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Abstract 

Background Early-onset prostate cancer (EOPC, ≤ 55 years) has a unique clinical entity harboring high genetic risk, 
but the majority of EOPC patients still substantial opportunity to be early-detected thus suffering an unfavorable 
prognosis. A refined understanding of age-based polygenic risk score (PRS) for prostate cancer (PCa) would be essen-
tial for personalized risk stratification.

Methods We included 167,517 male participants [4882 cases including 205 EOPC and 4677 late-onset PCa (LOPC)] 
from UK Biobank. A General-, an EOPC- and an LOPC-PRS were derived from age-specific genome-wide association 
studies. Weighted Cox proportional hazard models were applied to estimate the risk of PCa associated with PRSs. The 
discriminatory capability of PRSs were validated using time-dependent receiver operating characteristic (ROC) curves 
with additional 4238 males from PLCO and TCGA. Phenome-wide association studies underlying Mendelian Randomi-
zation were conducted to discover EOPC linking phenotypes.

Results The 269-PRS calculated via well-established risk variants was more strongly associated with risk of EOPC [haz-
ard ratio (HR) = 2.35, 95% confidence interval (CI) 1.99–2.78] than LOPC (HR = 1.95, 95% CI 1.89–2.01; I2 = 79%). EOPC-
PRS was dramatically related to EOPC risk (HR = 4.70, 95% CI 3.98–5.54) but not to LOPC (HR = 0.98, 95% CI 0.96–1.01), 
while LOPC-PRS had similar risk estimates for EOPC and LOPC (I2 = 0%). Particularly, EOPC-PRS performed optimal 
discriminatory capability for EOPC (area under the ROC = 0.613). Among the phenomic factors to PCa deposited 
in the platform of ProAP (Prostate cancer Age-based PheWAS; https:// mulon gdu. shiny apps. io/ proap), EOPC was prefer-
entially associated with PCa family history while LOPC was prone to environmental and lifestyles exposures.

Conclusions This study comprehensively profiled the distinct genetic and phenotypic architecture of EOPC. The 
EOPC-PRS may optimize risk estimate of PCa in young males, particularly those without family history, thus providing 
guidance for precision population stratification.
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Introduction
Prostate cancer (PCa) is the most common malignancy in 
men in the Western world [1]. Established risk factors of 
PCa includes race, older age, and positive family history 
(FH) [2]. A positive FH of PCa is associated with a two- 
to threefold greater risk of PCa [3]. Notably, such effect 
is not uniform across ages; positive FH was shown to be 
associated with a higher risk increase among younger 
men compared with older men [4–6]. In the late 1990s 
and early 2000s, the incidence of PCa among young men 
experienced a disproportionate increase [7]. However, 
early-onset Prostate Cancer (EOPC) as a unique clinical 
entity remains insufficiently characterized [8].

Recently, Conti et al. performed a trans-ancestry (Euro-
pean, African, East, Asian and Hispanic) genome-wide 
association meta-analysis which led to the identification 
of 269 common risk variants for PCa [9]. In this work it 
was observed that the polygenic score (PRS) derived from 
these variants were more strongly associated with EOPC 
than with late-onset PCa (LOPC). In addition, early-
onset patients tend to possess larger number of disease-
related genetic variants [10]. Based on the enrichment of 
genetic risk factors in EOPC, we hypothesized that previ-
ous genome-wide association studies (GWAS) including 
subjects of all age groups underestimated the effect sizes 
of risk loci specific for EOPC. Study concentrating on 
younger population would profoundly reveal the genetic 
architecture of EOPC and refine the comprehension of 
age-based PRS for PCa.

In this study, we evaluated the genetic architecture of 
EOPC against LOPC and developed an EOPC-specific 
PRS based on a large-scale UK biobank cohort, accom-
panied by the validation from the Prostate, Lung, Colo-
rectal and Ovarian (PLCO) cohort and The Cancer 
Genome Atlas (TCGA) program. We further performed 
a phenome-wide association study (PheWAS) to discover 
EOPC linking phenotypes via Mendelian Randomization 
(MR) analyses. This study discovered the distinct genetic 
and phenomic characteristics of EOPC, and proposed 
age-of-onset specific PRSs to optimize the risk estimate 
of prostate cancer.

