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Abstract
Background Exploration of adaptive evolutionary changes at the genetic level in vaginal microbial communities 
during different stages of cervical cancer remains limited. This study aimed to elucidate the mutational profile of the 
vaginal microbiota throughout the progression of cervical disease and subsequently establish diagnostic models.

Methods This study utilized a metagenomic dataset consisting of 151 subjects classified into four categories: invasive 
cervical cancer (CC) (n = 42), cervical intraepithelial neoplasia (CIN) (n = 43), HPV-infected (HPVi) patients without 
cervical lesions (n = 34), and healthy controls (n = 32). The analysis focused on changes in microbiome abundance and 
extracted information on genetic variation. Consequently, comprehensive multimodal microbial signatures associated 
with CC, encompassing taxonomic alterations, mutation signatures, and enriched metabolic functional pathways, 
were identified. Diagnostic models for predicting CC were established considering gene characteristics based on 
single nucleotide variants (SNVs).

Results In this study, we screened and analyzed the abundances of 18 key microbial strains during CC progression. 
Additionally, 71,6358 non-redundant mutations were identified, predominantly consisting of SNVs that were further 
annotated into 25,773 genes. Altered abundances of SNVs and mutation types were observed across the four groups. 
Specifically, there were 9847 SNVs in the HPV-infected group and 14,892 in the CC group. Furthermore, two distinct 
mutation signatures corresponding to the benign and malignant groups were identified. The enriched metabolic 
pathways showed limited similarity with only two overlapping pathways among the four groups. HPVi patients 
exhibited active nucleotide biosynthesis, whereas patients with CC demonstrated a significantly higher abundance of 
signaling and cellular-associated protein families. In contrast, healthy controls showed a distinct enrichment in sugar 
metabolism. Moreover, biomarkers based on microbial SNV abundance displayed stronger diagnostic capability (cc.
AUC = 0.87) than the species-level biomarkers (cc.AUC = 0.78). Ultimately, the integration of multimodal biomarkers 
demonstrated optimal performance for accurately identifying different cervical statuses (cc.AUC = 0.86), with an 
acceptable performance (AUC = 0.79) in the external testing set.
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Background
Cervical cancer (CC) is a global public health problem, 
with an estimated 604,000 new cases and 342,000 deaths 
worldwide in 2020, according to the latest Globocan 
report [1]. Although vaccines have been developed, CC 
continues to be a major public health problem affect-
ing middle-aged women, particularly in less-resourced 
countries [2]. Persistent human papillomavirus (HPV) 
infection is the main trigger for the development of CC. 
Currently, more than 200 different HPV types have been 
described to infect epithelial cells, which are further 
divided into low- and high-risk HPV types, depending on 
their carcinogenic potential [3]. Although HPV infection 
is a risk factor for the progression of cervical lesions and 
the development of CC, only a small number of women 
develop precancerous cervical dysplasia, with the high-
est risk of progression to cancer. Therefore, it is crucial to 
study other factors in the local cervicovaginal microenvi-
ronment that facilitate the transition from HPV infection 
to cervical precancerous condition.

Rapidly evolving evidence highlight the association 
between the vaginal microbiome and the acquisition of 
HPV, as well as the occurrence of cervical intraepithelial 
neoplasia (CIN) and CC [4, 5]. Multiple cross-sectional 
studies in various racial and ethnic cohorts have demon-
strated that HPV-infected women exhibit a more diverse, 
non-Lactobacillus dominant vaginal microbiota [6, 7]. 
Furthermore, it has been found that increasing severity 
of CIN was associated with higher vaginal microbiome 
diversity and decreased relative abundance of Lactoba-
cillus spp [8]. Thus, a vaginal microbiome dominated by 
a variety of Lactobacillus species is considered healthy. 
Additionally, anaerobic bacteria such as Sneathia spp. 
were significantly enriched in CIN samples in multiple 
studies [9] and were strongly associated with changes in 
immune mediators. Several recent reviews have shown 
that a dysbiotic vaginal microbiome plays a significant 
role in the development and progression of cervical dis-
eases, including HPV infection (HPVi), CIN, and CC [10, 
11]. Accordingly, numerous biomarkers based on changes 
in bacterial composition have been considered as poten-
tial biomarkers for HPVi and CC [12, 13].

Evidence indicate that notable evolution of the micro-
biome may occur prior to changes in composition and 
abundance during the progression of the host disease 
[14]. Theoretically, evolution depends on genetic varia-
tion. In-depth profiling of genetic variation can detect 
strain-level variations, such as single nucleotide variants 
(SNVs), short insertions/deletions, structural variants, 

copy number variations, and simple sequence repeats 
[14, 15]. Based on the gut microbiome, SNVs have been 
used as markers to distinguish subjects with colorectal 
cancer from healthy subjects [16].

