syndrome, presenting poten-
tial targets for therapeutic intervention. RNA molecules 
transported by EVs offer critical insights into the biologi-
cal mechanisms underlying CC. Notably, specific types of 
RNA, including miRNAs, lncRNAs, and circRNAs, are 
often dysregulated in EVs from CC patients [179]. These 
altered RNA profiles mirror the molecular shifts tied to 
muscle wasting and the metabolic changes characteristic 
of cachexia.

Cancer cell derived EVs -miRNAs and RNAs as 
biomarkers
Research has revealed specific miRNAs that are dysregu-
lated in EVs derived from CC patients compared to non-
cachectic individuals [180]. Various miRNAs, including 
miR-195a-5p, miR-125b-1-3p [42], miR-21, miR-29a [43, 
66], miR-181a-3p [68], and miR-122-5p [69], are linked 
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to muscle wasting and inflammation in CC. Addition-
ally, miR-486 has been identified as a potential marker 
for cachexia severity and treatment response [181]. These 
miRNAs, often associated with cancer progression and 
muscle atrophy, are notably stable in the circulatory sys-
tem when carried by EVs like exosomes. This stability 
positions them as effective biomarkers for cancer-related 
cachexia.

Beyond miRNAs, the potential of lncRNAs and cir-
cRNAs incorporated in EVs as biomarkers for CC is an 
area of active research, though their clinical applicability 
requires further validation. Initial studies have yielded 
promising results. For instance, lncRNAs like H19 [182] 
and LINC00355 [183] show different expression lev-
els in EVs from cancer patients at risk of cachexia com-
pared to healthy individuals, suggesting their utility in 
diagnosing or predicting CC. Other lncRNAs, such as 
Metastasis Associated Lung Adenocarcinoma Tran-
script 1 (MALAT1) [184] and HOX transcript antisense 
intergenic RNA (HOTAIR) [185], have been linked to 
CC and are detectable in EVs [185, 186]. Regarding cir-
cRNAs, current research on cachexia is limited, but there 
are studies like one on CircPTK2 that illustrate its role 
in lipid metabolism regulation in CC [187]. The inherent 
stability of EV-incorporated circRNAs, due to their resis-
tance to exonuclease degradation, makes them promising 
candidates for biomarker exploration.

Muscle specific EVs -miRNAs as biomarkers
The expression profiles of muscle-secreted miRNAs 
have been extensively studied, revealing their signifi-
cant role in regulating muscle metabolism during CC 
[33, 145, 188]. Muscle-specific miRNAs, including miR-
1, miR-133a, miR-133b, miR-206, miR-208a, miR-208b, 
and miR-499, along with muscle-enriched miR-486, are 
known to influence myogenesis, proliferation, differen-
tiation, apoptosis of myotubes, and protein synthesis in 
skeletal muscle of CC patients [189, 190]. Recent research 
demonstrates that exosomes from skeletal muscle, con-
taining myomiRs such as miR-1, miR-133a, miR-133b, 
and miR-206, play a dual role: they enter the circula-
tory system and facilitate inter-tissue communication 
between muscles, offering insights into new therapeutic 
approaches for muscle function [190]. However, detect-
ing skeletal muscle-specific EVs remains challenging due 
to the complexity of EV types and a lack of specific mark-
ers for skeletal muscle-derived EVs. Nonetheless, these 
circulating EVs with muscle miRNAs, which contribute 
to muscle wasting, may serve as accessible and promising 
biomarkers in CC management.

EVs-based lipid composition as biomarkers
Lipidomic analysis of EVs could uncover lipid signatures 
serving as diagnostic markers for cachexia. For example, 

Fan et al. [191] demonstrates that lipid profiles of plasma 
exosomes can distinguish early-stage lung cancer from 
healthy individuals. Similar studies have utilized serum 
or plasma exosomal lipids in diagnosing pancreatic can-
cer [192], breast cancer [193], and colorectal cancer 
[194–196], suggesting the potential of lipid biomarkers 
in EVs for diagnosing various cancer stages. While can-
cer and its treatments can significantly impact the body’s 
metabolism and energy balance, the specific effects on 
adipose tissue are not well-documented [197]. There-
fore, significant research is still required in exploring 
EV-encapsulated lipids as potential biomarkers for can-
cer-related cachexia.