Materials and methods
Study population and outcome ascertainment
The UK Biobank cohort recruited 502,528 participants 
aged 40–69 years between 2006 and 2010 [11]. The qual-
ity control of population was described in our previous 

study [12]. In brief, we developed a cancer follow-up 
cohort containing 355,543 participants met the following 
criteria: (1) without prevalent cancer at baseline (except 
non-melanoma skin cancer), (2) without sex discordance, 
(3) without outliers for genotype missingness or excess 
heterozygosity, (4) decided to participate in this program, 
(5) were self-reported as “white British” and genetically 
confirmed European ancestry, and (6) were unrelated 
individuals.

Incidence of PCa was defined based on the Interna-
tional Classification of Diseases, 10th revision (ICD-10) 
code C61. Participants were followed up from the enrol-
ment until the time of PCa diagnosis or censoring (death, 
withdrawal or end of follow-up), at which the age named 
as exit-age. We developed a General-population covering 
all males (167,517 with 4882 incident PCa cases), an EO-
population comprising individuals with exit-aged ≤ 55 
years (28,725 with 205 cases), and an LO-population 
with exit-aged > 55 years (138,792 with 4677 cases). Par-
ticipants in each population were separated into positive 
and negative first-degree FH group according to the self-
reported prostate cancer of father or brothers.

The validation population was consisted of European 
ancestry participants from the PLCO cohort and TCGA 
program (permissions from dbGaP: Project #32547). The 
genotyping and imputation process have been described 
in our previous studies [13, 14]. Outlier individuals were 
removed using smartpca function from EIGENSOFT 
(version 5.0.2). Then the top ten principal components 
of retained individuals were calculated in company with 
the 1000 Genomes Project to determine the similarity 
of the genetic structure. Among the retained individu-
als, we randomly selected 1038 from 4974 LOPC cases 
to meet the ratio of EOPC against LOPC in UK biobank, 
and eventually constructed a population consisting of 87 
EOPC, 1038 LOPC and 3113 controls.

Risk variants identification and PRS calculation
We extracted 269 well-established risk variants for PCa 
from a trans-ancestry meta-analysis study (Additional 
file  2: Table  S1) [9]. After excluding variants on the sex 
chromosome, SNPs and corresponding effect size in the 
European population were used to calculate a weighted 
PRS (named 269-PRS) as followed: for an individual j, 
PRSj =

∑N
i=1 βi × SNPij , in which i represents each vari-

ant, βi equals to ln(OR) , N  is the total number of included 
variants, and SNPij is the number of risk alleles (0, 1, 2) 
carried by variant i for individual j.

Keywords Age-specific genome-wide association studies, Early-onset prostate cancer, Phenome-wide association 
studies, Polygenic risk score, UK biobank
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Next, we performed GWAS for General-, EO-, 
and LO-population, respectively. The quality con-
trol criteria were applied for each population: minor 
allele frequency ≥ 0.01, Hardy–Weinberg equilibrium 
P-value ≥ 1 ×  10–6, and call rate > 95%. Genome-wide Cox 
regression analyses were conducted to identify risk vari-
ants with a suggestive threshold P-values <  10–5. Then, we 
used UK biobank (white British) data for pairwise link-
age disequilibrium (LD) analysis to identify “independent 
variants” under r2 < 0.8.

As described previously, General-PRS, EOPC-PRS, and 
LOPC-PRS were developed using the independent vari-
ants and the corresponding β-value across each popula-
tion with the formula: PRSj =

∑N
i=1 βi × SNPij , where 

i represents variant, N  equals to the total number of 
included variants, and Dosij is the genotype dosage for 
individual j for variant i. All PRSs were divided into quin-
tiles based on the distribution among the general popula-
tion for further analyses.

Weighted Cox proportional hazard (WCoxPH) model
We used age-specific PCa incidence rates (termed as inct) 
to create weights for Cox proportional hazards models. 
The cancer rates were reported for 5-year intervals from 
the CDC US Cancer Statistics (https:// www. cdc. gov/ 
cancer/ uscs/) for multi-ancestries from 1999 to 2019. 
We used the incidence rate of White men to represent 
the rate of European ancestry men in this study. Linear 
interpolation was used to determine the rate for each 
year of age from 32 to 87. WCoxPH models was applied 
to estimate the risk of PCa associated with PRSs through 
assigning weights of 1 to cases and weights of 1/inct to 
non-cases using R package survey [15].

