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Abstract 

Background Whole blood host transcript signatures show great potential for diagnosis of infectious and inflamma‑
tory illness, with most published signatures performing binary classification tasks. Barriers to clinical implementation 
include validation studies, and development of strategies that enable simultaneous, multiclass diagnosis of febrile 
illness based on gene expression.

Methods We validated five distinct diagnostic signatures for paediatric infectious diseases in parallel using a single 
NanoString nCounter® experiment. We included a novel 3‑transcript signature for childhood tuberculosis, and four 
published signatures which differentiate bacterial infection, viral infection, or Kawasaki disease from other febrile ill‑
nesses. Signature performance was assessed using receiver operating characteristic curve statistics. We also explored 
conceptual frameworks for multiclass diagnostic signatures, including additional transcripts found to be significantly 
differentially expressed in previous studies. Relaxed, regularised logistic regression models were used to derive 
two novel multiclass signatures: a mixed One‑vs‑All model (MOVA), running multiple binomial models in parallel, 
and a full‑multiclass model. In‑sample performance of these models was compared using radar‑plots and confusion 
matrix statistics.

Results Samples from 91 children were included in the study: 23 bacterial infections (DB), 20 viral infections (DV), 14 
Kawasaki disease (KD), 18 tuberculosis disease (TB), and 16 healthy controls. The five signatures tested demonstrated 
cross‑platform performance similar to their primary discovery‑validation cohorts. The signatures could differentiate: 
KD from other diseases with area under ROC curve (AUC) of 0.897 [95% confidence interval: 0.822–0.972]; DB from DV 
with AUC of 0.825 [0.691–0.959] (signature‑1) and 0.867 [0.753–0.982] (signature‑2); TB from other diseases with AUC 
of 0.882 [0.787–0.977] (novel signature); TB from healthy children with AUC of 0.910 [0.808–1.000]. Application 
of signatures outside of their designed context reduced performance. In‑sample error rates for the multiclass models 

†Myrsini Kaforou and Jethro A. Herberg contributed equally to this work

*Correspondence:
Jethro A. Herberg
j.herberg@imperial.ac.uk
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-05241-4&domain=pdf
http://orcid.org/0000-0001-6941-6491


Page 2 of 14Channon‑Wells et al. Journal of Translational Medicine          (2024) 22:802 

were 13.3% for the MOVA model and 0.0% for the full‑multiclass model. The MOVA model misclassified DB cases most 
frequently (18.7%) and TB cases least (2.7%).

Conclusions Our study demonstrates the feasibility of NanoString technology for cross‑platform validation of mul‑
tiple transcriptomic signatures in parallel. This external cohort validated performance of all five signatures, includ‑
ing a novel sparse TB signature. Two exploratory multi‑class models showed high potential accuracy across four 
distinct diagnostic groups.

Keywords Gene expression, Diagnostics, Kawasaki disease, Tuberculosis, Bacterial infection, Viral infection, Multiclass 
diagnostics

Background
Children with fever represent one of the commonest 
presentations to healthcare professionals [1, 2]. However, 
available diagnostic tests are poor at rapid and accurate 
discrimination of the aetiology of fever. This limits the 
potential to give the right treatment to the right patient at 
the right time [3]. Many infectious and inflammatory dis-
orders, including tuberculosis (TB) or Kawasaki Disease 

(KD), present with signs and symptoms that overlap with 
other conditions, and diagnosis is typically delayed until 
after initial management strategies for more common 
bacterial and viral infections fail [4, 5]. Several blood 
transcript-based diagnostic signatures have been pub-
lished [6–8], but translation into clinically useable tests 
lags behind.

Most existing transcriptomic diagnostic signatures 
published to date are binary: either one-vs-all (OVA—e.g. 

Fig. 1 Approaches to Diagnostic testing. A Simple schematic approach to clinical diagnostics, with reliance on traditional microbiological testing. 
B Application of binary diagnostic signatures in parallel, demonstrating problems relating to overlapping or contradictory results. C Application 
of binary signatures in series, demonstrating carry‑forward error in classification. D Application of multiclass signature, avoiding these limitations. 
Created with BioRender.com
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Kawasaki Disease versus other diseases) [9] or one-vs-
one (e.g. bacterial versus viral) [10]. These show great 
diagnostic accuracy in many settings and are well suited 
to rule-in or rule-out diagnostic dilemmas. However, they 
are less useful for clinical presentations with diagnostic 
uncertainty and multiple potential differential diagnoses 
(Fig.  1A). Application of multiple transcriptomic signa-
tures either in parallel or in series may simulate this pro-
cess more closely, but their pairwise independence can 
lead to failure through multiple mechanisms (Fig. 1B, C). 
A single multiclass signature for the same set of diagno-
ses might overcome many of these limitations (Fig. 1D), 
accounting for the dependence of one diagnosis on the 
other differentials under consideration, whilst utilising 
the interdependence between transcripts. Indeed, Hab-
good-Coote et al. recently demonstrated a 161-transcript 
signature that can differentiate 18 acute paediatric dis-
eases in parallel [11].

