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Abstract 

Background Molecular subtyping is expected to enable precise treatment. However, reliable subtyping strategies 
for clinical application remains defective and controversial. Given the significance of tumor immune dysfunction 
and exclusion (TIDE), we aimed to develop a novel TIDE-based subtyping strategy to guide personalized immuno-
therapy in the bladder cancer (BC).

Methods Transcriptome data of BC was used to evaluate the heterogeneity and the status of TIDE patterns. Sub-
sequently, consensus clustering was applied to classify BC patients based on TIDE marker-genes. Patients’ clinico-
pathological, molecular features and signaling pathways of the different TIDE subtypes were well characterized. We 
also utilize the deconvolution algorithms to analyze the tumor microenvironment, and further explore the sensitivity 
and mechanisms of each subtype to immunotherapy. Furthermore, BC patient clinical information, real-world BC 
samples and urine samples were collected for the validation of our findings, which were used for RNA-seq analysis, 
H&E staining, immunohistochemistry and immunofluorescence staining, and enzyme-linked immunosorbent assay. 
Finally, we also explored the conservation of our novel TIDE subtypes in pan-cancers.

Results We identified 69 TIDE biomarker genes and classified BC samples into three subtypes using consensus 
clustering. Subtype I showed the lowest TIDE status and malignancy with the best prognosis and highest sensitiv-
ity to immune checkpoint blockade (ICB) treatment, which was enriched of metabolic related signaling pathways. 
Subtype III represented the highest TIDE status and malignancy with the poorest prognosis and resistance to ICB 
treatment, resulting from its inhibitory immune microenvironment and T cell terminal exhaustion. Subtype II was in a 
transitional state with intermediate TIDE level, malignancy, and prognosis. We further confirmed the existence 
and characteristics of our novel TIDE subtypes using real-world BC samples and collected patient clinical data. This 
subtyping method was proved to be more efficient than previous known methods in identifying non-responders 
to immunotherapy. We also propose that combining our TIDE subtypes with known biomarkers can potentially 
improve the sensitivity and specificity of these biomarkers. Moreover, besides guiding ICB treatment, this classification 
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approach can assist in selecting the frontline or recommended drugs. Finally, we confirmed that the TIDE subtypes are 
conserved across the pan-tumors.

Conclusions Our novel TIDE-based subtyping method can serve as a powerful clinical tool for BC and pan-cancer 
patients, and potentially guiding personalized therapy decisions for selecting potential beneficiaries and exclud-
ing resistant patients of ICB therapy.

Keywords Bladder cancer, Immune dysfunction and exclusion, Molecular subtyping, Immunotherapy, RNA-
sequencing, Pan-cancer

Introduction
Bladder cancer (BC) is a prevalent malignancy of the uri-
nary system, ranking ninth in incidence and thirteenth in 
mortality among all cancers [1, 2]. Although early-stage 
BC is typically treated with surgery, high rates of post-
operative recurrence often require multimodal interven-
tions [3–5]. For advanced or metastatic cases, systemic 
treatments are the current research hotspots, especially 
for immunotherapy [6]. Despite significant progress in 
recent years, 5-year recurrence-free survival rate still 
falls below 43% [7, 8]. Currently, personalized precision 
therapy is gradually becoming the mainstream treatment. 
Immune checkpoint blockade (ICB) can elicit long-
lasting responses in partial metastatic cancer patients 
[9]. For locally advanced or metastatic BC patients, who 
are refractory to platinum-based therapy, ICB has been 
regarded as a first-line or second-line treatment option 
[10]. Despite its great potential, only a small percent-
age of patients benefit from ICB (< 30%) [11, 12]. The 
exact mechanisms and predictive factors that affect ICB 
efficacy remain unclear. Previous studies have identi-
fied some factors associated with ICB response, such 
as tumor immune microenvironment (TIME) patterns 
[13–16], tumor mutational burden (TMB) and neoanti-
gen load [17, 18], and microsatellite instability (MSI) [19]. 
These findings are essential for understanding the fac-
tors related to ICB response and developing predictive 
biomarkers. The current key obstacle for accurate ther-
apy prediction is the search of ICB response biomark-
ers and resistance regulators [20, 21]. Tumor molecular 
subtyping is a research trend for precision diagnosis and 
treatment, but currently limited subtyping method can 
accurately guide ICB therapy in BC patients [22, 23].

Within the tumor microenvironment (TME), tumor 
cells occupy specialized niches where they interact 
extensively with various factors, such as stromal and 
immune cells. These interactions have a significant 
impact on tumor initiation, progression, metastasis, 
and therapy response [24–26]. Studies have found that 
some cancer cell subsets can affect patients’ responses 
to immunotherapy, which are closely in contact with 
cancer-associated fibroblasts (CAFs) and  CD8+ T cells 
(CD8Ts) [27, 28]. Moreover, inhibitory cells, cytokines 

and metabolites that generate an immunosuppressive 
environment within the TME can reduce the activa-
tion and function of cytotoxic T-cells (CTLs), which 
will result in the tumor immune dysfunction (TID) or 
the exclusion of T-cells from the tumor (TIE) [25, 29, 
30]. These two tumor-immune escape mechanisms will 
undermine tumor response to ICB therapy [20]. Liu 
et al. used tumor expression profiling data of melanoma 
and non-small cell lung cancer (NSCLC) to score these 
mechanisms and developed a computational framework 
called the Tumor Immune Dysfunction and Exclusion 
(TIDE) algorithm [20]. However, its effectiveness in 
BC, and further in pan-cancers, requires authoritative 
validation.

In this study, transcriptome analysis was conducted in 
the BC patients to assess TIDE status and identify spe-
cific biomarkers. Based on the identified marker-genes, 
a novel TIDE subtyping strategy was constructed which 
can classify BC patients into three subtypes with differ-
ent clinicopathological and molecular features, progno-
ses, functional annotations, TME and therapy responses. 
This TIDE-based subtyping was also proven to accurately 
predict ICB treatment and chemotherapy outcomes in 
the BC patients. Compared to existing methods of BC 
molecular subtyping and previously published predic-
tive biomarkers for BC immunotherapy, our innovative 
TIDE-based subtyping strategy not only demonstrates a 
close correlation with clinicopathological and molecular 
characteristics in BC patients but also offers improved 
accuracy and reliability in identifying responders and 
non-responders to ICB treatment. This approach has the 
potential to provide precision guidance for enhancing the 
effectiveness of clinical immunotherapy in BC patients. 
Furthermore, we validated the existence of the TIDE sub-
types and their associations with ICB responses in five 
pan-cancer cohorts, which potentially indicates the con-
sistency of our TIDE method across pan-tumors. Overall, 
we aimed to employ transcriptome data to evaluate TIDE 
status and develop an accurate TIDE-based decision-
making tool in the BC and pan-cancer patients, which 
can facilitate precise treatment for tumors and gains val-
uable insights into the molecular mechanisms underlying 
tumor immune dysfunction and exclusion.
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Results
Correlations of TIDE status with the clinicopathological 
and molecular features in the BC patients
Associations of TIDE scores with clinicopathological 
and molecular features
The workflow of our study is illustrated in Fig.  1, Addi-
tional file 1: Figure S1 and Methods S1. We utilized the 
TIDE algorithm [20] to evaluate TIDE status and calcu-
late TIDE scores based on bulk RNA sequencing (RNA-
seq) data. The samples were sorted from low to high to 
explore how TIDE scores were related to the clinico-
pathological and molecular features (Fig. 2A). The results 
showed that younger patients, Asian ethnicity, and male 
gender had significantly lower TIDE scores (Additional 
file 1: Figure S2A). TIDE scores were dramatically higher 
in those who died of BC, but unrelated to tumor progres-
sion (Fig. 2B, Additional file 1: Figure S2B). Additionally, 
patients with advanced pathological T stage (T3 and T4), 
distant metastasis and high histological grade had higher 
TIDE scores, but not lymph node metastasis (Fig. 2C–F). 
Finally, TIDE scores of Papillary and Luminal papillary 
subtypes were the lowest among all histological subtypes 
and TCGA subtypes (Fig. 2G, H). 