Sensitivity analyses
Firstly, we re-analyzed the association of PRSs with inci-
dent and prevalent PCa using logistic regression mod-
els in a case–control population comprising 378,487 
individuals, from which a General-, an EO- and an LO-
group were developed according the reference-age (age 
at diagnosis of PCa or censoring) [16]. The case–control 
population was developed under the same quality con-
trol criteria as the aforementioned for follow-up cohort 
except for that (1) without prevalent cancer at baseline 
(except non-melanoma skin cancer). Secondly, aiming at 
increasing the power of PRSs, we merged well-established 
variants with GWAS independent ones across Gen-
eral-, EO- and LO-population then developed a merged-
General-, a merged-EOPC-, and a merged-LOPC-PRS, 
respectively. GWAS independent variants were replaced 
by reported ones with r2 ≥ 0.8. The β-values were repre-
sented by ln(reported OR) for reported variants and the 

identified β-value for independent ones. The risk of PCa 
were re-estimated with the merged-PRSs.

Validation of discriminatory capabilities for prediction
We introduced the receiver operating characteristic 
(ROC) curve (AUC) to evaluate the discriminatory accu-
racy for prediction of the aforementioned PRSs the vali-
dation population. Time-dependent ROC curves were 
plotted with survivalROC package from censored diag-
nosis data at 65-year, 70-year (cases diagnosed at 55 or 
younger removed), and 85-year (cases diagnosed at 70 
or younger removed), regarding the date at birth as the 
beginning of follow-up, with Kaplan–Meier (KM) as the 
method for fitting joint distribution of risk-time [17].

PheWAS for PCa
We performed pheWAS underlying two-sample MR 
analysis using R package TwoSampleMR to link causal 
traits to PCa, EOPC and LOPC [18]. There were 42,333 
traits accessible in the IEU GWAS database up to July 
2022; after excluding traits only concerning females and 
not originated from European population, we included 
37,838 traits for analysis. Clumping was applied to select 
instrumental variables (IV). Clumps were performed 
around the central “index variants”, which was cho-
sen with P-value < 5 ×  10–8 and starting with the lowest 
P-value. Secondary hits were identified if they (a) were 
within the clumping window (10 Mb) of an index variant, 
(b) reached GWAS significance (P-value < 5 ×  10–8), and 
(c) had a low LD with the index variants (r2 < 0.001 based 
on the 1000 Genomes Project European reference). Two-
sample MR analyses were performed via inverse-vari-
ance weighted (IVW) and weighted media [18]. We also 
performed heterogeneity analyses to test whether IVs 
are related to other confounding factors, and MR-egger 
regression to assess the horizontal pleiotropy. High-con-
fidence estimates should meet the following criteria: (1) 
IVW and weighted median estimates were directionally 
concordant with P-values < 0.05, and (2) P-value of heter-
ogeneity and MR-egger regression analyses ≥ 0.05. Two-
sample MR analyses were carried out with R package 
TwoSampleMR (v.0.4.26). Deposition of all MR results 
were generated using R package shiny.

Statistical analyses
Statistical analyses were conducted with PLINK (version 
1.90) and R (version 4.0.5). Risk estimates for PCa associ-
ated with PRSs were carried out using WCoxPH models 
for follow-up cohort and logistic regression models for 
case–control population. WCoxPH models were adjusted 
for covariates including age at assessment, assessment 
center, and top 10 principal components. For logistic 

https://www.cdc.gov/cancer/uscs/
https://www.cdc.gov/cancer/uscs/
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regression models, we adjusted for reference-age, assess-
ment center and top 10 principal components.

Results
269‑PRS is more strongly associated with EOPC
The process of this study was illustrated in Additional 
file  1: Fig. S1. A total of 167,517 individuals (4882 inci-
dent PCa cases) were retained to develop the General-
population, which was separated to the EO-population 
with 28,725 participants (205 incident PCa cases) and 
the LO-population including 138,792 (4677 incident PCa 
cases; Additional file 1: Fig. S2A). The baseline character-
istics for three populations are shown in Table 1. The age-
specific PCa incidence rates were visualized in Additional 
file 1: Fig. S3, which were used for the sampling weight-
ing in the Weighted Cox proportional hazard (WCoxPH) 
models.