Regarding the genital tract microbiome, population 
nucleotide diversity, selection metrics, and antibiotic 
resistance potential are associated with preterm birth 
[17]. This study offers a unique population genetic elu-
cidation of the association between the vaginal microbi-
ome and alterations in the host environment, implying 
that microbial genomes have also undergone co-evo-
lution with human disease states. To date, no study has 
reported an association between vaginal microbiota and 
disease at the level of structural variations. Therefore, we 
hypothesized that specific genomic variations in vaginal 
bacteria correspond to the occurrence and malignant 
transformation of cervical diseases.

The primary objective of this study was to investigate 
the coevolutionary microbial signatures associated with 
the progression of CC, encompassing taxonomic, func-
tional, and SNV levels (Fig. 1A). Analyses incorporating 
enriched pathways and their associated genes may pro-
vide insights into the underlying mechanisms by which 
alterations in the bacterial landscape contribute to the 
development of CC. The potential utility of microbial sig-
natures as effective diagnostic biomarkers has also been 
assessed. Consequently, this study expands the under-
standing of genetic alterations in vaginal microbial com-
munities and offers an unprecedented opportunity for 
early detection of noninvasive CC.

Method
Sequence and clinical data source
The vaginal shotgun metagenomic sequence data 
of internal training and validating set was down-
loaded from NCBI PRJNA771720 (https://www.ncbi.
nlm.nih.gov/sra/?term=PRJNA771720), which was 
uploaded by Liu, H. et al. [18]. A total of 151 samples’ 
paired-end reads were acquired including 42 indi-
viduals with CC, 43 individuals with CIN, 34 HPV 
carriers without CC and CIN, and 32 healthy individu-
als. Besides, in order to further illustrate the perfor-
mance of our final diagnose model, two external testing 
sets was downloaded: NCBI PRJNA1057216 (https://
www.ncbi.nlm.nih.gov/sra/?term=PRJNA1057216) 
and NCBI PRJNA779415 (https://www.ncbi.nlm.nih.
gov/sra/?term=PRJNA779415). PRJNA1057216 con-
tains samples from 54 patients with CC or CIN, while 
PRJNA779415 includes 47 samples from individuals 

Conclusions The vaginal microbiome exhibits specific SNV evolution in conjunction with the progression of CC, and 
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without CC and CIN and was uploaded by France MT et 
al. [19].

Identification of microbial species, SNV calling and SNV 
biomarkers generation
With the implement of MetaPhlan2 [20], the original 
reads were directly annotated to a pre-built microbial 
genomics database and the relative abundance of every 
species in single sample were calculated. Those species 
with an average relative abundance greater than 0.5% 
were selected for the next SNV calling and their genomes 
and annotation profiles were downloaded from NCBI 
(see Table S1). For SNV calling, the original metagenom-
ics reads were mapped to the reference genomes to dis-
cover all SNVs’ sites and depths with Bowtie2(v1.1) [21], 
SAMtools(v1.1) and BCFtools(v1.8) [22]. Subsequently, 

all SNVs were annotated to the corresponding genes 
according to their sites using Python(v3.9.12). For each 
sample, the number of SNVs in each gene, contig were 
calculated and were defended as biomarker-gene and 
biomarker-contig, respectively. The depths of each SNV 
were also recorded and defined as biomarker-SNV. Addi-
tionally, the relative abundance of species in each sample 
are defended as biomarker-taxa. Notably, the value of 
each SNV-related biomarker was further divided both 
by the relative abundance of the species it belongs to 
and the base counts of shotgun metagenomic sequence 
data to amend the bias derived from sequencing and spe-
cies abundance. The Manhattan plot showing the SNV 
spots and species abundance was plotted by R package 
“CMplot” (v4.3.1) [23].