One obstacle in test development is validation of 
diagnostic signatures that have been discovered using 
methodology unsuitable for clinical translation, such as 
microarrays or RNA-sequencing. NanoString technol-
ogy has been used for quantification of transcripts in 
many sample-types, enabling its use in transcriptomic 
signature discovery and validation [12–15], in cancer 
prognostics, and companion diagnostics [16–18]. We 
used NanoString to demonstrate the feasibility of vali-
dating multiple whole-blood binary-classification tran-
scriptomic signatures in parallel, including a previously 
unpublished novel 3-transcript signature that differenti-
ates active tuberculosis from other febrile illnesses. Effi-
ciently parallelising validation studies in this way could 
substantially reduce both time and financial costs.

We also developed two multiclass diagnostic signa-
tures, to explore proof-of-concept computational meth-
odologies that could be applied to multiclass prediction 
problems in clinical diagnostics. The first model explores 
multiple OVA signatures in parallel, whereas the second 
considers all diagnostic categories simultaneously.

Methods
Study design and population
We performed a validation study using a subset of pro-
spectively recruited patients from five distinct paediat-
ric (age < 19 years) cohorts. Patients with comorbidities 
known to significantly affect gene expression (bone mar-
row transplant, immunodeficiency, or immunosuppres-
sive treatment) were excluded. We included patients 
with definite bacterial (DB) or definite viral (DV) infec-
tion; Kawasaki disease (KD); or tuberculosis disease (TB). 
Healthy control samples were also included to improve 
normalisation protocols and provide context for “nor-
mal” transcript levels. All participants were independent 

from the derivation cohorts of the signatures we evalu-
ated. Clinical data and samples were identified only by 
study number.

Disease groups were assigned using pre-agreed defi-
nitions for each primary study after review of all avail-
able clinical and laboratory data. Patients were classified 
as having a DB infection if a pathogenic bacterium was 
isolated from a normally sterile site, matching the clini-
cal syndrome at presentation, with or without concurrent 
viral pathogens detected. A diagnosis of DV infection 
was made if a pathogenic virus was identified alongside 
a matching clinical syndrome, without coexisting fea-
tures of bacterial infection, and with low inflammatory 
markers (C-Reactive Protein (CRP) < 60mg/L and abso-
lute neutrophil count < 12,000/μL) [19]. Patients were 
diagnosed with complete or incomplete KD based on the 
2017 American Heart Association (AHA) criteria [20]. 
Assignment to the tuberculosis disease group required a 
clinical history suggestive of TB and corroborative labo-
ratory testing (culture for M. tuberculosis, Interferon-
Gamma Release Assays, or positive tuberculin skin test). 
TB patients with coincident HIV were excluded. In all 
groups, samples were collected as soon as possible after 
presentation, and wherever possible before initiation 
of relevant treatment. Additional details, including full 
inclusion and exclusion criteria, are described in the 
Additional file 1 and original papers [10, 21–23].

Ethical approvals
Written informed consent was obtained from parents or 
guardians using locally approved research ethics com-
mittee permissions (Ethical Committee of Clinical Inves-
tigation of Galicia (GENDRES CEIC ref 2010/015); UK 
National Research Ethics Service (UK Kawasaki Genetics 
13/LO/0026; EUCLIDS 11/LO/1982; NIKS 11/11/11)). 
Patients in Cape-Town (ILULU) were recruited under 
ethics approvals from the local recruiting centre: HREC 
REF 130/2007 [22].

Selected signatures
Five whole-blood-based RNA signatures that differen-
tiate febrile diseases were selected for validation using 
NanoString: These signatures are:

• A 13-transcript signature to distinguish KD from 
other febrile illnesses [9], previously validated via RT-
PCR [24]. (Wright13)

• A 2-transcript signature to distinguish Bacterial from 
Viral infections in children [10], previously validated 
via RT-PCR [25, 26]. (Herberg2)

• A 2-transcript signature adapted from Herberg2 sig-
nature, with FAM89A substituted for the highly cor-
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related but more abundantly expressed transcript 
EMR1-ADGRE1 [27]. (Pennisi2)

• A single transcript signature, BATF2, to distinguish 
TB disease from healthy adults [28], externally vali-
dated in RNAseq and microarray datasets [29–31]. 
(BATF2)

• An unpublished 3-transcript signature to distinguish 
TB disease from other diseases (TB3)

The target diseases for the signatures were selected to 
represent a diverse range of important causes of fever in 
children. The two bacterial-viral signatures (Herberg2 
and Pennisi2) were selected for further cross-platform 
validation, and to assess the effect on performance of 
the substitution of FAM89A for EMR1-ADGRE1. We 
selected the 13-transcript signature for KD as this is an 
important cause of fever in children, that is often misdi-
agnosed as an infectious disease, and allows us to dem-
onstrate our approach on an important inflammatory 
disorder. The TB3 signature was included to provide the 
first cross-platform validation of this novel signature. We 
compared TB3 to a primarily adult signature (BATF2) for 
TB disease to investigate the performance of this adult-
derived signature in children, and to characterize its per-
formance when applied to a new task of differentiating 
TB disease from other causes of fever.