We firstly assessed the risk of PCa associated with 
a 269-PRS derived from well-established risk variants 
(Additional file 2: Table S1) using a piece-wise WCoxPH 
model. There was a decreasing trend of the hazard ratio 
(HR) with age, ranking from 2.35 (1.99–2.78) in 40–55 
to 1.84 (1.72–1.96) in 70–82 years old group [I2 = 63%, P 
for heterogeneity (Phet) = 0.027; Additional file 1: Fig. S4]. 
In the subsequent division by age, we found that asso-
ciation with PCa risk per standard deviation of PRS in 
EOPC-population [HR = 2.35, 95% confidence interval 
(CI) 1.99–2.78] was stronger than that in LOPC-cohort 
(HR = 1.95, 95% CI 1.89–2.01; Fig.  1A and Additional 
file 2: Table S2), along with the significant heterogeneity 
(I2 = 79%, Phet = 0.031; Additional file 1: Fig. S5). We then 
performed stratified analysis by family history and found 
that PRS-associated risk for EOPC was stronger than 
that for LOPC mainly in participants with negative fam-
ily history (EOPC: HR = 2.26, 95% CI 1.87–2.72; LOPC: 

Table 1 Baseline characteristics for males from UK biobank cancer follow-up cohort

General-population covered all participants; EO-cohort was consisted of individuals with exit-age ≤ 55 years old; LO-cohort comprised individuals with exit-
age > 55 years old

PCa prostate cancer, PRS polygenic risk score, SD standard deviation, IQR interquartile range
a Age for diagnosis of PCa or censoring otherwise

Follow‑up cohort General‑population EO‑population LO‑population

(N = 167,517) (N = 28,725) (N = 138,792)

Non incident Incident PCa Non incident Incident PCa Non incident Incident PCa

N (%) 162,635 (97.09) 4882 (2.91) 28,520 (99.28) 205 (0.72) 134,115 (96.63) 4677 (3.37)

Age, Mean (SD) 56.83 (8.06) 62.37 (5.16) 44.07 (2.38) 49.05 (3.31) 59.54 (5.97) 62.95 (4.38)

Exit-age, Mean (SD)a 64.55 (8.03) 66.23 (5.32) 51.77 (2.30) 52.37 (2.64) 67.26 (5.91) 66.83 (4.53)

BMI, Mean (SD) 27.86 (4.25) 27.55 (3.83) 27.56 (4.29) 27.18 (3.53) 27.92 (4.23) 27.56 (3.84)

Smoking status, N (%)

 Never 79,849 (49.10) 2305 (47.21) 16,886 (59.21) 139 (67.80) 62,963 (46.95) 2166 (46.31)

 Ever 82,238 (50.56) 2557 (52.38) 11,587 (40.63) 66 (32.20) 70,651 (52.68) 2491 (53.26)

 Missing 548 (0.34) 20 (0.1) 47 (0.16) 0 (0.00) 501 (0.37) 20 (0.43)

Drinking status, N (%)

 Never 2698 (1.66) 78 (1.60) 410 (1.44) 4 (1.95) 2288 (1.71) 74 (1.58)

 Ever 159,791 (98.25) 4804 (98.40) 28,080 (98.46) 201 (98.05) 131,711 (98.21) 4603 (98.42)

 Missing 146 (0.09) 0 (0.00) 30 (0.11) 0 (0.00) 116 (0.09) 0 (0.00)

Family history of PCa, N (%)

 No 143,742 (88.38) 4034 (82.63) 25,548 (89.58) 153 (74.63) 118,194 (88.13) 3881 (82.98)

 Yes 12,095 (7.44) 628 (12.86) 1858 (6.51) 44 (21.46) 10,237 (7.63) 584 (12.49)

 Missing 6798 (4.18) 220 (4.51) 1114 (3.91) 8 (3.90) 5684 (4.24) 212 (4.53)

Fig. 1 Risk estimates for PCa associated with a 269-PRS in the General-, EO- and LO-population. A Weighted Cox proportional hazard models 
include all subjects regardless of the family history of PCa. B Weighted Cox proportional hazard models include participants without a family history 
of PCa. C Weighted Cox proportional hazard models include participants with a family history of PCa. Models were adjusted for age at assessment, 
BMI, smoking status, drinking status, assessment center and top 10 principal components. General-population covered all participants; 
EO-population was consisted of individuals with exit-age ≤ 55 years old; LO-population comprised individuals with exit-age > 55 years old. PCa 
prostate cancer, PRS polygenic risk score, HR hazard ratio, EO early-onset, LO late-onset, SD standard deviation

(See figure on next page.)
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HR = 1.92, 95% CI 1.85–1.98; I2 = 65%, Phet = 0.093; 
Fig.  1B, Additional file  1: Fig. S5 and Additional file  2: 
Table S2) but slightly in those with positive family history 
(EOPC: HR = 2.63, 95% CI 1.57–4.41; LOPC: HR = 1.97, 
95% CI 1.81–2.14; I2 = 15%, Phet = 0.278; Fig.  1C, Addi-
tional file 1: Fig. S5 and Additional file 2: Table S2).