Fig. 1 Experimental design and the integrated analysis of cervical cancer-associated microbiome. (A) Experimental design. A total of 151 human subjects 
with vaginal metagenomic data were downloaded from NCBI, comprising 42 cervical cancer patients, 43 cervical intraepithelial neoplasia patients, 34 
HPV-infected patients and 32 healthy controls. Using MetaPhlan2, the relative abundance of every species in a single sample were calculated. Those spe-
cies with an average relative abundance greater than 0.5% were selected for further analysis and single nucleotide variant (SNV) calling. All identified SNVs 
were annotated to their corresponding genes based on their genomic locations. Mutational patterns and signatures were extracted using base substitu-
tions and additionally included information on the sequence context. Subsequently, the top 500 genes exhibiting the highest number of SNVs within 
each group were selected and annotated to Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways for assessing functional alterations. 
Finally, diagnostic models incorporating these multimodal microbial markers and the random forest algorithm was built. (B) Evolutionary tree showing 
MetaPhlan2 extracts for all species. (C) Abundance of 18 strains selected according to abundance and breadth in different subgroups. (D) Overall screen-
ing of and demonstrated that a total of 71,6358 non-redundant mutations were annotated into 25,773 genes belonging to 427 contigs, and the species 
abundance of the mutations belongs to are also shown
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Functional enrichment analysis
The protein sequences of the selected reference spe-
cies were downloaded from NCBI and were annotated 
to KEGG metabolic pathways by eggNOG-mapper (v2) 
[24]. For each cohort, the top 500 biomarker-gene with 
the largest number of SNVs were selected, respectively, 
and the matched proteins were recorded if exists, accord-
ing to the annotation profiles from NCBI (see Table S1). 
The KEGG enrichment analysis was accomplished by 
TBtools(v1.111) [25]. For the intersection part of the 
enriched pathways both in different cohorts, Wilcoxon 
rank-sum test was employed in R software to identify 
the different levels of enrichment in two group. Finally, 
the relevant figures was plotted by R software and http://
www.bioinformatics.com.cn, an online platform for data 
analysis and visualization.

Mutation spectrum and mutation signature
SNPEFF [26]was used to annotate the mutations in vcf 
files of different samples. Firstly, a custom database was 
established according to the gff file of the reference bac-
teria, and the bin file was generated. Then, SNVs were 
annotated according to the vcf file, and generate a snp.eff.
vcf file for analyzing mutation types. Next we use snpeff-
tomaf.pl to map the SNPEff. The vcf file is converted to 
a maf file, and maftools [27] is used to create a waterfall 
chart showing the mutation frequency. For mutational 
signatures of bacteria, we derived 96 mutational Sig-
natures of SNVs across different groups by make a new 
BSGENOME data package, followed by inferring somatic 
signatures from single nucleotide variant calls, providing 
a basis for follow-up studies with specific codes.

Filter of biomarkers and model construction
Recursive feature elimination (RFE) was employed to 
screen the biomarkers respectively using R software., and 
the biomarkers of species abundance and the biomarkers 
of SNV in gene were sent in the final model as input.

Four random forest diagnose models were trained 
using 4 different types of biomarkers individually to 
evaluate their values in discriminating individuals from 4 
groups. Then, a final diagnose model using filtered bio-
markers was trained and tested in external testing set. 
The R package “randomForest” (v4.7-1.1) was applied 
for the construction of random forest models using 
the default hyperparameters. The models was trained 
using the 85%-15% train-test ratio and was evaluated 
with a fivefold cross-validation approach. The figure of 
RFE selection, chart of rank of Gini coefficient and the 
receiver operating characteristic curve were plotted by R 
package ggplot2 (v3.4.2) [28].

Statistics statement
The statistical analyses were conducted using R soft-
ware. Two-way repeated measures ANOVA followed 
by Bonferroni post-test was applied to the comparison 
of species abundance in different groups, the compari-
son of SNV counts belongs to different mutation type 
(missense, silent and nonsense) and the comparison of 
C > T/T > C SNV proportion in groups. Statistical analy-
sis was performed using GraphPad Prism software. In 
the part of functional enrichment analysis, the pathways 
that enriched in multiple cohorts were further compared 
using the Wilcoxon rank-sum test. P values were consid-
ered significant at P < 0.05. Randomforest test was per-
formed by the “randomForest” package.

Result
Characteristics of included cohort
In this study, the internal discovery samples belong-
ing to project PRJNA771720 (n = 151) were included to 
evaluate vaginal microbiome changes as CC progressed 
(from control, HPV acquisition, to intraepithelial neo-
plasia, and cancer). The collection of all metagenomics 
sequences from cervical samples and associated clinical 
data was previously conducted by Liu, H. et al., and sub-
sequently deposited in the NCBI Sequence Read Archive 
database [18]. In total, 151 samples were collected from 
42 CC patients, 43 CIN patients, 34 HPVi patients, and 
32 healthy controls. The external testing samples belong-
ing to project PRJNA1057216 (n = 54, CC or CIN) and 
PRJNA779415 (n = 47, without CC and CIN) [19] were 
downloaded for the final diagnose model. From both the 
internal discovery and external testing cohorts, vaginal 
microbiota profiles were assessed using metagenomic 
shotgun sequencing to analyze microbial diversity across 
all taxonomic levels.