Derivation of the TB3 signature is described in more 
detail in Additional file  1 and results. Briefly, the signa-
ture was generated by randomly splitting the discovery 
cohort described in the Anderson et  al. study [22] into 
training (80%) and test sets (20%), and running Forward 
Selection-Partial Least Squares on the training set [10, 
32].

Transcript selection
A total of 69 transcripts were selected to be run in the 
Nanostring panel (Table S1). All 20 transcripts from the 
five validation signatures were included. We selected an 
additional 40 transcripts that have previously been found 
to accurately discriminate between one or more of the 
above comparator conditions in RNA-sequencing or 
microarray data (Table  S1). Selected transcripts include 
predominantly those associated with protein coding 
genes, such as the Type 1 interferon stimulated gene 
IFI44L (Interferon-Induced Protein 44-Like), which has 
previously been implicated in response to viral infec-
tions [10]. Smaller numbers of transcripts are associated 
with long non-coding RNAs (lncRNAs) or microRNAs. 
Examples include the lncRNA KLF7-IT1 (Kruppel-Like 
Factor 7 Intronic Transcript 1) and MIR3128 (microRNA 
3128), which have no previous recorded disease associa-
tions [33], but were both differentially expressed between 

bacterial and viral infections in the work of Habgood-
Coote et al [11].

We also included three housekeeping transcripts rec-
ommended by NanoString, and six more, identified from 
our microarray and RNA-sequencing data, that had the 
smallest standard-deviation/mean ratio (coefficient of 
variation) across multiple separate cohorts for different 
expression abundance ranges.

Sample and data processing
Total RNA was extracted from whole blood from PAX-
gene tubes using PAXgene Blood miRNA kits (Pre-
AnalytiX), and transcript expression quantification was 
undertaken with 100 ng of RNA using the NanoString 
nCounter® MAX system, and a custom designed codeset 
of the selected transcripts. Raw counts were normalised 
and log-transformed (Additional file 1).

Statistical analyses
All statistical analyses were undertaken in R, version 
4.1.1 [34].

Descriptive statistics and signature evaluation
The diagnostic accuracy of each signature was calculated 
as an area under receiver operator characteristic curve 
(AUC) with 95% confidence intervals (CI), using the 
DeLong method in the R-package pROC [35, 36]. pROC 
was used for plotting receiver operator characteristic 
(ROC) curves with 95% confidence intervals of the sen-
sitivities at fixed specificities. The optimal threshold was 
chosen to maximise the Youden’s J statistic [37], and then 
used to calculate additional test statistics with 95% CI, 
including sensitivity and specificity, using the R-package 
epiR [38]. A disease risk score (DRS) was calculated for 
each signature by summation of up-regulated transcripts 
and subtraction of down-regulated transcripts on a loga-
rithmic scale, as previously described by Kaforou et  al. 
[39]. A logistic regression was refitted on log-scale nor-
malised counts for each signature to retrain coefficients 
and derive prediction probabilities.

Multiclass prediction models
We chose two distinct models to predict from one of 
four diseases (DB, DV, KD & TB). The Mixed One-vs-
All (MOVA) model optimises four binary OVA models 
in parallel, one for each disease. The Multiclass model 
performs multivariate logistic regression. Full descrip-
tions are available in Additional file  1. Both methods 
use relaxed, regularised binomial/multinomial logis-
tic regression models (elastic net) [40], implemented 
using the R-package glmnet [41], to account for the 
large number of predictors relative to samples and 
inherent multicollinearity in our data. Healthy controls 
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were removed, and samples were weighted by group 
size to account for class imbalance. The original 60 
transcripts were restricted to a subset of 36 that were 
significantly different for one or more one-vs-all com-
parisons, using a Mann–Whitney U test, with correc-
tion for multiple hypothesis testing. This criterion was 
applied to remove transcripts performing poorly when 
moving cross-platform—typically lowly expressed 
transcripts—enabling a refining of the feature space to 
more relevant transcripts. In-sample error rates and 
confusion matrices are reported for both models.