We then re-analyzed the association in the case–con-
trol population (Additional file  1: Fig. S2B and Addi-
tional file  2: Table  S3). Consistently, the associations of 
269-PRS with EOPC was stronger than that with LOPC 
[EOPC: odds ratio (OR) = 2.35, 95% CI 2.16–2.54; LOPC: 
OR = 1.96, 95% CI 1.91–2.01; I2 = 94%, Phet < 0.001], both 
in FH stratifications (Additional file  1: Figs. S6, S7 and 
Additional file 2: Table S4).

EOPC harbors a specific genetic architecture
In the age-specific GWAS across General-, EO-, and LO-
population, a total of 8,647,579, 8,676,601 and 8,652,442 
available variants were included for Cox regression 

analyses (Additional file  1: Fig. S8). Totally, we identi-
fied 319, 45 and 296 independent loci for PCa, EOPC 
and LOPC after clumping, respectively (Additional file 2: 
Tables S5–S10), which were subsequently used for PRSs 
calculation. PCa and LOPC shared numerous common 
loci for PCa risk including 3q21.3, 8q24.21, 11q13.3, 
17q24.3 and 19q13. We identified two clumps located 
on 6p22 specific for LOPC, represented by rs9404937 on 
6p22.1 and rs9263530 on 6p22.33. As for EOPC, several 
notably distinct loci were observed, including 3q25.31, 
8q13.1, 17q21.33 and 21q21.1.

The associations of General-PRS with EOPC, similar 
to 269-PRS, was stronger than that with LOPC (EOPC: 
HR = 1.99, 95% CI 1.69–2.34; LOPC: HR = 1.77, 95% 
CI 1.72–1.83; I2 = 47%, Phet = 0.170], though such dif-
ference was not that obvious in the FH stratifications 
(Fig.  2A–C, Additional file  1: Fig. S9A and Additional 
file  2: Table  S11). The EOPC-PRS demonstrated sig-
nificant but weak association with the risk of PCa in 
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the General-population (HR = 1.06, 95% CI 1.03–1.10; 
Fig.  2D and Additional file  2: Table  S11]. Noteworthily, 
on contrary to the strong association with EOPC risk 
(HR = 4.70, 95% CI 3.98–5.54), the EOPC-PRS was not 
in relation to the risk of LOPC (HR = 0.98, CI: 0.96–1.01; 
I2 = 100%, Phet < 0.001), both in the FH stratifications 
(Fig. 2D–F, Additional file 1: Fig. S9B and Additional file 2: 
Table  S11), implying the distinct genetic architecture of 
EOPC compared with LOPC. Furthermore, EOPC-PRS 
was strongly associated with risk of EOPC both in males 
without (HR = 5.12, 95% CI 4.23–6.20, P < 0.001) and with 
(HR = 7.00, 95% CI 3.93–12.47, P < 0.001) family history 
(Fig. 2E, F and Additional file 2: Table S11). Meanwhile, 
there was no heterogeneity between the risk estimates of 
EOPC and LOPC associated with the LOPC-PRS (EOPC: 
HR = 1.70, 95% CI 1.46–1.99; LOPC: HR = 1.75, 95% CI 
1.70–1.81; I2 = 0%, Phet = 0.709), consistent in FH sub-
groups (Fig. 2G–I, Additional file 1: Fig. S9C and Addi-
tional file 2: Table S11).