The internal discovery cohort consisted of cervi-
cal samples collected from patients with a Han Chinese 
background in Wuhan, China. The patients were strati-
fied into disease and healthy control groups based on 
their HPV infection status. Within the disease group, 
individuals without cervical lesions were classified into 
the HPVi subgroup. Those categorized as having CIN 
and CC represented the first occurrence of these two dis-
eases. The external testing cohort from PRJNA1057216 
consists of 54 samples from patients with CC or CIN. 
As the further precise label is not available, these sam-
ples were then uniformly labeled as tumor group. The 
external testing cohort from PRJNA779415 contains 47 
females without CC and CIN, who were then uniformly 
labeled as non-tumor group.

Cervical cancer-associated microbial taxonomic alterations
Species annotation using MetaPhlan2 revealed 12 phyla, 
21 classes, 35 orders, 64 families, 97 genera, and 202 

http://www.bioinformatics.com.cn
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species in the vagina (Fig. 1B). Consistent with previous 
studies, at the phylum level, Firmicutes, Actinobacteria 
and Bacteroidetes were dominant [29]. Unlike other ana-
tomical sites, most vaginal communities were dominated 
by one or more species of Lactobacillus and Enterococ-
cus, both of which belong to Firmicutes.

A genome library was constructed using the whole 
genomes of 18 strains with a sequencing depth of 
> 10×(Fig.  1C). These results suggest that patients with 
the presence of cervical lesions, have a lower proportion 
of Lactobacillus spp. than healthy controls. In addition, 
the predominance of Bifidobacteriaceae breve, with a 
minority of Atopobium vaginae and L. crispatus appears 
to be a risk factor for CC and CIN. These findings were 
consistent with previous research [30]. However, unlike 
previous studies, Gardnerella vaginalis was enriched in 
both HPVi and CIN patients but downregulated in CC 

patients (Fig.  1C). Furthermore, we conducted analysis 
on the SNVs in the aforementioned species and exhib-
ited the correlation between species abundance and 
average relative abundance of SNVs. As depicted in 
the figure, no complete correspondence was observed 
between the average relative abundance of SNVs and spe-
cies abundance. Notably, certain species with relatively 
low abundance, such as Prevotella amnii and prevotella 
timonensis,exhibited a high relative abundance of SNVs 
(Fig. 1D).

Microbial gene alteration associated with CC progression
Microbial genetic variations, including SNV, dele-
tions, and insertions, represent potential alterations at 
the intra-species strain-level of microbial functionality 
(Fig. 2A). Thus, we characterized the mutation profiles of 
the vaginal microbiome during CC pathogenesis.

Fig. 2 Microbial gene alteration among cervical cancer progression. (A) Comparison of the number of Snp\ins\del between the four groups, with the 
horizontal coordinates log transformed. (B) Proportions of silent, nonsense, and missense mutation types between the four groups. (C) Waterfall plot. 
Displays mutation types and frequencies in the top 30 genes with the highest mutation frequencies for CC, CIN, HPVi and control. Genes are classified 
according to the strain to which they belong. The horizontal coordinate represents samples and vertical coordinate represents genes. Different colors 
denotes different mutation types. The top bar reflects the proportion of different mutations within different samples, and the right bar reflects the propor-
tion of total mutation types in all samples for the gene
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We examined the SNV signatures of different cervi-
cal statuses against 18 microbial strains (relative abun-
dance > 0.5%) in the metagenomic dataset (Table. S1). 
Among all mutation types, the frequency of silent muta-
tions demonstrated a higher overall trend compared to 
the other two mutations. However, regardless of being 
silent, nonsense, or missense mutations, similar muta-
tion frequencies were observed among the four groups, 
respectively (Fig. 2B). A waterfall diagram identified the 
top 30 genes with the highest SNV counts, most of which 
were associated with multi-hit mutations, indicating 
their involvement in multiple types of genetic alterations. 
Among these genes, most mutations were observed in 
three Gardnerella vaginalis, along with common occur-
rences in Lactobacillus spps and.Streptococcus agalactiae, 
which are strains closely associated with vaginal dysbiosis 
(Fig.  2C). Specifically, mutations in genes within Gard-
nerella vaginalis exhibit a higher prevalence within the 
CC and CIN groups, whereas mutations in Lactobacil-
lus spps and Streptococcus agalactiae are more prevalent 
among the remaining two groups.

Additionally, SNVs located in metabolism-related genes 
showed diverse mutation types across the four groups. 
Notably, the CYJ64-RS02490 gene displayed a higher 
likelihood of nonsense mutations, specifically in the CC 
group compared to other groups, suggesting a potentially 
lower expression level of the CadD family cadmium resis-
tance transporter. In conclusion, these analyses under-
score the importance of microbial genetic variations in 
the pathology of CC and highlight the potential diagnos-
tic utility of SNVs.