Based on the somatic mutation data, we revealed that 
TIDE scores showed obviously negative correlations 
with TMB, MSI, neoantigen load, and stemness scores 
(mRNAsi) (Fig. 2I–L). For common biomarker mutation 
events, there were significant differences of TIDE scores 
between KDM6A, FGFR3, and TAF11 mutant patients 
and wild-type patients (Additional file 1: Figure S2C).

Kaplan–Meier (K–M) analysis revealed significant 
associations of higher TIDE group with poorer overall 
survival (OS, Fig.  2M), progression-free interval (PFI), 
and disease-specific survival (DSS) (Additional file  1: 
Figure S2D). Additional five BC datasets confirmed 
these findings (Fig. 2N–P, Additional file 1: Figure S2E). 
Therefore, based on the survival analysis results, tumor 
immune dysfunction and exclusion levels are probably 
two risk factors for BC.

Correlation between TIDE status and TIME in the BC patients
To determine the immune patterns of 431 samples of 
the Cancer Genome Atlas—Bladder Urothelial Carci-
noma (TCGA_BLCA), we employed the Single Sample 
Gene Set Enrichment Analysis (ssGSEA) algorithm [31] 
to quantify scores for the 54 immune signatures pub-
lished by Charoentong et al. [32] and Şenbabaoğlu et al. 
[33] The samples were divided into two groups: “High 
immune infiltration” (High-immu; n = 230, 53.4%) and 
“Low immune infiltration” (Low-immu; n = 201, 46.6%) 
(Additional file  1: Figure S3A). Using the ESTIMATE 
algorithm [34] to evaluate TME, the immune and stro-
mal scores of High-immu group were significantly higher 

than the scores of Low-immu group (Additional file  1: 
Figure S3B). DECEPTICON was applied to evaluate the 
immunocyte abundance. The results indicated that all 
types of immunocytes were significantly enriched in the 
High-immu group (Additional file 1: Figure S3C), and a 
significant association was observed between the High-
immu group and high TIDE scores, and vice versa (Addi-
tional file  1: Figure S3D). Moreover, TIDE scores were 
positively correlated with Immune and Stromal scores, 
and negatively correlated with tumor purity and DNA 
fraction (Additional file 1: Figure S3E). The myeloid cell 
infiltration was positively correlated with TIDE scores 
using Mantel’s test (Additional file 1: Figure S3E).

Identification of three TIDE subtypes with significant 
differences in prognosis
Identification of TIDE marker genes
Due to the correlation with TIDE scores and the prog-
nosis of BC patients, we hypothesized that certain mark-
ers reflecting TIDE status could be used for molecular 
subtyping. Eight BC bulk RNA-seq datasets [29, 35–39] 
were applied to develop TIDE marker-genes. The detailed 
process is shown in Additional file  1: Figure S4A and 
Methods S1. Sixty-nine genes representing significant 
association with OS were selected (Fig.  3A, Additional 
file  2: Data S1). These genes were classified into two 
clusters (Additional file 1: Figure S4B). C1 comprises 11 
genes that have no interaction with each other, while C2 
includes 58 genes that were significantly enriched in sig-
nal pathways related to collagen and extracellular matrix 
metabolism, cell adhesion and integrin-mediated sig-
nal transduction, and epithelial-mesenchymal transition 
(Fig. 3A, Additional file 1: Figure S4C). In addition, Venn 
analysis showed that 43.5% (30/69) of TIDE marker genes 
also belonged to TIME signature genes (Additional file 1: 
Figure S4D, Additional file  2: Data S2). These shared 
genes may play a critical role in shaping both TIDE status 
and the tumor immune microenvironment.

Identification of three TIDE subtypes
Unsupervised consensus clustering [40] was used to 
identify TIDE subtypes based on the expression profil-
ing of 69 marker-genes. Three clusters were well opti-
mized determined with the help of consensus heatmap, 
cumulative distribution function (CDF) curves and 
proportion of ambiguous clustering algorithm (PAC) 
(35) (Additional file  1: Figure S5A, Fig.  3B). Subtype 
I (SI) consisted of 132 samples (30.6%) with high-
expression of C1 genes and low-expression of C2 genes, 
subtype II (SII) comprised 148 samples (34.3%) with 
moderate-expression of both C1 and C2 genes, and 
subtype III (SIII) contained 151 samples (35.0%) with 
low-expression of C1 genes and high-expression of C2 
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Fig. 1 The overall design of the current study
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Fig. 2 Correlations of TIDE status with clinicopathological and molecular features in the BC patients. A Associations of TIDE scores 
with clinicopathological and molecular features in BC patients. Columns represented samples ranked by TIDE scores from low to high (top row), 
and rows represent clinicopathological and molecular features associated with TIDE scores. B–J) Comparisons of TIDE scores with subgroups 
of survival status (OS_Status) (B), pathological TNM stage (pTNM) (C–E), histological grade (hGrage) (F), histological subtype (hSubtype) (G), TCGA 
mRNA subtype (H), tumor mutation load (TMB) (I) and microsatellite instability (MSI) (J). LUMI, Luminal-infiltrated; LUMP, Luminal-papillary; LUM, 
Luminal; BASS, Basal-squamous; NEU, Neuronal. K, L Correlations of TIDE scores with neoantigen load (K) and stemness index (mRNAsi) (L) in BC 
patients. M–P Kaplan–Meier (K–M) analysis demonstrated a correlation of the TIDE scores with the prognosis of BC patients from TCGA-BLCA (M), 
GSE31684 (N), GSE154261 (O) and IMvigor210 (P) datasets. OS, overall survival; RFS, recurrence-free survival. Dashed line: median survival time. Color 
range: 95% confidence interval (CI). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significance
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genes (Fig.  3B). The TIDE, Dysfunction and Exclusion 
scores were gradually increased from SI to SIII (Fig. 3C, 
Additional file 1: Figure S5B).