The sensitivity analyses with case–control popula-
tion yielded similar results (Additional file  1: Figs. S10, 
S11 and Additional file  2: Table  S12). Next, we merged 
reported variants and GWAS independent ones for re-
analyses (process illustrated in Additional file 1: Fig. S12); 
resultantly, 397, 62 and 375 variants were applied to build 
merged-General-, merged-EOPC- and merged-LOPC-
PRS, respectively (Additional file  2: Tables S13–S15). 
Consistently, the association between merged-General-
PRS and EOPC was stronger than that of LOPC (EOPC: 
HR = 2.04, 95% CI 1.74–2.39; LOPC: HR = 1.81, 95% CI 
1.76–1.87; I2 = 49%, Phet = 0.162), which was more obvi-
ously in the negative FH (I2 = 48%, Phet = 0.167) than that 
in the positive family history group (I2 = 9%, Phet = 0.294; 
Fig.  3A–C, Additional file  1: Fig. S13A and Additional 
file 2: Table S16). The merged-EOPC-PRS was in a weak 
association with the risk of LOPC (HR 1.03, CI 1.00–
1.06) but strong with EOPC (HR 5.16, CI 4.37–6.08; 
I2 = 100%, Phet < 0.001; Fig.  3D–F, Additional file  1: Fig. 
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S13B and Additional file 2: Table S16). Similar to LOPC-
PRS, the association of merged-LOPC-PRS with PCa 
risk was approximate between the EO- and LO-popu-
lation (EOPC: HR 1.75, 95% CI 1.49–2.04; LOPC: HR 
1.80, 95% CI 1.75–1.86; I2 = 0%, Phet = 0.679), both in FH 
stratifications (Fig. 3G–I, Additional file 1: Fig. S13C and 
Additional file 2: Table S16). Logistic regression analyses 
based on the case–control population manifested same 
results (Additional file  1: Figs. S14, S15 and Additional 
file 2: Table S17).

EO‑PRS exhibits high discriminatory capabilities for EOPC
We further test the prediction ability of EOPC-PRS in 
an additional European ancestry population (Additional 
file  1: Fig. S16). The discriminatory capabilities of 269-
PRS and General-PRS for LOPC [70- and 85-year diag-
nostic AUC: 0.646 and 0.642 for 269-PRS; 0.621 and 
0.628 for General-PRS] were better than that for EOPC 
(55-year AUC: 0.607 for 269-PRS; 0.616 for General-PRS, 
Fig.  4A–D). The EOPC-PRS harbored a distinctly high 
prediction capability for EOPC (55-year AUC = 0.613), 
compared with that for LOPC (70- and 85-year diag-
nostic AUC = 0.509 and 0.499); while LOPC-PRS had a 
higher discriminatory ability for LOPC (70- and 85-year 
diagnostic AUC = 0.620 and 0.618) but a lower one for 
EOPC (55-year AUC = 0.601, Fig.  4E, F). Consistent 
results were yielded for merged PRSs (Fig.  4G–I). We 
additionally collected two published PRSs associated 
with PCa risk that were derived from the general popu-
lation and evaluated their predictive ability for EOPC 
[19, 20]. Comparison with these two PRSs, EOPC-PRS 
indeed demonstrates the optimal predictive capacity for 
EOPC (Additional file 1: Fig. S17). Moreover, the EOPC-
PRS could refine the discriminatory capability of PSA in 
men before 60 years old (Additional file 1: Fig. S18) from 
PLCO cohort. We also found a significant correlation 
between EOPC-PRS and various clinical subgroups of 
prostate cancer that a stronger association was observed 
in early-stage EOPC (GS < 7, T stage ≤ T2 and N0; Addi-
tional file  1: Fig. S19). Therefore, these findings suggest 
that EOPC-PRS might be closely related with the risk of 
EOPC, especially those with early-stage tumors.

EOPC is associated with unique phenomic features
To profile the traits potentially associated with EOPC 
and LOPC, we performed PheWAS via two-sample 
MR analysis (illustrated in Figure S20). We identified 
194, 108 and 189 high-confidence traits for total PCa, 
EOPC and LOPC, respectively (Additional file  2: Tables 
S18–S20). Generally, 90 (56 risk and 34 protective) and 
171 (107 risk and 64 protective) causal traits were spe-
cific to EOPC and LOPC, respectively, and 14 risk and 4 
protective traits were shared among the three sets, that 