Microbial mutation signature alternation during evolution
Somatic cells in various cancers exhibit distinct patterns 
of base replacement during development, which can be 
regarded as a mutational signature [31]. We investigated 
whether this signature was also evident in microbial 
SNVs. We extracted mutational signatures based on base 
substitutions and identified 12 distinct mutational pos-
sibilities. Based on the principle of complementary base 
pairing, only six classes were identified (C > A, C > G, 
C > T, T > A, T > C, T > G). Notably, the ratio of transi-
tions to transversions for the pair of sequences (Ti/Tv) 
was 3. Specifically, the frequencies of T > C and C > T 
substitutions were the highest, whereas C > G exhibited 
the lowest frequency (Fig.  3A). When investigating the 
contribution of mutational signatures, we discovered 
that C > T was greater than T > C only in the HPVi group, 
while the rest of the groups were opposite (Fig. 3B and C, 
Table S2).

Additionally, information regarding the sequence 
context of each mutation has been incorporated. We 
integrated the data on the nucleotides immediately pre-
ceding and following each mutated base to classify the 96 

bacterial mutation patterns (Fig. 3D). The mutation pat-
terns in both the HPVi and CIN groups exhibited simi-
larities, which was designated as signature (A) While the 
mutation pattern of CC group can be defined as signa-
ture (B) Both signatures A and B are characterized by a 
predominance of C > T substitutions at the NpCpG trinu-
cleotides. However, a higher proportion of C > A, C > G, 
and T > G substitutions was observed in signature A than 
in signature B. Considering the progression of cervical 
lesions, the transition from signature A to B may indicate 
a significant shift in microbiome genetic signatures dur-
ing malignant transformation.

Because there is currently no existing database for 
the 96-mutation signature of bacteria, we were unable 
to establish a correspondence with mapping. Hence, we 
used these data as reference cases in subsequent studies. 
Upon further investigation of the impact of mutations on 
codon translation, we observed a distinct pattern in the 
codon mutation map of the vaginal genomes, with most 
mutations occurring along the opposite diagonal (Fig. 
S1, Table S3). The location and quantity of SNVs within 
genes may directly influence gene function and conse-
quently shape microbiome evolution.

Comparison of enriched metabolic pathways caused by 
genetic mutations
After demonstrating the co-evolution of the taxonomy 
and mutational signature of the vaginal microbiota 
among individuals with CC, we further investigated alter-
ations in microbial functionality. To perform enrichment 
analysis of functional pathways, we selected the top 500 
genes with the highest number of SNVs across all groups 
and compared them using the KEGG.

Our findings revealed limited similarity in terms of 
functional pathways among the microbiomes in these 
four groups, indicating significant changes in microbial 
function during CC progression (Table S4). Interestingly, 
only two functional pathways overlapped between these 
groups: genetic information processing protein family 
(B09182) and pyruvate metabolism (00620).

Further analysis of the enriched metabolic pathways 
within each group revealed specific microbial functional 
changes at different stages of CC progression (Fig. 4). The 
vaginal microbiota of patients with HPVi exhibited active 
nucleotide biosynthesis, including DNA replication and 
recombination proteins, transfer RNA biogenesis, and 
mitochondrial biogenesis. In contrast, patients with CC 
demonstrated a significantly higher abundance of signal-
ing and cellular-associated protein families. However, 
the CIN group displayed fewer enriched functional path-
ways while having a higher count in the gene information 
processing pathway. Nevertheless, the healthy controls 
showed high levels of enrichment in sugar metabolism, 
including pyruvate, starch, and sucrose metabolism. 
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These findings indicate distinct functional features 
between the vaginal microbiomes of patients with dys-
biosis and healthy women.

Multimodal microbial marker in the construction of CC 
diagnostic models
The performance of diagnostic models is highly depen-
dent on feature selection. Therefore, we employed four 
distinct biomarker types to ascertain the optimal features 
for constructing our models: vaginal microbiome abun-
dance, the number of SNVs within contigs, the number of 
SNVs in genes, and SNV abundance. Moreover, we used 
the random forest algorithm to train four separate diag-
nostic models that effectively distinguished patients with 
CC, CIN, and HPVi from healthy controls, with each 
model based on a single feature.

The important scores of the different features were 
obtained and ranked for further screening of biomark-
ers (Fig. S2). We found that the three diagnostic models 

(cc.AUC = 0.83; cc.AUC = 0.83; cc.AUC = 0.87) based on 
SNV number were superior to the general model of spe-
cies abundance (cc.AUC = 0.78), further underlining the 
sensitivity of vaginal microbial SNV biomarkers (Fig. 5A-
D). Considering their clinical applicability in terms of 
efficiency and cost-effectiveness, based on the RFE result 
and important score of 4 models, we further identified a 
minimal set of biomarkers consisting of 5 species and 4 
genes as the input of our final diagnosis model (Fig. 6B).