Results
Participants
Samples from 91 children were included in this study: 
16 healthy controls, 23 with DB, 20 DV, 14 KD and 18 
TB (Fig. 2). One KD patient was removed who received 
IVIG before blood sampling, and two were removed after 
transcript expression quantification following blinded 
review of clinical data, as they did not meet AHA criteria 
for complete or incomplete KD. We excluded 2 samples 
due to low expression levels after quality control (Addi-
tional file 1). Baseline demographic and clinical data are 
shown in Table 1. DB and DV patients had similar demo-
graphics, whereas healthy controls were older than other 
patients. KD and TB patients were generally older and 

were less likely to be of European ethnicity. Ethnicity data 
for TB patients recruited in Cape Town were not col-
lected in the index study.

Pathogens identified in infected patients are presented 
in Table  S2. Admission-to-sample collection times were 
short, with median of < 2-days for all groups where data 
were available. Median days from fever-onset to sampling 
in KD patients was 6 (IQR 5–9) and was similar to the 
symptom onset to sample collection time in DB and DV 
patients. Diagnostic performance of routinely-measured 
CRP and White Blood Cell, Neutrophil, and Lymphocyte 
counts for binary and one-vs-all comparisons are shown 
in Table S3.

Signature validation
Kawasaki 13‑transcript signature
The Wright13 DRS was able to diagnose KD from other 
diseases with high accuracy (Fig.  3A). ROC curve anal-
ysis demonstrated an AUC of 0.897 (95% Confidence 
interval 0.822–0.972, Table 2), with optimal sensitivity of 
0.929 (0.661–0.998) and specificity of 0.738 (0.609–0.842) 
(Fig. 3B). As observed previously, the DRS was more dis-
criminatory earlier in the disease course of KD patients 
(Figure S1). Refitting a logistic regression model using 
all 13 transcripts had 100% accuracy to diagnose KD 
(Table 2, Fig. 3B).

Fig. 2 Study overview. Schematic overview of study recruitment and analysis. Created with BioRender.com
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Bacterial vs Viral 2‑transcript signatures
For differentiating DB from DV cases the Herberg2 DRS 
had an AUC of 0.825 (0.691–0.959, Table  2), with sen-
sitivity of 0.739 (0.516–0.898) and specificity of 0.950 
(0.751–0.999) (Fig.  3C). There was marginal improve-
ment after retraining coefficients using logistic regres-
sion, which was not statistically significant (p = 0.392, 
Fig.  3D). Both models performed significantly worse 
when tasked with differentiating DB from all other dis-
ease groups, with AUCs of 0.699 and 0.723 respectively, 
but were excellent at differentiating DV from all other 
disease groups, with AUCs of 0.844 and 0.849. This dis-
crepancy may be explained by the high AUC of IFI44L in 

differentiating DV from other diseases (0.834), compared 
with the low AUCs (all < 0.7) of IFI44L for DB-vs-other 
diseases and FAM89A for both comparisons (Table S4).

As previously seen, FAM89A had low expression in 
most samples, whereas EMR1-ADGRE1 showed more 
robust expression levels (Table  S4). The Pennisi2 DRS 
replaces FAM89A in Herberg2 with EMR1-ADGRE, 
which improved the overall signature AUC to 0.867 
(0.753–0.982) (Fig. 3E, F), although this was non-signif-
icant (p = 0.417). However, EMR1-ADGRE1 had a lower 
AUC than FAM89A for differentiating DB and DV cases 
(0.717 vs 0.761, p = 0.636), suggesting the improved per-
formance of the Pennisi2 signature is due to improved 

Table 1 Patient characteristics

Demographic and clinical characteristics of patients included

CRP C‑reactive protein, IQR Interquartile range, PICU paediatric intensive care unit, WBC White blood cells

*Symptom onset for Kawasaki disease patients defined as onset of fever

Controls Definite bacterial Definite viral Kawasaki disease Tuberculosis

Number of Patients 16 23 20 14 18

Female, % 50 52.2 50 28.6 38.9

Median age, years [IQR] (missing, n) 6.1 [3.0–11.0] (0) 1.2 [0.5–3.5] (0) 1.0 [0.2–2.3] (0) 2.4 [0.8–3.8] (0) 2.6 [1.4–4.8] (0)

ETHNICITY

African/North African 3 3 1 1 0

Asian 3 1 0 4 0

Black African 0 0 0 4 2

European 7 15 15 5 0

South American 0 2 0 0 0

Other/Mixed 3 2 4 0 0

Unknown 0 0 0 0 16

Median CRP, mg/L [IQR] (missing, n) 0.0 [0.0–0.0] (15) 99.0 [34.8–189.2] (3) 23.8 [20.0–32.0] (13) 109.3 [90.0–163.0] (1) 13.5 [11.8–15.2] (16)

Median WBC, ×  109/L [IQR] (missing, n) 10.6 [7.8–11.7] (10) 13.2 [6.1–25.0] (0) 10.7 [7.8–16.3] (7) 17.0 [13.1–19.2] (0) 10.1 [7.2–20.9] (3)

Median Neutrophils, ×  109/L [IQR] (miss‑
ing, n)