EVs as therapeutic agents of CC
EVs indeed have gained attention in the field of medicine 
and therapeutics for their potential in treating various 
diseases, including cancer cachexia. These vesicles can 
originate from various cell types, such as mesenchymal 
stem cells, immune cells, and even tumor cells. Their abil-
ity to influence cellular processes and modulate immune 
responses makes them promising candidates for therapy. 
In this context, we focus specifically on the emerging role 
of EVs as therapeutic agents in CC, as detailed in Fig. 4.

Inhibiting production and release of cachectic EVs
The hypothesis is that EVs released by cancer cells or 
other cells contribute to the systemic effects of cachexia 
by transferring factors that promote muscle wasting, 
appetite suppression, and metabolic changes. Addi-
tionally, tumor-derived EVs can exacerbate cachexia by 
sending pro-cachectic signals to distant tissues. Thera-
peutically, targeting these tumor-derived EVs [198–201] 
or blocking their pathway activation [43, 56, 67] can 
mitigate cachexia-related complications. For exam-
ple, amiloride, a commonly used diuretic, significantly 
improves metabolic disorders in cachectic gastrocne-
mius by effectively inhibiting tumor-derived exosome 
release, thus affecting muscle catabolism, protein syn-
thesis, glycolysis, and ketone body oxidation [201]. Simi-
larly, GW4869, an inhibitor of exosome production and 
release, shows potential in reducing lipolysis and adipose 
tissue browning in cachexia [198]. Moreover, IMO-8503 
is found to suppress cancer cells’ release of EVs contain-
ing circulating miRNAs, thereby reversing cachexia with 
minimal side effects [66]. Another study indicates that 
omeprazole, a proton pump inhibitor (PPI), can amelio-
rate cancer-induced cachexia by limiting the release of 
EV surface proteins like Hsp70 and Hsp90 [202]. Addi-
tionally, blocking CD81 on EVs from senescent bone 
marrow-derived mesenchymal stem cells (BMSCs) can 
reduce muscle wasting [203], suggesting its potential in 
preventing muscle loss. Thus, suppressing EV release 
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emerges as a promising cell-free therapeutic approach for 
CC treatment (Fig. 4A).

EVs as anti-inflammatory agents
Recent research indicates that EVs from certain cell 
types, like mesenchymal stem cells (MSCs) or immune 
cells, may have anti-inflammatory effects, suggesting 
their potential use as therapeutic agents in CC (Fig. 4B). 
These EVs can interact with and modulate immune cell 
functions. For instance, EVs from MSCs or immune cells 
[204–207] often carry anti-inflammatory proteins like 
IL-10 or TGF-β, which can suppress immune responses 
and reduce inflammation. Moreover, they can influence 
macrophage polarization, shifting them from a pro-
inflammatory (M1) state to an anti-inflammatory (M2) 
state [208]. This shift towards M2 macrophages could 
lessen the inflammatory response, thereby potentially 
mitigating cachexia-related inflammation. Additionally, 
EVs transport specific miRNAs to target cells, impact-
ing various signaling pathways involved in inflammation 
[209]. Certain miRNAs in EVs have demonstrated anti-
inflammatory properties [210], offering a possible way to 
alleviate inflammation in CC.

Exercise related EVs for treating CC
Physical exercise is a key strategy to counteract muscle 
atrophy and dysfunction in CC [211, 212]. During physi-
cal activity, EV trafficking plays a crucial role in inter-tis-
sue communication [213–216]. Originating from muscle, 
immune, or cancer cells, these EVs can mediate the sys-
temic effects of exercise on diverse tissues and organs 
[181]. , potentially improving cachexia symptoms.

Exercise-induced EVs are gaining attention for their 
roles in oncology [181] and skeletal muscle [217]. They 
are particularly interesting for their possible correla-
tion with muscle remodeling and homeostasis [218]. The 
molecules within these EVs can help modulate processes 
like reducing oxidative damage, influencing mitochon-
drial function [219] improving metabolism [220] and 
enhancing skeletal muscle insulin sensitivity (Fig.  4D) 
[221]. Physical training can alter the number of circulat-
ing EVs and their protein contents. For example, exercise 
can increase the release of EVs containing Hsp72 [216] 
and Hsp60 [222], with Hsp60 activating the Peroxisome 
Proliferator-Activated Receptor Gamma Coactivator 
1-Alpha (PGC1α) pathway, crucial for modulating mus-
cle wasting [72, 222]. However, it’s important to note that 
these findings are not specifically studied in the context 
of CC. The precise mechanisms and therapeutic uses 
of exercise-induced EVs in CC remain areas of active 
research.