included PCa and PCa FH (Fig.  5A, B). Notably, eleven 
of 56 EOPC-specific risk traits were cancers, two were 
immune system, and one was another trait concerning 
PCa FH. On the contrary, among the 107 risk traits spe-
cific to LOPC, none of them were associated with cancer 
or immune system. LOPC was mainly linked to diseases 
in the aged including prostate hyperplasia, arthropathies, 
diabetes, etc. Noteworthily, multiple environmental/
lifestyle traits (e.g., population density, alcohol intake) 
were dramatically associated with LOPC, but not EOPC 
(Fig. 5C). Besides, the protective traits specific to EOPC 
embracing LDL cholesterol and arthropathies, which was 
inverse to LOPC risk traits. (Fig.  5D). The above find-
ings are deposited on a user-friendly online tool: Pros-
tate cancer Age-based PheWAS (ProAP, https:// mulon 
gdu. shiny apps. io/ proap). The results can be focused on 
a certain outcome among “General-PCa”, “EOPC” and 
“LOPC” through a selection in the “Choose an outcome” 
box. Additionally, a trait of interest is easily accessible 
by using “Search” box. For instance, the user can choose 
“EOPC” and search “illness of father” to obtain the causal 
effects of family history of father on EOPC development 
(Additional file 1: Fig. S21).

Discussion
In this study, we delineated a specific genetic architecture 
to EOPC and developed a 45-SNP-EOPC-PRS for PCa 
risk prediction with great discriminatory capabilities in 
younger men. Moreover, EOPC was discovered signifi-
cantly linked to causal traits concerning genetic factors 
such as PCa family history while not to environmental or 
lifestyle traits.

PCa mainly occurred in the aged, accounting for only 
8% under 55 years old [21]. Some studies reported that 
EOPC have a favorable prognosis, partly because younger 
patients have fewer comorbid conditions and better tol-
erance for more aggressive treatment [22, 23]. How-
ever, these clinical observations mainly focused on men 
who were eligible for therapies, and therefore probably 
ignored young men with high grade PCa [24]. However, 
population-based data suggested that the younger groups 
were at a higher risk of all-cause and cancer-specific 
death [24]. Also, according to the Surveillance, Epidemi-
ology, and End Results Program database covering 48% 
of the U.S. population, the 5-year relative survival rate of 
PCa was 96.2% for patients diagnosed less than 50 years 
old, 98.2% for 50–64, and 99.2% for 65–74 [25]. In fact, 
the viewpoint that EOPC patients have poorer progno-
sis was widely spread among physicians in the pre-PSA 
era based on clinical observation [26, 27] and large-scale 
cohorts [28–30]. Additionally, patients with EOPC are 
less likely to die from other causes than those with LOPC 
[24]. So far, prostate specific antigen (PSA) testing is 

https://mulongdu.shinyapps.io/proap
https://mulongdu.shinyapps.io/proap
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“informed select” only in elder men unless existing a FH 
[8]; however, only 21.5% of EOPC in our data had a FH. 
Therefore, the majority of EOPC still lacks substantial 
opportunity to be early-detected thus suffering an unfa-
vorable prognosis. It is plausible that EOPC is a unique 
clinical entity which deserves more attention.

Compared with LOPC, EOPC participants harbored 
marked skewing towards a positive FH, and such fact 
limited the clinical usage of genetic models in diagno-
sis because of the readily accessibility of FH. Studies 
reported that the AUC only improved from 0.526 (FH 
alone) to 0.642 (genetic markers + FH) for the diagno-
sis of PCa [31]. Though, Mars et  al. demonstrated that 
first-degree FH only explained averagely 3% of the effect 
of PRSs, and PRSs was useful in refining risk assessment 
of PCa even when FH is available [32]. Additionally, we 
noted that all developed PRSs still have considerable pre-
dictive discriminatory capabilities for FH-free EOPC. 
Taken together, applying genetic information to the pre-
diction of EOPC, particularly in men without a FH may 
yield additional clinical benefits.

The cumulative burden of PCa risk variants was found 
more strongly associated with EOPC in this study, con-
sistent with previous studies [9, 10, 15, 19, 20, 31]. How-
ever, because these PRS were not established based on 
the EO population, the EOPC-PRS exhibits superior 
predictive capability for EOPC compared to them. In 
addition to previous studies, we carried out age-specific 
GWAS for EOPC and LOPC. Different from the com-
mon loci (e.g., 3q21.3, 8q24.21, 11q13.3 [33–35]) associ-
ated with risk of total PCa and LOPC, EOPC was related 
to specific loci including 3q25.31, 8q13.1, 17q21.33 and 
21q21.1. Besides, the EOPC-PRS having a strong asso-
ciation with EOPC risk but not with LOPC. Such dis-
tinct genetic pattern of EOPC was also validated in the 
sensitive analyses. In a study concerning early-onset 
colorectal cancer (EOCRC), it was suggested that there 
is still space for improving the discriminatory accuracy 
of PRS because the included SNPs were not specific 
to early-onset disease [16]. We believed that variants 
and EOPC-PRS produced from EOPC-specific GWAS 
were able to promote the predictive capability of EOPC. 