Differences of prognosis among the TIDE subtypes in the BC 
patients
Based on K-M analysis, SIII represented the poor-
est prognosis, whereas SI owned the best prognosis, 
and SII showed an intermediate prognosis (Fig.  3D, 

Additional file  1: Figure S5C). By univariate Cox anal-
ysis, SI and SIII were protective and risk factors for 
OS, respectively (Fig.  3E), and SI was an independent 
protective factor for OS by multivariate Cox analysis 
(Fig. 3F).

Stability and universality of TIDE subtyping strategy
Non-negative matrix factorization (NMF) [41] and 
unsupervised hierarchical clustering were used to 

Fig. 3 Identification of three TIDE-based subtypes of BC based on the TIDE marker genes. A CircosPlot shows the expression levels in TCGA-BLCA, 
signaling pathways and protein–protein interaction (PPI) networks of 69 TIDE marker genes. These genes are mainly divided into two clusters: C1 
consists of 11 genes (cyan) and C2 comprises 58 genes (red). B Consensus clustering based on the expression of 69 TIDE marker genes classified 
patients of TCGA-BLCA into three subtypes: Subtype I (SI), Subtype II (SII), and Subtype III (SIII). C1 genes are labelled in cyan, and C2 are labelled 
in red. C Levels and trends of TIDE scores among three TIDE subtypes. D OS of TCGA-BLCA is significantly different among three TIDE subtypes. 
E, F Univariate (E) and multivariate (F) Cox regression analysis of the three TIDE subtypes with clinical and molecular characteristics. *p < 0.05, 
***p < 0.001, ****p < 0.0001
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classify TCGA-BLCA patients (Additional file 1: Figure 
S5D–G). The results were comparable to those obtained 
by using the consensus clustering. Therefore, TIDE 
subtyping strategy is robust across different algorithms. 
To further validate its universality, our novel TIDE sub-
typing strategy was also utilized in the other two inte-
grated bulk RNA-seq cohorts: the UC.Combi cohort 
(n = 960, five independent datasets [35–39]) and the 
ICB.UC cohort (n = 384, BC samples sequenced before 
ICB therapy, three datasets [29, 42]). Both cohorts were 
consistently classified into three subtypes (Additional 
file  1: Figure S5H, I) with significant TIDE scores and 
prognosis differences (Additional file 1: Figure S5J–M). 
Therefore, these results indicate a good universality of 
the TIDE subtyping method. To determine whether 
publication bias impacts the results, we conducted the 
Egger’s test for the BC datasets [43]. The result revealed 
no publication bias (p = 0.7689), and funnel plot did 
not reveal any significant asymmetry (Additional file 1: 
Figure S13A). Moreover, there was no indications of 
studies identified with the trim-and-fill analysis (no 
trimming performed, no new studies added and data 
unchanged) (Additional file 1: Figure S13B).

Distinct clinical features, mutational events, and functional 
annotations among the TIDE subtypes
Differences of clinicopathological features among the TIDE 
subtypes
The proportion of cancer adjacent samples were gradu-
ally increased from SI to SIII (Figs.  4A, B, Additional 
file 1: Figure S6A). TIDE subtypes have obvious differ-
ences in diagnostic age (Fig. 4C), race and gender, but 
not in weight and daily smoking (Additional file 1: Fig-
ure S6A). Regarding histopathology, SI had the lowest 
proportion of pT3 and pT4, high-grade (Fig. 4D, E) and 
lymph node-positive patients (Additional file  1: Fig-
ure S6B). We also observed a decreased proportion of 
patients with the Papillary histological subtype from SI 
to SIII (Fig.  4F), and increased proportions of overall 
death, BC-specific death and progression (Additional 
file 1: Figure S6C).

Differences of molecular features among the TIDE subtypes
We further analyzed the compositions of different molec-
ular subtypes in the TIDE subtypes and discovered obvi-
ous distribution differences, indicating a correlation and 
similarity between the known molecular subtypes and 
the new TIDE-based subtyping system (Fig.  4G, Addi-
tional file 1: Figure S6D). For example, the Luminal pap-
illary subtype accounted for 92% in SI, and the Basal 
squamous subtype constituted 77% in SIII (Fig. 4G). The 
SCNA and somatic mutation analysis showed that SII 
owned the highest copy number variation (CNV) bur-
den (Fig. 4H). However, SIII and SII displayed the high-
est amplification and deletion burdens, respectively. SII 
exhibited the highest level of TMB, as reflected by the 
total number of single nucleotide polymorphisms (Addi-
tional file 1: Figure S6E). Each subtype showed the spe-
cific top mutated genes, with significant differences of 
mutation rates in the shared genes among the subtypes 
(Fig.  4I). We examined gene co-mutation or mutual 
exclusivity patterns for each subtype (Fig.  4J), which 
may affect BC subtyping, treatment, and prognosis. For 
instance, SIII carried co-mutated SYNE2 and ATM, two 
DNA damage repair genes. This rare co-mutation may 
increase DNA damage, tumor progression and metasta-
sis, and alter tumor response to therapies [44]. Addition-
ally, we investigated the mutation status of common BC 
biomarkers among the TIDE subtypes. TP53, PIK3CA, 
RB1, KDM6A, FGFR3ELF3, KMT2A, NFE2L2, FAT1 
and SSH3 differed significantly in mutation proportions 
among subtypes (Additional file 1: Figure S6F).

Validation of the TIDE subtypes using the collected real‑world 
BC samples
Fifty-one BC samples were collected for RNA 
sequencing (LY Dataset) to confirm the TIDE sub-
types (Fig. 5A, B). The detailed clinical information is 
shown in Additional file  1: Table  S2. The area under 
the receiver operating characteristic curve (AUC) 
of repeated sample subtyping consistency is as high 
as 0.92, and the accuracy is 75% (Fig.  5C). Subtyping 
analysis indicated that the proportion of high-grade 
BC was increased from SI to SIII (Fig. 5D). Among the 
51 samples, the highest proportion of Ta was in SI and 

Fig. 4 Comparisons of clinicopathological and molecular features among three TIDE subtypes in the BC patients. A Sankey diagram showing 
sample flows for TIDE subtype, sample type, pathological stage (pStage), TCGA Subtype, hSubtype, and survival status. B The proportion of sample 
type among the TIDE subtypes of UC.Combi cohort. C Comparisons of age at diagnosis among TIDE subtypes. D–G The proportion of pathological 
T stage (pT) (D), hGrade (E), hSubtype (F) and TCGA Subtype (G) among the three TIDE subtypes. H Comparisons of total copy number variations 
(CNV), amplifications and deletions among three TIDE subtypes. I Oncoplots showing the top 20 mutated genes in SI (left), SII (middle), and SIII 
(right). J Heatmap showing mutually exclusive or co-occurrence events among top mutated genes in SI (left), SII (middle), and SIII (right). *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significance

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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the highest proportion of T1 was in SII. T2–T4, and 
Tis stages belonged to SIII (Fig. 5E). In terms of patho-
logical diagnosis, SI possessed the highest proportion 
of papillary urothelial carcinoma, while SIII was con-
sisted of the highest proportion of invasive urothelial 
carcinoma and urothelial carcinoma in  situ (Fig.  5F). 
We also found significant differences in tumor vol-
ume among the subtypes based on CT imaging data 
(Fig.  5G). Tumors belonging to SI were generally 

smaller, while those belonging to SIII were often 
larger or even infiltrated the entire bladder (Fig.  5G). 
Finally, RNA-seq analysis based on TCGA-BLCA and 
real-world samples (LY Dataset), and immunohis-
tochemistry (IHC) consistently showed that MKI67 
(Ki67) expression level were highest in SIII (Fig.  5H, 
I), indicating the high proliferative ability of this sub-
type. These results consistently demonstrate that the 
SIII subtype has the highest malignancy and is closely 
associated with urothelial carcinoma in situ.