In addition to combatting muscle dysfunction, EVs 
from physical exercise may help delay CC progres-
sion through their anti-inflammatory effects (Fig.  4D). 

Exercise-induced muscle-derived IL-6 has shown to 
inhibit other inflammatory factors, exerting anti-inflam-
matory impacts [223]. EVs released post-exercise car-
rying meteorin-like protein can increase delivery of 
anti-inflammatory cytokines [224, 225]. The ability of 
contracting skeletal muscle cells to communicate with 
other organs via EV-based humoral factors is key to how 
physical exercise induces systemic adaptations, enhanc-
ing overall health [226]. These insights suggest a signifi-
cant role for exercise-induced EVs in cachexia treatment.

EVs as drug delivery system
Studies involving animal models and preclinical research 
have demonstrated the potential of EVs as a drug deliv-
ery system for muscle atrophy. For instance, EVs derived 
from MSCs have shown promise in promoting muscle 
regeneration, reducing inflammation, and improving 
muscle function in models of muscle atrophy (Fig.  4H) 
[227–230]. Additionally, research indicates that exosomes 
released from differentiating human skeletal myoblasts 
can stimulate myogenesis in human adipose-derived 
stem cells (HASCs), thereby accelerating muscle regen-
eration (Fig.  4H) [231]. Furthermore, the development 
of artificial nanovesicles, especially exosome-mimetic 
nanovesicles, is attracting interest in cancer research as 
potential therapeutic agents [232]. These nanovesicles are 
designed to replicate the properties of natural exosomes, 
potentially functioning as effectively or even more so 
[233]. Exosome-like systems, based on nanotechnology 
and surface engineering approaches, aim to overcome 
limitations of natural exosomes, showing potential as a 
competitive approach for innovative targeted anti-cancer 
therapies [234]. Nanoparticles, especially green nanopar-
ticles with their environmental and biocompatibility 
benefits [235], are pivotal in cancer treatment as a drug 
delivery system [236–238]. Therefore, artificial nanoves-
icles and precision delivery systems may greatly improve 
treatment efficacy for cachexia in cancer (Fig. 4G).

Modulating EV cargo as therapeutic agents
Modifying the content of EVs presents a promising 
therapeutic strategy for CC. Engineering EVs or alter-
ing their cargo-loading process could enable the delivery 
of specific molecules to mitigate the effects of cachexia 
(Fig.  4E). For instance, EVs could be loaded with anti-
inflammatory agents [239], anchor factors [240], or 
myostatin inhibitors [241] to reduce muscle wasting. 
Additionally, engineering EVs to display specific target-
ing ligands on their surface would allow them to selec-
tively bind to receptors on CC-related cells. An example 
of this is Physiactisome, a nanovesicle incorporating 
Hsp60, which mimics the beneficial effects of exercise 
training in combating muscle atrophy and cachexia [242]. 
Further, by manipulating the cargo of EVs, the adverse 
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impacts of cancer-derived EVs on cachexia might be less-
ened. Research efforts could focus on selectively remov-
ing or altering specific proteins or nucleic acids within 
EVs linked to cachexia progression. Another approach 
involves loading therapeutic agents into EVs, turning 
them into targeted delivery vehicles for specific cells or 
tissues implicated in cachexia. Recent perspectives sug-
gest that artificial EVs could be more effective than natu-
ral vesicles for drug delivery [243].