To further validate the discriminatory potential of 
SNVs in distinguishing between HPVi, CIN, CC, and 
healthy controls, we performed principal component 
analysis (PCA) to visualize the separation between these 
groups. Based on SNVs in genes, our analysis revealed 
that vaginal microbiota highly differed between HPVi, 
CIN and healthy controls in pairwise comparison 
(Fig. 5E).

To investigate whether the integration of multi-
modal biomarkers can enhance predictive capabilities, 

Fig. 3 Microbial mutational patterns and signature alternation during evolution. (A) Comparison of mutational signatures based on base substitutions 
and Ti\Tv between the four groups. (B) Differential microbial mutational signature contribution associated with CC progression. (C) Abundance of snv 
with base mutation types C > T and T > C in CC, CIN, HPVi and control groups. (D) Characterization of 96 mutations in CC, CIN, HPVi and control groups 
based on the reference genome of bacteria. The base substitution at the mutation site contains six types: C > A, C > G, C > T, T > A, T > C and T > G. Four 
bases (A, T, C, G) can be paired on each side of the mutation site (5′ and 3′ ends), resulting in 96 possible mutation types (6 base substitution types at the 
mutation site × 4 5′ bases × 4 3′ bases). CC, cervical cancer; CIN, cervical intraepithelial neoplasia, HPVi, Human papilloma virus infection; Ti/Tv, the ratio 
of transitions to transversions for the pair of sequences
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Fig. 4 Enrichment pathways of mutated genes in CC, CIN, HPVi patients and controls
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we proposed a final binary classification model to dis-
tinguish tumor (CC or CIN) and non-tumor (HPV or 
healthy) using the minimal set of biomarkers combina-
tion identified above. Notably, an enhanced performance 
(AUC = 0.86) was observed in the internal discovery 
cohort, with an acceptable performance (AUC = 0.79) in 
the external testing set. (Fig. 6A-C). Consistent with pre-
vious studies, the Lactobacillus genus emerged as highly 
significant in our model, including the most influen-
tial biomarker, Lactobacillus iners, along with two other 
species.

To further explore the relationship between biomark-
ers and diseases, we analyzed the functions of the four 
genes selected in our final model. The mutation types 
and locations of SNVs within the gene are shown in the 
figure (Fig.  6D), where different colored dots represent 
distinct mutation types, and their positions indicate the 
genomic locations of these mutations. To gain insights 
into the enriched SNV functions in CC, we elucidated 
their respective functions using feature tables obtained 
from a public database. The concentric rings in our study 

represented different disease types, with each ring cor-
responding to a specific group. The innermost to out-
ermost rings represent the control, HPVi, CIN, and CC 
groups, respectively.

The B9N54_RS05665 gene, located in NZ_
NDYD01000021.1, in Finegoldia magna, is implicated in 
DNA methylation modifications. The CYJ64_RS06785 
gene, functionally annotated as inositol-3-phosphate 
synthase, belongs to the NZ_PKJK01000002.1, family of 
Gardnerella vaginalis. The presence of HMPREF9216_
RS00340 and E6A57_RS01390 in Lactobacillus iners and 
Lactobacillus crispatus suggests an evolutionary associa-
tion with changes in cervical conditions. HMPREF9216_
RS00340 encodes the NUDIX hydrolase, which plays 
an early role in the pterin branch of the folate synthesis 
pathway [22, 32]. The E6A57_RS01390 gene is associated 
with the transcription-repair coupling factor, facilitating 
access to repair proteins in lesions. We observed that the 
relative abundances of Finegoldia magna, Gardnerella 
vaginalis and two Lactobacillus spp. varied significantly 
among the four groups, which highlights the validity of 

Fig. 5 Diagnostic models based on microbial monomodal biomarkers. (A-D) Receiver operating characteristic (ROC) curves and area under the curve 
(AUC) for the 4 individual feature models. Intestinal species abundance (A), number of SNVs within contigs (B), number of SNVs within genes (C), and SNV 
abundance alone (D) were used as features of the model. (E) PCA plot of pairwise comparison of the biomarker in groups, testing the ability of biomarkers 
to separate the two groups
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the gut microbial SNV biomarkers from another point of 
view.

Discussion
While numerous reports have focused on the taxonomic 
involvement of the microbiota in the pathogenesis of CC, 
there has been significant neglect in exploring the evo-
lutionary dynamics at the genetic level within microbial 
species [11, 33–35]. Previous studies on other cancers 
have demonstrated that the host disease status is more 
strongly associated with microbial gene signals than with 
microbial species, highlighting the importance of gene-
level analysis [36]. In this study, we conducted a compre-
hensive investigation at the taxonomic, functional, and 
SNV levels to elucidate the presence of multimodal sig-
natures within vaginal microbial species with the aim of 
gaining insights into their potential role in CC.