3.4 [2.9–4.8] (10) 10.4 [4.2–20.4] (2) 4.5 [3.6–7.6] (9) 12.9 [9.1–15.9] (0) 6.5 [3.1–11.3] (5)

Median Lymphocytes, ×  109/L [IQR] (miss‑
ing, n)

4.8 [3.1–6.4] (10) 2.1 [1.0–4.1] (2) 3.7 [2.8–5.4] (9) 2.2 [1.2–3.0] (0) 3.6 [1.9–5.0] (5)

PICU admissions % (missing, n) NA 56.5 (0) 20.0 (0) 7.1 (0) 5.6 (0)

Days from symptom onset* to sample col‑
lection [IQR] (missing, n)

NA 4.5 [3.0–7.8] (1) 5.0 [5.0–6.0] (11) 6.0 [5.0–8.5] (0) NA (18)

Days from hospital admission to sample 
collection [IQR] (missing, n)

NA 1.0 [0.0–1.0] (0) 0.0 [0.0–1.0] (1) 1.0 [0.2–1.8] (0) NA (18)

(See figure on next page.)
Fig. 3 Performance of existing signatures. Plots of Disease Risk Scores by category (left) and ROC‑curves (right) for five signatures. A and B Wright13 
signature, with boxplots of the DRS by category A and ROC curves of the DRS and LR‑probability (B). C and D Herberg2 signature, with boxplots 
of the DRS by category C and ROC curves of the DRS, LR‑probability, and individual transcripts (D). E and F Pennisi2 signature, with boxplots 
of the DRS by category (E) and ROC curves of the DRS, LR‑probability, and individual transcripts (F). G and H TB3 signature, with boxplots of the DRS 
by category (G) and ROC curves of the DRS, LR‑probability, and individual transcripts (H). I and J BATF2, with boxplots of expression by category (I) 
and ROC‑curves of BATF2 expression tasked with differentiating active TB from either controls or other disease groups J. 95% confidence intervals 
for ROC‑curves are included for the DRS and LR‑probability only in panels B, D, F and H 
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Fig. 3 (See legend on previous page.)
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Table 2 Diagnostic accuracy of each signature

Diagnostic accuracy statistics for primary comparisons of each signature

AUC  Area under receiver operator characteristic curve

*Unable to calculate confidence interval for AUC using DeLong method when AUC exactly equal to one

AUC Sensitivity Specificity Positive likelihood ratio Negative likelihood ratio

Wright13 DRS—KD vs other 0.897 [0.822–0.972] 0.929 [0.661–0.998] 0.738 [0.609–0.842] 3.540 [2.268–5.526] 0.097 [0.015–0.644]

Wright13 LR score—KD vs 
other

1.000 [NA]* 1.000 [0.768–1.000] 1.000 [0.941–1.000] 119.867 [7.570–1898.060] 0.034 [0.002–0.513]

Herberg2 DRS—DB vs DV 0.825 [0.691–0.959] 0.739 [0.516–0.898] 0.950 [0.751–0.999] 14.783 [2.155–101.408] 0.275 [0.137–0.550]

Herberg2 LR score—DB 
vs DV

0.838 [0.711–0.965] 0.783 [0.563–0.925] 0.950 [0.751–0.999] 15.652 [2.289–107.024] 0.229 [0.105–0.500]

Herberg2 DRS—DB vs other 0.699 [0.556–0.842] 0.739 [0.516–0.898] 0.769 [0.632–0.875] 3.203 [1.843–5.565] 0.339 [0.168–0.686]

Herberg2 LR score—DB vs 
other

0.723 [0.581–0.866] 0.783 [0.563–0.925] 0.692 [0.549–0.813] 2.543 [1.604–4.033] 0.314 [0.142–0.696]

Herberg2 DRS—DV vs other 0.844 [0.739—0.948] 0.900 [0.683–0.988] 0.764 [0.630–0.868] 3.808 [2.316–6.259] 0.131 [0.035–0.492]

Herberg2 LR score—DV vs 
other

0.849 [0.747–0.951] 0.900 [0.683–0.988] 0.764 [0.630–0.868] 3.808 [2.316–6.259] 0.131 [0.035–0.492]

Pennisi2 DRS—DB vs DV 0.867 [0.753–0.982] 0.783 [0.563–0.925] 0.900 [0.683–0.988] 7.826 [2.065–29.659] 0.242 [0.110–0.532]

Pennisi2 LR score—DB vs DV 0.872 [0.760–0.984] 0.870 [0.664–0.972] 0.900 [0.683–0.988] 8.696 [2.313–32.691] 0.145 [0.050–0.421]

Pennisi2 DRS—DB vs other 0.696 [0.568–0.825] 0.696 [0.471–0.868] 0.692 [0.549–0.813] 2.261 [1.386–3.687] 0.440 [0.231–0.837]

Pennisi2 LR score—DB vs 
other

0.696 [0.567–0.826] 0.739 [0.516–0.898] 0.635 [0.490–0.764] 2.023 [1.312–3.118] 0.411 [0.200–0.843]