Fig. 5 Validation of the TIDE subtypes using the collected real-world BC samples. A Consensus clustering by the TIDE marker genes can distinguish 
the real-world BC samples into three TIDE subtypes. B Levels and trends of TIDE scores among the TIDE subtypes. C Multi-class ROC curve analysis 
was used to evaluate the subtyping consistency of repeated samples. D–F The proportion of the tumor grade (D), pT (E) and pathological diagnosis 
(F) among the TIDE subtypes. G Typical CT tomographic images of bladder tumors ( →) and tumor volumes based on CT tomography in three TIDE 
subtypes. H Transcription levels of representative BC proliferation marker MKI67 in TCGA-BLCA and LY Dataset among three TIDE subtypes. I MKi67 
IHC images from the collected BC samples and analysis of MKi67 positive cells among the TIDE subtypes. Scale bar, 100 μm. *p < 0.05, **p < 0.01, 
***p < 0.001. ns, no significance
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Distinct signaling pathways and functional annotations 
among the three TIDE subtypes
Gene Set Variation Analysis (GSVA), Gene Set Enrich-
ment Analysis (GSEA), and Ingenuity Pathway Analy-
sis (IPA) were conducted to investigate the functional 
annotations and potential mechanisms associated with 
TIDE subtypes. GSEA showed SI had enriched signal-
ing pathways related to lipid and xenobiotic metabolism 
(Additional file 1: Figure S7A). In contrast, SII displayed 
enriched pathways related to complement activation, 
humoral immunity, scavenger receptor and B cell recep-
tor (Additional file 1: Figure S7B). SIII showed enriched 
pathways related to various cellular processes, including 
migration, activation, development, proliferation, inflam-
mation and immune regulation (Additional file 1: Figure 
S7C). These results were consistent with the observation 
from GSVA (Additional file 1: Figure S7D). IPA analysis 
of canonical signaling pathways were used to reveal the 
status of activation or inhibition. Our results showed 
that SI activated biosynthesis and xenobiotic metabo-
lism pathways, but suppressed cancer, stress, cytokine, 
immune and growth pathways (Additional file  1: Figure 
S7E). SIII displayed opposite pathway activity to SI (Addi-
tional file 1: Figure S7I). SII was a transitional state with 
mixed pathway signals (Additional file  1: Figure S7G). 
The graphical summary suggested that SI suppressed 
immune and inflammatory factors, while SIII activated 
them (Additional file 1: Figure S7F, J, K). Lastly, consist-
ent with GSVA and GSEA, SI activated lipid metabolism 
pathways, but SIII suppressed them (Additional file  1: 
Figure S7L).

TME patterns of three TIDE subtypes
TME is a highly researched topic, as it plays a crucial 
role in the initiation, advancement, and management 
of tumors, specifically in ICB treatment [45]. There-
fore, we attempted to characterize the TME patterns 
for TIDE subtypes. We observed a significant decrease 
in tumor purity and DNA fraction, and a significant 
increase in ESTIMATE, Stromal and Immune scores, 
and the proportion of High-immu subtype from SI 
to SIII (Fig.  6A, Additional file  1: Figures  S8A, B). 

Hypergeometric test indicated that SI was significantly 
associated with Low-immu subtype, but the SII and 
SIII subtypes were significantly associated with the 
High-immu subtype (Fig.  6B). Additionally, we exam-
ined the association of TIDE subtypes with immune 
phenotypes. It displayed that the desert phenotype was 
mainly in SI, the inflamed phenotype was primarily 
in SIII, and the excluded phenotype was mainly in SII 
(Additional file  1: Figure S8C). These results indicated 
that the proportion of immune and stromal cells was 
increased gradually from SI to SIII. Using the SCDC 
algorithm [46], we calculated the immunocyte abun-
dance in TCGA-BLCA patients. A gradual increase in 
myeloid cells, CD8Ts and CAFs, and a decrease in B 
cells, CD4Ts and endothelial cells was found from SI 
to SIII (Fig.  6C). To further validate our findings, the 
DECEPTICON and TIDE algorithms [20] were used to 
evaluate TCGA-BLCA and IMvigor210 [29]. The results 
were consistent with our findings (Additional file 1: Fig-
ure S8D–G). H&E staining of the real-world BC sam-
ples showed the gene expression patterns of the TIDE 
subtypes were histologically related to the abundance 
of stromal and tumor cells. SI represented abundant 
tumor cells, and SIII showed highly fibrotic stroma with 
abundant immunocytes (Fig.  6D). These pathological 
features were verified using diagnostic slides of TCGA-
BLCA (Additional file 1: Figure S8H). We further con-
firmed the expression levels of fibrosis marker gene 
FAP and immune marker gene CD45 (PTPRC) across 
TIDE subtypes. Both RNA-seq analysis and IHC stain-
ing, conducted on TCGA-BLCA and real-world sam-
ples, consistently revealed increase in FAP and CD45 
(PTPRC) expression levels from SI to SIII (Figs.  6E–
H). To assess the extent of inflammation in the blad-
der mucosa, we also analyzed inflammatory factors 
and cytokines in urine samples from BC patients by 
enzyme-linked immunosorbent assay (ELISA). The 
results demonstrated a rise in the concentrations of 
pro-inflammatory cytokines IL-6 and IL-8 from SI to 
SIII (Fig.  6I). Conversely, the concentrations of anti-
inflammatory cytokines IL-4 and IL-10 decreased from 
SI to SIII (Fig.  6J). Additionally, the concentrations of 

Fig. 6 Characterization of TME patterns in the TIDE subtypes. A Differences of tumor purity and ESTIMATEScore among the TIDE subtypes. B 
Hypergeometric tests revealed an association between TME patterns and TIDE subtypes. Gray lines represent no significance. C Boxplots showing 
comparisons of stromal cells abundance among the three TIDE subtypes of TCGA-BLCA. Cell proportions are assessed by the SCDC algorithm. D 
H&E histological images of the three subtypes from the real-world BC samples. Scale bar, 100 μm. E, F Transcription levels of representative fibrosis 
marker FAP and immune infiltration marker CD45 (PTPRC) in the TCGA-BLCA (E) and LY Dataset (F) among the TIDE subtypes. G IF images of FAP 
and CD45 (PTPRC) in three TIDE subtypes from the real-world BC samples. Scale bar, 100 μm. H Analysis of mean fluorescence intensity (AU) of FAP 
and CD45 (PTPRC) in the TIDE subtypes. I–K Comparisons of the concentration of pro-inflammatory (IL-6, IL-8) (I), anti-inflammatory (IL-4, IL-10) 
(J), and regulatory cytokines (IFN-α, IL-12p70) (K) in the collected urine samples from BC patient measured by ELISA among the TIDE subtypes. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significance

(See figure on next page.)
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regulatory cytokines IFN-γ, IL-12p70 decreased across 
all three subtypes (Fig. 6K), indicating a suppression of 
immune activation.