When exploring CC-associated microbial taxo-
nomic signatures, consistent with previous studies, we 
observed that the depletion of the genus Lactobacillus 
and increased anaerobic genera were significantly asso-
ciated with the progression of CC. Our findings are in 
accordance with recent studies indicating that bacterial 
vaginosis (BV) is linked to adverse gynecological and 
obstetric outcomes, including an increased risk of sexu-
ally transmitted infections and cancer [35, 37].

After confirming the compositional differences in the 
microbiomes of CC, CIN, HPVi, and healthy controls, 

we further investigated their microbial genomic varia-
tion profiles. SNVs were extracted and annotated for the 
analysis of metagenomic data, and we found that the fre-
quency of nonsense mutations was much lower than that 
of missense and silent mutations in all groups. Compared 
with nonsense mutations, missense and silent mutations 
have relatively small impact on the structure and func-
tion of the encoded proteins. As previously defined as 
‘dark SNVs’, these variants may have diagnostic poten-
tial despite the absence of alterations in encoded amino 
acids [38]. Also, all types of mutation occurred more 
frequently in CIN group though not significantly when 
compared to the CC group. This suggests a different evo-
lutionary strategy of the microbiome during lesion pro-
gression. Across the four groups we observed that most 
genes with higher mutation frequencies also underwent 
multiple types of mutations, including silent and mis-
sense mutations. Unsurprisingly, the top 30 genes with 
the highest mutation frequencies mainly belonged to BV 
or dysbiosis-associated community (CST IV), including 
Lactobacillus spps., Streptococcus agalactiae and Gard-
nerella vaginalis. Among the 30 genes, Gardnerella vagi-
nalis harbored 17 of them, which exhibit a relatively high 
mutation rate in the tumor-associated group(CC and 
CIN). This finding once again underscores its significant 
role during vaginal dysbiosis and suggests that microbial 
genetic evolution may occur concomitantly or even pre-
cede oncogenic transformation. Interestingly, although 

Fig. 6 Diagnostic models based on microbial multimodal biomarkers. (A) ROC curves and AUC for the combined feature model in internal discovery set. 
(B) The 9 features in 2 types that were combined to build the final disease diagnosis model and ranked according to their contribution to the random 
forest model. (C) ROC curves and AUC for the combined feature model in external testing set. (D) Mutation types and positions of SNV within the gene in 
gene-B9N54_RS05665,gene-E6A57_RS01390, gene-HMPREF9216_RS00340 and gene-CYJ64_RS06785, the horizontal coordinate represents the sample 
name, the vertical coordinate represents the site
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only one gene (gene-AMM49_RS05120) was derived 
from Streptococcus agalactiae, it showed the highest 
mutation frequency, encoding tetracycline resistance 
ribosomal protection protein Tet(M). Multiple studies 
have indicated that upregulation of Tet(M) in Streptococ-
cus agalaciae mediate its resistance to tetracycline and 
its derivatives, which might also associated with cervical 
carcinogenesis [39, 40].

Additionally, we identified two microbial mutational 
signatures associated with cancer transition. Signatures 
A and B were both characterized by a predominance of 
C > T substitutions but differed mainly in the proportion 
of C > A, C > G, and T > G substitutions. The presence of 
signature B in CC groups suggests that the microbiome 
may undergo “driver” mutations with the development of 
precancerous lesions, which persist throughout cancer 
progression. Although mapping of the bacterial 96-muta-
tional signature is still lacking, we compared it with the 
mutational signatures observed in human cancers. Inter-
estingly, our defined signature A corresponds to Sig-
nature 1  A and our defined signature B corresponds to 
Signature 1B found in human cancers [31]. Furthermore, 
CC was shown to exhibit Signature 1B but lacks Signa-
ture 1  A. However, further studies are required to con-
firm the link between microbial and cancer signatures.

The enriched metabolic pathways in the cervicovaginal 
microbiota further demonstrate differential evolution in 
the microbiome. Generally, the microbiome in cervical 
disease exhibits active nucleotide biosynthesis. Active 
genetic information and signaling processes (including 
DNA replication, mitochondrial biogenesis, and tRNA 
biosynthesis), which are involved in a range of microbial 
activities, may indicate their survival strength. The func-
tions of differentially expressed genes in healthy con-
trol microorganisms were mainly concentrated in sugar 
metabolism. These features partially reflect the ability of 
protection by predominant Lactobacillus in the female 
genital tract from bacterial pathogens. Specifically, anti-
microbial metabolites produced by Lactobacillus crispa-
tus have been shown to decrease glucose levels and the 
production of phenyl lactate and N-acetylated amino 
acids in epithelial cervical cell models [37].