Pennisi2 DRS—DV vs other 0.865 [0.755–0.974] 0.900 [0.683–0.988] 0.782 [0.650–0.882] 4.125 [2.450–6.946] 0.128 [0.034–0.480]

Pennisi2 LR score—DV vs 
other

0.872 [0.773–0.970] 0.900 [0.683–0.988] 0.873 [0.755–0.947] 7.071 [3.486–14.344] 0.115 [0.031–0.428]

TB3 DRS—TB vs other 0.882 [0.787–0.977] 0.833 [0.586–0.964] 0.807 [0.681–0.900] 4.318 [2.443–7.633] 0.207 [0.073–0.585]

TB3 LR score—TB vs other 0.914 [0.830–0.999] 0.944 [0.727–0.999] 0.825 [0.701–0.913] 5.383 [3.033–9.556] 0.067 [0.010–0.454]

BATF2—TB vs healthy 
controls

0.910 [0.808–1.000] 0.833 [0.586–0.964] 0.938 [0.698–0.998] 13.333 [1.976–89.946] 0.178 [0.063–0.503]

BATF2—TB vs other 0.743 [0.620–0.866] 0.556 [0.308–0.785] 0.863 [0.762–0.932] 4.056 [1.996–8.238] 0.515 [0.305–0.870]

Fig. 4 TB3 signature performance in microarray training and validation cohorts. Boxplots of the DRS A of the TB3 signature and the correspondent 
ROC curves B in the training, test, and validation sets
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transcript interactions, rather than better performance 
of individual transcripts. Similar to Herberg2, the Pen-
nisi2 signature was more accurate at differentiating viral 
infections from other diseases than bacterial infections vs 
other diseases (Table 2).

Tuberculosis signatures
Performance in microarray dataset The novel TB3 sig-
nature includes the transcripts CYB561, GBP6 and KIFC3. 
It achieved an AUC of 0.928 (0.872–0.985) in the valida-
tion cohort, with optimal sensitivity and specificity of 
0.886 (0.771–0.971) and 0.859 (0.766–0.938) respectively 
(Additional file 1: Table S5, Fig. 4).

Performance in  NanoString dataset The 3-transcript 
TB signature was able to differentiate TB from other dis-
eases with an AUC of 0.882 (0.787–0.977, Table 2), with 
sensitivity of 0.833 (0.586–0.964) and specificity of 0.807 
(0.681–0.900). Again, retraining using logistic regres-
sion demonstrated only marginal improvements (Table 2, 
Fig. 3G, H), without statistical significance (p = 0.114).

BATF2 alone could accurately differentiate active TB 
from healthy controls (AUC of 0.910 (0.808–1.000), 
Table  2), with high specificity, 0.938 (0.698–0.998), and 
sensitivity of 0.833 (0.586–0.964). However, BATF2 was 
also overexpressed in patients with other diseases (Fig. 3I, 
J) and had significantly reduced diagnostic accuracy com-
paring TB with other disease groups (AUC 0.743 (0.620–
0.866), p = 0.043).

Expression patterns of individual transcripts
AUCs and summary statistics for transcript-specific one-
vs-all disease comparisons are shown in Additional file 1: 
Table  S3. The highest AUCs were found for transcripts 
distinguishing DV or TB from other disease groups 
(Additional file 1: Figure S2).

When ranked by p-value (corrected for multiple test-
ing), 50 transcript-specific one-vs-all comparisons were 
significant at the alpha = 0.1 level, including 36 unique 
transcripts shared approximately evenly across com-
parisons (Additional file  1: Table  S4). Two transcripts, 
KLHL2 & IFI27, contributed to three separate significant 
comparisons.

MOVA and multiclass model prediction results
When the MOVA-model was used for prediction, it 
selected 25 unique transcripts across four separate 
binomial models (Additional file  1: Figure S3), with a 
maximum of 9-transcripts in any single model. The 
MOVA-model had an in-sample error rate across all dis-
eases of 13.3%, with worst performance predicting DB. 
The in-sample error rates of the separate models varied 

from 2.7% for TB vs other diseases to 18.7% for DB vs 
other diseases (Additional file  1: Table  S6). Prediction 
probabilities for DB and KD patients were similar to each 
other, whereas TB patients often had high prediction 
probabilities for DV (Fig. 5A).

The Multiclass model selected 20 unique transcripts 
and had 100% prediction accuracy (Additional file  1: 
Table  S6). 17 transcripts overlapped with the MOVA-
model. In contrast to the MOVA-model, radar plots 
show the prediction probabilities are near one for the 
correct disease for all samples (Fig. 5B). When assessed 
on healthy controls both models predicted nearly half of 
patients to have TB, with the Multiclass model classifying 
more of the remaining cases as DB, whilst the MOVA-
model classified most of the remaining controls as DV 
(Additional file 1: Table S6).