EVs in ameliorating nutrient uptake and metabolism
EVs are known to transport a variety of bioactive fac-
tors capable of influencing the expression and activ-
ity of nutrient transporters. EVs from healthy cells, for 
example, may contain molecules that boost the uptake 
of essential nutrients like amino acids, glucose, and fatty 
acids by recipient cells. This enhancement in nutrient 
absorption can promote anabolism, helping to coun-
teract the metabolic imbalances caused by CC (Fig. 4C) 
[244, 245]. On the other hand, CC is often accompanied 
by changes in gut microbiota composition, which can 
impact nutrient absorption and metabolism. EVs origi-
nating from specific bacterial strains, or those engineered 
to carry beneficial microbiota-derived molecules, might 
be capable of modifying the gut microbiota. Such altera-
tions could potentially improve nutrient absorption and 
overall metabolism in CC patients [246].

EVs in regulating appetite
Recent studies highlight the role of EVs from the hypo-
thalamus and adipose tissue in regulating feeding behav-
ior and energy balance [247–249]. Adipose tissue-derived 
EVs (EVs-AT) have been found to influence appetite-reg-
ulating pathways by altering the expression of appetite-
related genes in target cells (Fig. 4F) [248]. Furthermore, 
EVs released by gut cells, including enteroendocrine cells, 
may contain bioactive molecules that facilitate signaling 
between the gut and the brain [250], thereby modulating 
appetite pathways and affecting satiety and hunger cues 
[251, 252]. Additionally, microbiota-derived extracellular 
vesicles (MEVs), released by gut bacteria, interact with 
host cells involved in appetite regulation. These MEVs 
can transport various bioactive molecules that influence 
appetite-related pathways (Fig.  4F) [253, 254]. However, 
it is important to note that more research is needed to 
fully understand the role of EVs in appetite regulation, 
particularly in the context of CC, and to investigate their 
potential as therapeutic targets.

EVs as immunotherapeutic tactics
The use of EVs for immunomodulation in CC is a bur-
geoning area of research. EVs have the capability to 
influence the activity and function of various immune 
cells implicated in CC, such as MSCs, macrophages, B 

cells and T cells (Fig.  4B). Notably, they can shift mac-
rophages from a pro-inflammatory M1 phenotype to an 
anti-inflammatory M2 phenotype [208]. This polarization 
shift can reduce tissue damage and facilitate tissue repair. 
Moreover, EVs might also boost the cytotoxicity of T cells 
against tumor cells [255, 256], aiding in tumor suppres-
sion and potentially easing the effects of cachexia. There-
fore, manipulating the immune response via immune 
cell-derived EVs could significantly impact the progres-
sion of CC.

Current perspectives and future challenges
EVs have emerged as significant players in the field of 
CC due to their vital role in intercellular communication 
and their potential in diagnostic and therapeutic applica-
tions. These vesicles, containing a diverse array of mol-
ecules such as proteins, nucleic acids, and lipids, mirror 
the phenotype of their originating cells, making them 
promising candidates for diagnostic and prognostic bio-
markers in CC. Identifying specific EV biomarkers could 
enhance early detection and provide insights into cachex-
ia’s progression. Furthermore, the ability to engineer EVs 
to deliver targeted treatments, such as small interfering 
RNAs (siRNAs) or drugs, directly to affected cells pres-
ents a novel avenue for CC therapy. However, the devel-
opment of effective methods to load EVs with therapeutic 
agents and ensure their precise delivery to target tissues, 
such as muscle or adipose tissue, remains a challenge.

The potential of EVs in CC treatment is substantial, 
yet it is hindered by several technical obstacles. Stan-
dardizing methods for EV isolation and characteriza-
tion, developing sensitive assays for cargo analysis, and 
scaling up therapeutic EV production are critical steps 
that need to be addressed [257–259]. Moreover, ensur-
ing robust and reproducible methodologies is essential 
for the reliability and comparability of EV-based studies 
[260]. As EV-based approaches transition from preclini-
cal to clinical settings, overcoming regulatory hurdles, 
establishing scalable manufacturing processes, and con-
ducting comprehensive clinical trials to assess safety and 
efficacy become paramount [261]. Given the complexity 
of cancer cachexia, which varies among individuals and 
cancer types, and the diversity in EV cargo and composi-
tion, personalized approaches targeting specific cachexia 
mechanisms are necessary.