Fig. 5 Phenome-wide association analysis of PCa, EOPC and LOPC through two-sample MR analyses based on UK Biobank GWAS summary data. 
A Venn diagram of high-confidence risk traits liked to PCa, EOPC and LOPC. B Scatter plots of EOPC specific (upper) and LOPC-specific (below) risk 
traits. C Venn diagram of high-confidence protective traits linked to PCa, EOPC and LOPC. D Scatter plots of EOPC specific (upper) and LOPC-specific 
(below) protective traits. EOPC early-onset prostate cancer, LOPC late-onset prostate cancer
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Further, in the association analysis stratified by clini-
cal characteristics, we observed that EOPC-PRS effec-
tively differentiated individuals with high risk of EOPC, 
especially early-stage tumors. Though may not in high 
risk to develop aggressive PCa, this population deserve 
early clinical management such as active surveillance. 
A previous study conducted a GWAS specific to EOPC, 
identifying two significant loci at 8q24 and 11p15 [36]. 
In comparison to this study, our study further placed a 
greater emphasis on constructing PRSs stratified by age, 
based on which we systematically illustrated the differ-
ences in the genetic architectures between EOPC and 
LOPC and highlighted the risk prediction value of these 
PRSs.

Studies have reported risk factors for PCa environmen-
tally, habitually and biologically [37–39]. Environmental/
lifestyle exposures influence the cancer risk in a cumula-
tive pattern; the short period available for younger men 
to accrue these exposures is consistence with the higher 
genetic association in early-onset patients. In line with 
expectations, we found environmental/lifestyle traits had 
causal effects on LOPC, but not on EOPC. Additionally, 
LOPC was linked to traits encompassing ischemic heart 
diseases, diabetes, etc., which were related to comorbidi-
ties more common in elders. All results highlighted the 
uniqueness of phenomic characteristics of EOPC; identi-
fication of risk factors genetically and biologically could 
help in the risk stratification of EOPC in union with 
EOPC-PRS.

In this study, we applied a weighted Cox proportional 
hazards model to estimate the risk of PCa associated 
with PRSs, which was adopted by Schaid et  al. in their 
study [15]. Studies have shown that applying Cox regres-
sion models with the usage of age information can lead 
to statistical power compared with logistic model [40]. 
Therefore, we estimated relative risks through a Cox pro-
portional hazard model with sampling weights based on 
incidence rates to account for how cases and controls 
were sampled. To minimize the bias caused by overfit-
ting, we developed PRSs from three sub-populations and 
carried out cross-validation, and then conducted two-
stage sensitivity analyses, to enhance the convincingness 
of results. This study did have several limitations. Firstly, 
the size of EOPC population was relatively small, leading 
to an inadequate power for GWAS. Thus, we applied a 
suggestive GWAS threshold of  10–5 and a loose clump-
ing criterion of 0.8 in order to bring in as many as loci to 
describe the genetic architecture of EOPC and improve 
the power of PRSs. Moreover, in the PheWAS section, 
we aimed at presenting a sketchy phenomic landscape; 
therefore, some exposures originated from UK biobank 
were uniformly analyzed via two-sample MR (one-sam-
ple MR used commonly), so as to adequately characterize 

the uniqueness of EOPC compared with LOPC. We 
did not calculate F-statistics for the identification of 
weak instruments because effect allele frequencies are 
not uniformly provided by the summary data of every 
exposure. According to our experience, a criterion with 
P-value < 5e−8 and clumping r2 < 0.001 rarely leads to 
weak instruments, because the F-statistics usually exceed 
30. So, any bias introduced by weak instruments, if pre-
sent at all, was exceedingly minimal. Lastly, because our 
study was based on the ‘white British’ population from 
the UK Biobank, the applicability of the PRSs identified 
in our study might be constricted to males of European 
ancestry. Further validations in other populations are 
needed to enhance their generalizability.

Conclusions
This study comprehensively delineates the unique genetic 
architecture and risk factors of EOPC that were differed 
from LOPC. A newly developed EOPC-PRS with strong-
est and specific association with EOPC may optimize risk 
stratification of PCa in young males (particularly those 
without FH), and subsequently provide guidance for per-
sonalized interventions.
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