Discussion and conclusion
We have shown that validation of multiple transcriptomic 
signatures can be efficiently performed through a single 
NanoString assay. The performance of all tested signa-
tures was similar to that of their primary studies, suggest-
ing that both the signatures and technology are robust to 
alterations in study design and methodology. This also 
implies that overfitting to discovery cohorts was not an 
issue for any of the tested signatures. Further evidence 
for this was seen by the minimal gains in performance 
when retraining models using logistic regression, with 
the exception of the larger KD signature, although this 
improvement may represent overfitting. Transcriptomic 
signatures are rapidly expanding, both in scope and num-
ber. To understand how best to implement the increas-
ingly complex list of published transcriptomic signatures 
in clinical practice, new methods are needed that enable 
efficient evaluation of multiple signatures simultaneously. 
We have used NanoString to measure transcript abun-
dances covering multiple binary signatures, to facilitate 
the side-by-side comparison of signature performance, 
and to consider alternative methodologies for assigning 
disease class.

A limitation of transcriptome-derived diagnostic sig-
natures is the study-specific bias of transcripts selected 
by a single methodology and patient cohort [42]. This 
can lead to reduced performance when signatures are 
applied to external datasets, or different clinical settings 
where the case-mix is dissimilar to the discovery cohort 
[42, 43]. The second phenomenon was evident in our 
data, for example, the BATF2 transcript performed well 
in its designed classification task (distinguishing TB from 
healthy controls) but performed poorly when differenti-
ating TB from other diseases.

The major mechanisms behind such reduced perfor-
mance in new cohorts are (1) overfitting of the original 
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Fig. 5 In‑sample radar plots for multiclass signatures. Radar plots showing the probabilities of each class predicted by A the MOVA‑model, B 
the Multiclass model. Probabilities separated and coloured by actual disease: Red = DB; Blue = DV; Purple = TB; Yellow = KD
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classification model, (2) under-representative discovery 
cohorts which do not reflect the clinical variability in the 
target population, or (3) failure in translation between 
technologies. The first mechanism can be addressed 
through thoughtful machine-learning pipelines in sig-
nature development, using appropriate test, training, 
and validation sets. However, mitigation of the second 
mechanism requires clinical recruitment that is repre-
sentative of the full range of patient pathologies, rather 
than a restricted set of target conditions. Deriving binary 
signatures from these more varied cohorts may be clini-
cally valid in certain contexts, e.g., for patients with 
specific diseases where confirmatory early diagnosis is 
needed. Kawasaki disease, for example, commonly pre-
sents with a cluster of characteristic clinical features, but 
diagnosis is frequently delayed due to clinical overlap 
with other conditions. A signature to diagnose or exclude 
KD in patients presenting with a KD-like features could 
improve time-to-diagnosis and outcomes [44].

However, this binary approach is inappropriate for 
undifferentiated febrile illness, where a wider range of 
pathologies are present. Multiclass models to classify 
patients into one or more of many possible outcomes 
may be the most parsimonious solution. They could ena-
ble one-step diagnosis of a range of conditions including 
those not considered by the physician, improving diag-
nostic accuracy, and reducing time-to-diagnosis.

Our exploratory analysis of multiclass diagnostic meth-
ods demonstrates the potential of this approach using a 
small dataset generated with techniques that are closer 
to patient translation than the transcriptomic approaches 
used to generate data for signature discovery. Our find-
ings are supported by large-scale in silico studies based 
on transcriptomic data [11]. We demonstrate that two 
contrasting approaches—MOVA and multiclass—can 
both yield high in-sample classification accuracy. The 
MOVA model had slightly worse performance com-
pared to the multiclass model, which had perfect in-
sample accuracy. This may be explained by the restriction 
imposed on the MOVA model to use only certain tran-
scripts for each comparison. However, this also exposes 
the multiclass model to greater risk of overfitting. Larger 
studies are needed to test a broader range of conceptual 
frameworks and methodologies, and to assess the robust-
ness of these two exploratory models.

One unique aspect of this work is the exploration of 
these two models, which use different approaches to han-
dle the potential for gene-expression patterns to overlap 
between multiple disorders. The MOVA-model com-
bines four binary models, each of which is optimised for 
a single one-vs-all comparison. Each binary model was 
derived using the same initial list of 36 transcripts, so 
this approach has the potential to introduce redundancy 

into the combined final model. However, in the final 
penalised regression models only two transcripts out of 
25 were selected for more than one binary model. This 
may potentially be explained by the model setup. Each 
binary model was trained to differentiate a single target 
condition from all other categories, so transcripts sharing 
expression patterns between two categories were unlikely 
to be selected by any single binary model.

In contrast, the Multiclass model directly addresses 
overlapping expression patterns during model training, 
by providing each transcript its own coefficient for each 
condition from the four target diagnoses. These differ-
ences in approach may provide further explanation for 
the performance difference between the models.