In total, while EVs offer significant promise in the man-
agement of cancer cachexia, overcoming the challenges 
associated with their development is crucial for realizing 
their full potential as diagnostic and therapeutic tools. A 
deeper understanding of EVs’ role in muscle wasting and 
metabolic dysfunction, coupled with ongoing research, 
collaboration, and technological innovation, is key to 
advancing the field. Integrating EV-based therapies 
with existing interventions, such as nutritional support, 
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exercise, or pharmacological treatments, could provide 
synergistic effects, improving patient outcomes. There-
fore, exploring multimodal approaches that combine EVs 
with other therapeutic modalities is essential for advanc-
ing the management of cancer cachexia.

Conclusions
EVs are vital in cancer biology, mainly because they 
facilitate intercellular communication by transporting 
bioactive molecules. This function is critical for various 
cancer-related processes, including the development and 
spread of tumors, evasion of the immune response, and 
development of resistance to drugs. The composition 
of EVs, which mirrors the condition of their originat-
ing cells, offers significant insights for diagnosing, prog-
nosticating, and tracking cancer progression. Moreover, 

their capacity to traverse biological barriers makes them 
promising for creating targeted drug delivery systems, 
potentially transforming cancer treatment strategies. 
While EVs hold great potential for cancer therapy, chal-
lenges such as achieving specificity to cancer cells, scal-
ing up production, efficiently loading and securing the 
stability of therapeutic agents, and overcoming regula-
tory and safety obstacles, remain to be addressed.

EVs also play a crucial role in cancer-associated 
cachexia, a condition prevalent in advanced cancer stages 
that significantly affects patient quality of life and sur-
vival. By mediating interactions between tumor cells and 
the tumor microenvironment, EVs contribute to cachexia 
through inflammatory responses, metabolic reprogram-
ming, and direct effects on muscle and adipose tissue. 
Understanding the role of EVs in cachexia is vital for 

Fig. 4 Therapeutic potential of EVs in cancer-induced cachexia. EVs have demonstrated promising therapeutic effects in managing cancer-induced 
cachexia, through various mechanisms: (A) Inhibition of EV Production: Reducing the production and release of cancer cell-secreted EVs can alleviate 
symptoms of cancer cachexia. (B) Immune Cell-Derived EVs: EVs from immune cells or anti-inflammatory sources carry factors that can suppress inflam-
mation and modulate the immune response, thus helping to manage cancer cachexia. These EVs can regulate immune responses, diminish systemic 
inflammation, and restore immune homeostasis, potentially slowing the progression of cachexia. (C) Nutrient-Derived EVs: EVs carrying nutrients or those 
derived from nutrient sources are being explored for their therapeutic effects in cancer cachexia. (D) Exercise-Induced EVs: EVs generated through exer-
cise may improve body weight, muscle mass, and physical performance in cachectic patients. (E) Cargo Modulation: Altering the cargo of EVs presents a 
novel approach for treating cancer cachexia. (F) Gut and Adipose Tissue-Derived EVs: These EVs could regulate appetite by affecting signaling pathways 
in the brain’s appetite-control centers. (G) Loaded EVs: EVs can be engineered to carry anti-inflammatory agents, specific anti-cancer drugs, and other 
therapeutic agents, making them effective for therapeutic cargo delivery. (H) MSC and HASC-Derived EVs: Mesenchymal stem cell (MSC) and human 
adipose-derived stem cell (HASC)-derived EVs have shown promise in enhancing muscle tissue regeneration in preclinical studies. Abbreviations MSC, 
mesenchymal stem cell; HASCs, human adipose-derived stem cells; EVs-AT, adipose tissue-derived EVs; MEVs, microbiota-derived extracellular vesicles
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early detection, monitoring, and identifying therapeu-
tic targets to alleviate the condition’s impact on patient 
outcomes. Research has shown the diagnostic and prog-
nostic potential of EVs in cancer cachexia, with ongo-
ing studies exploring their therapeutic possibilities. The 
integration of EV-based biomarkers and therapies into 
clinical practice promises to improve patient outcomes 
by enabling earlier diagnosis, more accurate prognosis, 
and personalized treatment strategies. As knowledge of 
EV-mediated molecular mechanisms expands, targeted 
interventions can be developed, highlighting the impor-
tance of continued research and investment in this area. 
Overall, EVs represent a significant advancement in man-
aging and treating cancer cachexia, offering a new fron-
tier in cancer care.
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