Subsequently, a single-cell RNA-seq (scRNA-seq) 
dataset published by Salomé et  al. [47] was further 
analyzed to describe the immune landscape of TIDE 

Fig. 6 (See legend on previous page.)
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Fig. 7 Characterization of TME patterns in the TIDE subtypes based on single-cell RNA-seq dataset. A Uniform Manifold Approximation 
and Projection (UMAP) plot was used to analyze the single-cell RNA-seq dataset. Each color represents one of the 13 cell types in Salomé’s dataset. 
B Heatmap showing the expression levels of TIDE marker genes in 13 cell types. C Proportions of 13 cell types in TIDE subtypes. D Terminally 
exhausted signals of two subtype cells assessed by weighted kernel density estimation. Red circle marks CD8Ts. E, F Differentiation trajectory 
of  CD8+ T cells (CD8Ts) in BC, with a color code for pseudotime (E) and TIDE subtypes (F). (G) Expression levels of terminally exhausted signature 
along the CD8Ts differentiation trajectory in BC
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subtypes. Single-cells were visualized via Uniform 
Manifold Approximation and Projection (UMAP), and 
were divided into 31 clusters (Additional file  1: Figure 
S9A). Each cluster was annotated as a specific cell-type 
(Fig.  7A, Additional file  1: Figure S9B). The expressions 
of TIDE marker-genes were examined in each cell-type 
and found that C1 genes were mainly expressed in tumor 
cells, and C2 genes were highly expressed in mono-
cytes, macrophages, fibroblasts, and endothelial cells 
(Fig.  7B). The results confirmed that SI enriched of C1 
genes brought higher tumor purity, while SIII enriched 
of C2 genes carried higher immune and stromal com-
ponents. To obtain the corresponding TIDE subtypes of 
these patients, pseudobulk data [48] was obtained from 
each patient based on scRNA-seq data and consensus 
clustering [40] was conducted. Patients were divided into 
two subtypes (Additional file 1: Figure S9D): low expres-
sion of C1 and C2 genes (Low), and high expression of 
C1 and C2 genes (High). By comparing the cell com-
position, we found that the proportions of monocytes, 
macrophages, fibroblasts, CD8Ts and endothelial cells 
were higher in the High subtype, whereas the propor-
tions of Tregs, B cells and plasma cells were at the lower 
abundance (Fig. 7C). This finding is consistent with our 
previous deconvolution results. Next, the terminally 
exhausted signals [49] were evaluated and indicated the 
High subtype of CD8Ts exhibited a higher level of termi-
nal exhaustion status (Fig. 7D). By trajectory analysis, the 
High subtype of CD8Ts differentiated into two branches 
was found as the tumor progressed (Fig. 7E, F). The late 
differentiating group of CD8Ts did not exhibit significant 
changes in exhaustion status, whereas the early group 
displayed severe exhaustion (Fig.  7E, G). This specific 
branch of CD8Ts may represent a critical population 
for poor prognosis and ICB resistance in High subtype 
patients. In contrast, the exhaustion status decreased as 
the tumor progressed in the Low subtype (Fig.  7E, G). 
Overall, the trend of C2 expression on the trajectory 
was consistent with the terminal exhaustion signature 
and further affirmed the reliable subtyping by C2 genes 
(Additional file 1: Figure S9E).

Precision treatment of BC following the TIDE subtypes
Differential expression of immune checkpoint molecules 
among the TIDE subtypes
Since tumor molecular subtyping is pivotal to provide 
a basis for precise diagnosis and personalized treat-
ment, we further evaluated the potential of TIDE sub-
types in guiding precision treatment and drug selection. 
We found that most immune checkpoint molecules 
and ligands (such as PD-1, PD-L1, CTLA-4, etc.) were 
increased from SI to SIII (Fig. 8A, Additional file 1: Fig-
ure S10A). In the TIME, CD8Ts are often suppressed 

and exhausted by immune checkpoint molecules. Mean-
while, exhausted CD8Ts typically express high levels of 
immune checkpoint molecules [50]. In our study, SIII 
patients were possibly under this exhausted status, and 
the observed TIME patterns along with the differential 
expressions of immune checkpoint molecules could be 
critical for therapeutic efficacy.

Distinct sensitivity to ICB among the TIDE subtypes
We initially examined the profile of the predictive ICB 
biomarkers in TIDE subtypes. The results showed that 
the proportions of IC1 and IC2+, as well as TC1 and 
TC2+, were significantly higher in SIII (Additional file 1: 
Figure S10B). IC and TC can indicate the PD-L1 levels of 
immunocytes and tumor cells in the TME patterns. The 
interferon gamma (IFNG) score was gradually increased 
from SI to SIII (Additional file 1: Figure S10C, D). Con-
versely, the proportion of high MSI patients, neoantigen 
load and immune phenotype score (IPS) were signifi-
cantly lower in SIII (Additional file  1: Figure S10C, D). 
Notably, ICB response tends to increase along with the 
higher level of the abovementioned biomarkers [19, 21, 
32, 51]. Therefore, we can find that the prediction of the 
known ICB biomarkers contains conflicts in evaluating 
the ICB efficacy of TIDE subtypes.