In our dataset, transcripts that have been shown to 
differentiate DB from DV infections were much bet-
ter at differentiating viral infections from other diseases 
than bacterial infections from other diseases. Most tran-
scripts performed poorly when comparing DB with other 
diseases: of the top 20 AUCs only one distinguishes DB 
from other diseases (HP, AUC 0.784). This is consistent 
with previous transcriptomic studies, which have shown 
viral infections are easier to distinguish from other 
causes of febrile illness than bacterial infections are [45, 
46]. A plausible explanation for this phenomenon is the 
existence of highly conserved host-responses to viral 
infections, such as the Interferon Stimulated Genes [47], 
whereas host-responses to bacterial infection may be 
more varied, in part due to their larger and more varied 
genomes.

The unpublished novel 3-transcript TB signature dem-
onstrated high sensitivity and specificity in this external 
cohort, with performance similar to, or exceeding that of 
previously published signatures [48]. The included tran-
scripts are a subgroup of the original 51-transcript sig-
nature of Anderson et al. [22], showing in principle that 
reduction in transcript numbers can be achieved whilst 
maintaining high performance. Previous signatures 
developed to distinguish TB from other diseases often 
fail to differentiate viral infections from TB, potentially 
due to reliance on interferon stimulated genes [48]. The 
3-transcript signature does not include interferon stimu-
lated genes or transcripts from related pathways, which 
may explain its high performance despite including viral 
infections in the comparator group. Although non-signif-
icant, retraining the signature to the new platform using 
logistic regression did demonstrate improved accuracy, 
exceeding the WHO-defined target-product profile for 
triage assessment [49]. Furthermore, the sparseness of 
the signature may aid in translation to a clinically useable 
assay, whilst simultaneously minimising costs.

Clear limitations of our study include the small 
sample size, and use of samples from heterogeneous 
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studies. We have attempted to address these through 
appropriate normalisation processes where possible. 
Due to its size, the study was limited to only a few 
diseases of interest, but we consider that our conclu-
sions are valid for the methodological suitability of the 
NanoString platform for this parallel validation task. 
Further large-scale studies are needed to explore differ-
ent conceptual frameworks for the clinical implemen-
tation of omic-based signatures, and to determine how 
to best integrate these novel technologies within exist-
ing clinical frameworks. Such studies should also assess 
the importance of multiclass model setup, for exam-
ple, altering the regularisation strength for regression 
models, and comparing regression classifiers with other 
non-linear methods, such as random forest models.

Although most transcripts demonstrated measur-
able expression levels and good classification perfor-
mance when converting from RNAseq to NanoString, 
some had poor detection. Loss of detection is previ-
ously described in cross-platform gene expression 
studies [24]. Lack of resolution for detection of low 
abundance transcripts using NanoString nCounter®, 
relative to the discovery platforms, may have reduced 
the utility of certain transcripts, and in future studies 
various input RNA quantities should be trialled to max-
imise transcript detection. Our findings highlight the 
need for cross-platform assessment of candidate diag-
nostic signatures, and consideration of the limitations 
of each methodology at the earliest stage of signature 
derivation.

Since CRP and neutrophil cutoffs were used for phe-
notyping viral patients, and CRP measurements were 
only available for 2 patients in the TB category, it was 
not possible to compare the diagnostic performance of 
the five validated signatures to these commonly used 
clinical biomarkers without confounding. However, it 
is known that performance of both CRP and blood cell 
measurements have limited combined sensitivity and 
specificity for causes of fever in children, and no well-
defined cutoffs exist [6, 50]. The high-performance of 
the five validated models provides further demonstra-
tion of the potential for host-response diagnostic sig-
natures to greatly influence clinical care in paediatrics, 
through improving diagnostic accuracy and reducing 
diagnostic delays.

Despite this, it remains the case that most existing sig-
natures have yet to make the leap from bench to bedside. 
Such translation is particularly challenging for diagnos-
tics in those presenting acutely with fever, where accurate 
diagnostics within a few hours is most needed [2]. In this 
setting, we have shown that NanoString may aid in bridg-
ing the gap between expensive untargeted gene expres-
sion quantification methods (e.g., RNAseq, microarrays) 

and cheaper, rapid technologies (e.g., qRT-PCR), enabling 
quick, cost-effective parallel evaluation and refinement of 
a variety of diagnostic signatures.

Conclusions
Our cross-platform study demonstrates in principle the 
utility of NanoString technology for efficient parallel vali-
dation of transcriptomic signatures. Our out-of-sample 
findings validated five distinct signatures, including a 
novel sparse TB signature, but with a reduction in dis-
criminatory power in patients drawn from outside their 
remit. Two exploratory multi-class models showed high 
accuracy across multiple disparate diagnostic groups, 
highlighting the potential of this approach.
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