In clinical practice, the diagnosis of patients with CIN 
and CC typically involves a thin-prep cytology test, col-
poscopy, and biopsy. However, due to the inconvenience 
associated with these current diagnostic tools, there is an 
urgent need for rapid and noninvasive diagnostic meth-
ods. In this study, we hypothesized that composition and 
gene signatures could serve as reliable biomarkers for 
predicting CIN and CC in patients. Thus, we constructed 
four diagnostic prediction models based on microbiome 
signatures: vaginal species abundance, number of SNVs 
within contigs or genes alone, as well as SNV abundance 
alone. Among these models, those incorporating SNVs 

were found to be superior to the general model based on 
species abundance alone. This highlights the sensitivity of 
SNVs as potential biomarkers.

Also, considering the efficiency and cost effectiveness 
in clinical practice, we developed an integrated diag-
nostic model that combines minimal set of biomarkers, 
including species abundance and SNVs in gene. The ROC 
curve analysis demonstrated that microbial biomarkers 
effectively distinguished tumor group and non-tumor 
group both in the internal discovery cohort and external 
testing set. Although some studies have already used the 
vaginal microbiome as a diagnostic biomarker, they have 
focused solely on taxonomic unit [35]. One remarkable 
finding in our study is the diagnostic model constructed 
with SNV biomarkers achieved higher AUC than species 
abundance. Therefore, compared to previous studies, our 
analysis further considered the complexity of microbi-
ome-host interactions and highlight the potential for this 
cost-effective noninvasive biomarker panel to serve as an 
invaluable tool for early screening of CC.

Consistent with previous studies, we considered that 
Lactobacillus spp. can be used as good biomarkers for the 
distinction [35], including Lactobacillus iners and Lacto-
bacillus crispatus. Specifically, unlike other Lactobacillus 
species that inhibit virus infection, L. iners is considered 
a transitional species in a dysbiotic state. It can produce 
inerolysin and L-lactic acid, which are associated with 
viral infections [41]. Recently, Lactobacillus iners has 
emerged as a significant predictor of non-response to 
chemoradiation for cervical cancer and is associated with 
reduced recurrence-free survival [42]. Other pathogenic 
bacteria, especially anaerobes, such as Gardnerella vagi-
nalis and Atopobium vaginae, also serve as powerful bio-
markers for the prediction of cervical lesions [35, 43, 44].

Furthermore, the screened gene signatures with the 
highest number of SNVs were associated with DNA 
modification, transcriptional repair, cellular signaling, 
and folate synthesis. Nudix hydrolase belonging to Lac-
tobacillus iners has been reported to be associated with 
trimethoprim-sulfamethoxazole resistance in the gut 
microbiome, which depyrophosphorylates dihydrone-
opterin triphosphate in the pterin branch of the folate 
synthesis pathway [45]. Similarly, studies have demon-
strated that Lactobacillus iners is an obligate producer 
of L-lactate, which has been associated with elevated 
levels of L-lactate in the cervical tumor microenviron-
ment and subsequent modulation of various metabolic 
pathways within tumors [42]. Therefore, considering the 
significant role of Lactobacillus iners during cervical dis-
orders, we postulate that its folate synthesis pathway may 
represent an unexplored signaling cascade influencing 
tumor metabolism, thus presenting potential therapeutic 
targets.
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Overall, this study provides compelling evidence sup-
porting the potential of SNVs in early recognition and 
screening of cervical cancer, as well as interventions 
targeting Lactobacillus iners within the tumor micro-
environment for future clinical translation. However, 
this study has some limitations. First, the vaginal micro-
bial samples may be regionally and ethnically heteroge-
neous, and only Chinese subjects were included in our 
study. Secondly, the discovery and validation cohorts 
in our study were characterized by a relatively modest 
sample size. Before widely integrated into current clinical 
workflows, larger multicenter verifications are necessary 
to facilitate a more accurate analysis of the correlation 
between the genetic co-evolution of the microbiome and 
different cervical statuses. Additionally, the comprehen-
sive SNV-based diagnostic model requires further valida-
tion in cohorts.

Conclusion
The vaginal microbiome exhibits distinct SNV evolu-
tion along with the severity of cervical lesions. Moreover, 
SNV-associated multimodal biomarkers demonstrated 
remarkable discriminatory capability across the four 
different cervical statuses, particularly for the accurate 
identification of CC. Further clinical validation is war-
ranted to elucidate the underlying biological mechanisms 
of SNV evolution in CC progression and to evaluate the 
performance of a comprehensive diagnostic model.
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