We further analyzed the ICB response rates of TIDE 
subtypes in the ICB.UC cohort. The results indicated 
that SII and SIII were significantly associated with 
non-responders (NR), SI was closely associated with 
responders (R), and the proportion of responders were 
gradually decreased from SI to SIII (Fig. 8B). The analy-
sis of the IMvigor210 dataset produced the consistent 
results (Additional file 1: Figure S10E). We also analyzed 
known biomarkers in predicting ICB responses using the 
IMvigor210 dataset (Additional file 1: Figure S10F). There 
were no significant differences in ICB response rates 
between subgroups of TIDE score, MSI, immune pheno-
type, IPS, and TCGA subtype except for the TMB sub-
groups. Nanogram showed the SIII contributed the most 
to ICB non-response (Additional file  1: Figure S10G). 
Univariate logistic regression analysis indicated that SI 
was a protective factor, but SIII was a risk factor for ICB 
response (Additional file 1: Figure S10H). The multivari-
ate logistic regression analysis showed that SIII was the 
most significant independent predictor of non-response 
(Fig. 8C, log odds = 1.36, p = 0.036). We also analyzed the 
predictive value of TIDE subtypes in combination with 
other biomarkers for ICB outcomes. Receiver operating 
characteristic (ROC) curves showed that the combined 
approach of TIDE subtypes and other biomarkers had 
significantly improved predictive values compared to a 
single biomarker (Additional file  1: Figure S10I). These 
findings suggest that TIDE subtype can compensate, 
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Fig. 8 TIDE subtypes were closely related to ICB responses. A Comparisons of expression levels of immune checkpoint molecules among the TIDE 
subtypes of TCGA-BLCA. B Hypergeometric test revealed an association between TIDE subtypes of ICB.UC cohort and ICB responses (left), gray 
lines represent no significance; Stacked histogram showing the differences of ICB responses among the TIDE subtypes of ICB.UC cohort (right). R, 
response; NR, non-response. C Impacts of the TIDE subtypes and other predictive biomarkers on ICB efficacy, which were achieved by multivariate 
logistic regression analysis. D Transcription levels of the representative immune checkpoints including PD-1 (PDCD1), PD-L1 (CD274) and CTLA-4 
from LY Dataset among the TIDE subtypes. E IF images of PD-1 (PDCD1), PD-L1 (CD274) and CTLA-4 using the collected real-world BC samples 
among the TIDE subtypes. Scale bar, 100 μm. F Analysis of the mean fluorescence intensity (AU) of PD-1 (PDCD1), PD-L1 (CD274) and CTLA-4 
among the TIDE subtypes. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significance
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to some extent, for the limitations of using a single bio-
marker in predicting ICB response.

Finally, to validate the above findings, we performed 
RNA-seq analysis and multiplex immunofluorescence of 
representative immune checkpoints using the real-world 
BC samples. The results consistently showed that the 
expression levels of PD-1 (PDCD1), PD-L1 (CD274) and 
CTLA-4 were lowest in SI, highest in SIII, and intermedi-
ate in SII (Figs. 8D–F), the trend is consistent with public 
databases (Fig. 8A, Additional file 1: Figure S10A).

TIDE subtypes retain sensitivity to specific drugs
Submap analysis [52] was used to assess the sensitivity of 
TIDE subtypes to targeted drugs. As shown in Fig.  9A, 
the SIII subtype tended to be benefited from anti-vas-
cular endothelial growth factor antibodies (anti-VEGF), 
heat shock protein inhibitors (HPSIs), and poly ADP 
ribose polymerase inhibitors (PARPIs). This is consistent 
with the results of a large-scale phase II randomized con-
trolled study, which showed that anti-VEGF combined 
with ICB treatment significantly improved the OS of 
patients with ICB-resistant advanced NSCLC [53]. Sub-
sequently, we evaluated the sensitivity of TIDE subtypes 
to the first-line treatments and recommended drugs. Our 
findings indicated that certain subtypes showed differen-
tial sensitivities to particular drugs. For example, among 
antimetabolites, SI showed higher sensitivity to metho-
trexate and gemcitabine (Fig. 9B, C), while SIII was more 
sensitive to pemetrexed (Fig. 9D). Among plant alkaloids, 
SI was more responsive to vincristine (Fig. 9E), and SIII 
showed higher sensitivity to paclitaxel (Fig.  9F). Addi-
tionally, SI demonstrated higher sensitivity to anti-tumor 
antibiotics, such as doxorubicin (Fig. 9G) and epirubicin 
(Additional file 1: Figure S11A), while SIII was more sen-
sitive to bleomycin (Fig.  9H). Furthermore, our analysis 
revealed that SIII exhibited higher sensitivity to plati-
num drugs, including cisplatin (Fig.  9I) and oxaliplatin 
(Additional file  1: Figure S11B), alkylating agents such 
as ifosfamide, mitoxantrone and fludarabine (Additional 
file 1: Figures S11C–E). Consistent with our results, the 
pemetrexed plus cisplatin can promote immunogenic cell 
death in models resistant to anti-PD-L1 immunother-
apy [54]. In terms of the second-line or recommended 
drugs, our analysis showed that SI was less responsive 

to fibroblast growth factor receptor (FGFR) inhibi-
tors, such as erlotinib and AZD4547 (Fig. 9J, K). On the 
other hand, SIII exhibited higher sensitivity to epidermal 
growth factor receptor inhibitors (EGFRIs), like gefitinib 
(Fig.  9L), PARPIs (e.g., olaparib, rucaparib, talazoparib 
and niraparib) (Fig.  9M, Figure S11F–H), as well as to 
imatinib (Fig.  9N), and the anti-EGFR antibody cetuxi-
mab (Fig. 9O). Similarly, studies have demonstrated that 
PARPIs [55, 56] and cetuximab [57] can further improve 
the prognosis of immunotherapy refractory or ineligi-
ble patients. Finally, we assessed the expression levels 
of HER-2 in TIDE subtypes to offer insights into HER-
2-targeted therapy. The results of RNA-seq analysis and 
IHC consistently demonstrated that HER-2 expression 
was the highest in the SI subtype and the lowest in SIII 
(Fig. 9P–R). These findings suggest that patients with the 
SI subtype may have greater potential to benefit from 
HER-2-targeted therapy.

Validation of the TIDE‑based subtyping strategy 
in pan‑tumors
Pan-cancer research enables the application of diagno-
sis and treatment to a broader range of tumor types by 
identifying commonalities among them [58, 59]. To 
determine whether our TIDE subtypes were conserved 
in pan-cancer, we analyzed five pan-cancer datasets. We 
initially classified the TCGA pan-cancer samples into 
three subtypes using 69 TIDE marker genes (Additional 
file  1: Figure S12A-left). We observed that 11 C1 genes 
were similarly expressed in pan-cancer samples, and 
the pan-cancer samples cannot be clustered using these 
genes (Additional file  1: Figure S12A-right). Therefore, 
we excluded these 11 genes and used the remaining 58 
C2 genes to classify the pan-cancer samples. The results 
showed that the five pan-cancer datasets were consist-
ently classified into three subtypes: SI (low expression), 
SII (medium expression), and SIII (high expression) 
(Fig.  10A, Additional file  1: Figure S12C–F). Moreover, 
there were significant differences in prognosis among 
the subtypes (Fig.  10A, Additional file  1: Figure S12B–
D), indicating that TIDE subtypes are ubiquitous in 
pan-tumors.

ICB exerts a remarkable therapeutic effect for many 
tumors. So, we explored the sensitivity of TIDE subtypes 

(See figure on next page.)
Fig. 9 Comparisons of drug sensitivities among the TIDE subtypes of BC. A Submap analysis reflects the sensitivity of the TIDE subtypes 
to the targeted treatments in the BC patients. B–O Comparisons of the clinically preferred and recommended drugs sensitivity among BC TIDE 
subtypes: methotrexate (B), gemcitabine (C), pemetrexed (D), vincristine (E), paclitaxel (F), doxorubicin (G), bleomycin (H), cisplatin (I), erlotinib 
(J), AZD4547 (K), gefitinib (L), olaparib (M), imatinib (N), and cetuximab (O). P, Q Transcription levels of HER-2 (ERBB2) among the TIDE subtypes 
from TCGA-BLCA (P) and LY Dataset (Q). R IHC images of HER-2 from the real-world BC samples and analysis of HER-2 positive cells among the TIDE 
subtypes. Scale bar, 100 μm. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significance
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Fig. 9 (See legend on previous page.)
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Fig. 10 Conservations of the three TIDE subtypes in pan-tumors. A Unsupervised hierarchical clustering using the 58 C2 genes to classify 
pan-tumor samples into three subtypes from TCGA patients (left). K–M analysis shows distinct OS of the TIDE subtypes (right). B The same analysis 
as A. Unsupervised hierarchical clustering of Pan-cancer samples treated with ICB is shown on the left, and K-M analysis showing distinct OS 
of the TIDE subtypes is on the right. C Hypergeometric test collaborates an association of pan-tumor TIDE subtypes with ICB therapy responses. 
Gray lines represent no significance. D Submap analysis reflects the sensitivity of the pan-tumor TIDE subtypes to the targeted treatments
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to ICB treatment in pan-tumors. We obtained RNA-seq 
data from 2641 pan-cancer patients who had received 
ICB treatment across 12 tumor types, derived from 36 
independent datasets [29, 42, 51, 60–89]. Based on the 
expression levels of C2 genes, we assigned these samples 
into three subtypes with significantly different prognoses 
(Fig. 10B, Additional file 1: Figure S12G). In terms of pub-
lication bias, we conducted the Peter’s test for the Pan-
cancer datasets [43]. The result indicated a certain extent 
of publication bias probably existed (p = 0.0011), and the 
funnel plot exhibited asymmetry (Additional file  1: Fig-
ure S13C). According to the trim-and-fill analysis, seven 
putative missing studies were identified on the left side 
of the distribution (Additional file  1: Figure S13D). The 
adjusted result of the Peters test revealed no publication 
bias (p = 0.6037). This demonstrated that publication bias 
did not substantially affect the overall estimate, and the 
TIDE-based subtyping strategy applied in the Pan-can-
cer dataset was relatively robust. Furthermore, hyper-
geometric test showed that ICB responders were closely 
related to SI and non-responders were associated with 
SII and SIII (Fig. 10C). Stacked bar displayed a significant 
decrease in the response rates from SI to SIII (Additional 
file 1: Figure S12H). Submap analysis indicated that SIII 
was mainly correlated with anti-PD-L1 resistance, while 
SII was associated with IL-2 treatment response (Addi-
tional file 1: Figure S12I). Regarding other targeted drugs, 
SII and SIII were responsive to anti-VEGF, mTORIs, 
PARPIs, VEGFRIs treatments, but were resistant to anti-
HER-2 and TKIs (Fig. 10D).

Discussion
Tumor immune dysfunction and exclusion are regarded 
as two main mechanisms of tumor immune escape. The 
former refers to T cell dysfunction in tumors with high 
cytotoxic T lymphocyte (CTL) abundance [20, 90]. The 
persistent antigen stimulation or immunosuppressive sig-
nals can trigger functional decline or exhaustion in CTLs, 
with lower cytokine production and co-stimulatory 
molecule expression, and higher expression of immune 
checkpoint receptors and immunosuppressive enzymes 
[91]. Tumor immune exclusion refers to preventing T cell 
infiltration in tumors with low CTL abundance, known 
as “cold tumors” [90, 92]. Tumor cells utilize different 
mechanisms to obstruct T cell infiltration. The secre-
tion of immunosuppressive factors, like TGF-β, IL-10, 
and IL-35, will hinder T cell activation and proliferation 
[93]. The expression of immune checkpoint molecules 
from cancer cells, that interact with the correspond-
ing receptors and deliver negative signals, impede T cell 
activity or induce tolerance [50]. The alteration of the 
physical and metabolic TME characteristics also hamper 
T cell migration and function, such as interstitial fibrosis, 

lactate production and hypoxia [29, 94]. The recruitment 
of other immunosuppressive cells that compete with 
T cells, such as Tregs, myeloid-derived suppressor cells 
(MDSCs), and tumor-associated macrophages, will ulti-
mately suppress their anti-tumor response [25, 30, 94].

The development of bioinformatics techniques has 
propelled unprecedented advances in precision medi-
cine, such as genomic and transcriptomic analyses, and 
multi-omics integration analysis [95–97]. Elucidation 
of the specific treatment response changes in the TME 
patterns and immune cell functional status can pro-
vide insights into mechanisms underlying resistance of 
immune therapy and identify new therapeutic strate-
gies. In our study, transcriptome data was used to evalu-
ate the status of TIDE patterns, and a novel TIDE-based 
subtyping method was developed for accurately predict-
ing immunotherapy in the BC patients. We found SIII 
subtype owning the highest immune infiltration. The 
cytokine, inflammatory response, and immune regula-
tion pathways were highly enriched and activated. The 
TME analysis indicated that SIII represented the low-
est tumor purity, but the highest amount of fibrosis and 
immunosuppressive cells (macrophages and MDSCs), 
that would impair ICB efficacy. Moreover, the SIII sub-
type exhibited elevated CTLs infiltrations, immune 
checkpoints and ligands, and exhausted CD8Ts, indicat-
ing functional defects and exclusion of CTLs in the TME. 
This immune dysfunction and exclusion would affect 
immunotherapy and chemotherapy [20, 29]. Additionally, 
SIII represented reduced B cells and plasma cells, which 
would also undermine ICB efficacy [27, 77, 98]. Overall, 
the heterogeneity of TME reflects the resistance of SIII to 
ICB treatment in the BC patients.

Tumor molecular subtyping is pivotal for cancer diag-
nosis and treatment, which helps to reflect the TME pat-
terns, select ICB candidates, predict immune-related 
adverse events, and guide ICB combination strategies 
[22, 99, 100]. The existing molecular subtyping meth-
ods for BC mainly include UNC subtype, MDA sub-
type, TCGA subtype, Lund subtype, Bold subtype, NAC 
subtype, NanoString subtype, etc. [22, 100]. However, 
there is no significant predictive value to identify the 
response to immune checkpoint inhibitors when using 
these BC subtypes [22, 23]. Our novel TIDE-based sub-
typing strategy, in addition to being closely associated 
with clinicopathological and molecular features in BC 
patients, has potential application of predicting the 
response of immunotherapy. Furthermore, we compared 
the proposed TIDE-based method with previously pub-
lished predictive immunotherapy biomarkers (includ-
ing MSI, TMB, neoantigen load, PD-1, PD-L1, CTLA-4, 
and TIDE score) and existing BC classification methods 
(including IPS, Immune Phenotype, IC, TC, Lund2, and 
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TCGA Subtype). The result indicates that immunother-
apy efficacy was significantly correlated with SI and SIII 
of TIDE-based subtypes, TMB, neoantigen load, IC2 
subtype of IC, Genomically unstable subtype and UroB 
subtype of Lund2 (Additional file 1: Figure S10H). Nev-
ertheless, only the SIII subtype remains closely associated 
with immunotherapy efficacy when further controlling 
for confounding factors and simultaneously considering 
the impact of the aforementioned factors on immuno-
therapy (Fig.  8C). It suggests that our TIDE-based sub-
type can potentially serve as an independent predictive 
indicator for BC immunotherapy, unlike the existing bio-
markers and classification methods. On the other hand, 
we also found that it possibly exists discrepancies in 
assessing immunotherapy between the TIDE-based sub-
typing and the published molecular subtyping methods. 
For example, SIII represented the highest inflamed phe-
notype, which normally indicates more responsive to ICB 
therapy due to high PD-L1 level and abundant tumor-
infiltrating lymphocytes [101]. Moreover, it is believed 
that increased IC1 and IC2+ or TC1 and TC2+ indicate 
higher objective immunological remission rates [21]. 
SIII exhibited the highest proportion of IC and TC levels 
among the subtypes, but in fact, SIII failed to respond to 
ICB. Therefore, these results indicate the accurate pre-
diction performance of TIDE-based subtyping method 
in identifying non-responders compared with certain 
immunotherapy biomarkers. It might suggest an option 
to combine TIDE subtypes with biomarkers for guiding 
ICB treatment. We can select patients with inflamed phe-
notype tumors and further exclude SIII subtype patients 
for ICB therapy candidates. Based on the IMvigor210 
cohort, ROC showed that the immune phenotype alone 
had lower predictive performance (AUC = 0.55), but 
it was notably improved with the combination of TIDE 
subtyping (AUC = 0.65). However, large-scale clinical tri-
als are still needed for future validation.

The TIDE algorithm developed by Liu et al. integrates 
signatures of T cell dysfunction and T cell exclusion. It 
exhibited excellent predictive performance for ICB effi-
cacy in melanoma and NSCLC with an AUC up to 80% 
[20]. However, there is still a lack of evidence to support 
this method to predict ICB response in BC. Our study 
showed that the original TIDE algorithm had limited pre-
dictive performance for ICB response, and no differences 
of the ICB response could be detected by the TIDE algo-
rithm (Additional file 1: Figure S10F). Logistic regression 
analysis showed that TIDE score was not a significant 
risk factor for immunotherapy (Additional file  1: Figure 
S10H). ROC curve also indicated that the TIDE scores 
had no predictive power for ICB efficacy (AUC = 0.57, 
p > 0.05, Additional file  1: Figure S10I). In addition, the 
specific calculation method and the genes used by the 

TIDE algorithm are unknown for users, which further 
limits the application of the TIDE algorithm in bladder 
cancer. For example, the “blind box” nature of the TIDE 
algorithm makes it impossible for users to understand 
the intrinsic mechanism and biological significance of 
the TIDE score, and prevents them from verifying and 
improving the effectiveness and accuracy of the TIDE 
algorithm. In our study, we identified three TIDE-based 
subtypes closely associated with ICB efficacy (Fig.  8B, 
Additional file  1: Figure S10E), which optimized the 
applicability of the TIDE algorithm in BC. TIDE-based 
subtype can be used as an independent predictor of BC 
immunotherapy efficacy (Fig.  8C). Although the TIDE-
based subtypes were initially devised for immunother-
apy, our comprehensive analysis has unveiled that this 
molecular classification can also inform the selection of 
first-line drugs and recommended chemotherapy for BC. 
The variances in drug sensitivity among the three TIDE 
subtypes were meticulously assessed utilizing hypergeo-
metric and chi-square tests on immunotherapy RNA-seq 
data, ridge regression analysis derived from GDSC and 
CTRP databases, and Submap analysis. These authorita-
tive algorithms serve as pivotal tools for drug evaluation 
and selection. Nevertheless, further investigation is war-
ranted to elucidate the concordance between drug sensi-
tivity predictions and real-world clinical responses.

In this study, we characterized the TIDE status of BC 
and developed a TIDE-based subtyping method. Briefly, 
SI represents the lowest TIDE status, the best progno-
sis, and it is sensitive to ICB treatment. SIII shows the 
highest TIDE level, the poorest prognosis, accompanied 
by suppressive TIME and terminally exhausted T cells, 
which is sensitive to EGFRIs and PARPIs but resistant 
to ICB treatment. SII falls into a transitional status with 
intermediate TIDE level and prognosis. We also vali-
dated the conserved characteristics of TIDE subtypes 
in pan-cancers using five pan-tumor cohorts, one ICB 
pre-treatment cohort and their responses to immuno-
therapy. These results suggest that our novel TIDE-based 
subtyping strategy can be also used for pan-cancers, and 
potentially bring more benefits for a wider range of can-
cer patients. In addition, clinicians or biologists can fur-
ther improve our subtyping method to better suit their 
own clinical needs. However, this study still has limita-
tions. Firstly, we only provided descriptive conclusions 
regarding the molecular characteristics of TIDE sub-
types, and further research is needed to investigate the 
underlying mechanisms and effects of these characteris-
tics. Secondly, drug sensitivity assessment lacks in  vivo 
and in vitro validation. Future research needs to explore 
the biological mechanisms underlying the coherence 
between TIDE-based drug sensitivity predictions and 
patient responses. Lastly, prospective clinical trials will 
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further validate our approach by correlating predicted 
responses to immunotherapy and chemotherapy with 
real-world observed clinical outcomes.

In conclusion, tumor molecular subtyping represents 
one future research direction for the personalized cancer 
therapy, with important implications in guiding clinical 
treatment and developing new anti-cancer drugs. Our 
analysis of whole transcriptome data in the BC patients 
identified three TIDE-based subtypes showing significant 
differences in clinicopathological and molecular features, 
as well as functional pathways and treatment responses. 
This subtyping method can also be applied to pan-cancer. 
We believe that our novel TIDE-based subtyping strategy 
has enormous potential for clinical application, as it can 
assist in making personalized treatment decisions for BC 
and pan-cancer patients, selecting potential beneficiaries, 
and excluding resistant patients of ICB therapy.

Methods
Five bulk RNA-seq datasets and one scRNA-seq data-
set of BC, five bulk-RNA-seq cohorts of pan-tumors, 
one bulk RNA-seq cohort of pan-tumors treated with 
ICB, and somatic mutation and CNA data from TCGA-
BLCA were collected in this study. Details and sources 
for all datasets are listed in Additional file 1: Table S1. 51 
real-world BC samples and urine samples were collected 
from the Department of Urology, Shanghai Sixth People’s 
Hospital. Detailed clinical information of these patients 
is available from Additional file  1: Table  S2. The overall 
design of this study is as follows: evaluation of TIDE sta-
tus and its relationship with BC clinicopathological and 
molecular features; TIDE subtyping; characterization of 
clinicopathological and molecular features of TIDE sub-
types; and analysis of the pan-tumor landscape of the 
TIDE subtypes. The analysis methods used include RNA 
sequencing, differential expression (DE) analysis, clus-
tering analysis, TIDE analysis, Protein–protein interac-
tion network analysis (PPI), pathway analysis, somatic 
mutation and CNV analysis, survival analysis, IHC, 
immunofluorescence staining and ELISA, etc. Detailed 
descriptions of the methods and computational analyses 
are provided in Additional files 1, 2.
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