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Abstract 

Background Numerous studies highlight the genetic underpinnings of mental disorders comorbidity, particularly 
in anxiety, depression, and schizophrenia. However, their shared genetic loci are not well understood. Our study 
employs Mendelian randomization (MR) and colocalization analyses, alongside multi-omics data, to uncover potential 
genetic targets for these conditions, thereby informing therapeutic and drug development strategies.

Methods We utilized the Consortium for Linkage Disequilibrium Score Regression (LDSC) and Mendelian 
Randomization (MR) analysis to investigate genetic correlations among anxiety, depression, and schizophrenia. 
Utilizing GTEx V8 eQTL and deCODE Genetics pQTL data, we performed a three-step summary-data-based Mendelian 
randomization (SMR) and protein–protein interaction analysis. This helped assess causal and comorbid loci for these 
disorders and determine if identified loci share coincidental variations with psychiatric diseases. Additionally, 
phenome-wide association studies, drug prediction, and molecular docking validated potential drug targets.

Results We found genetic correlations between anxiety, depression, and schizophrenia, and under a meta-analysis 
of MR from multiple databases, the causal relationships among these disorders are supported. Based on this, three-
step SMR and colocalization analyses identified ITIH3 and CCS as being related to the risk of developing depression, 
while CTSS and DNPH1 are related to the onset of schizophrenia. BTN3A1, PSMB4, and TIMP4 were identified 
as comorbidity loci for both disorders. Molecules that could not be determined through colocalization analysis were 
also presented. Drug prediction and molecular docking showed that some drugs and proteins have good binding 
affinity and available structural data.

Conclusions Our study indicates genetic correlations and shared risk loci between anxiety, depression, 
and schizophrenia. These findings offer insights into the underlying mechanisms of their comorbidities and aid 
in drug development.
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Background
Mental health issues have profound implications for 
individuals, families, and society, representing a crucial 
global public health concern [1]. The ongoing COVID-19 
pandemic has heightened these concerns, with emerging 
evidence indicating an increased risk of schizophrenia in 
severely affected individuals [2]. Post-pandemic, rates of 
depression and anxiety have surged globally by over 25% 
[3].

In addition to the direct association with COVID-
19, abundant evidence highlights the robust genetic 
influence on mental disorders, showcasing significant 
comorbidity and placing these conditions on an age-
dependent continuum. The widely accepted p-factor 
theory proposes a singular dimensional trait that 
measures individual susceptibility to mental disorders, 
comorbidity, disease duration, and symptom severity 
[4]. Supported by evidence across symptomatology, 
pathology, and genetics, this theory forms a crucial 
foundation for our study.

The complex comorbidity of diverse mental disorders 
not only complicates treatment but also substantially 
affects patients’ quality of life and daily functioning [5]. 
Although ample evidence points to a robust genetic 
basis for the high comorbidity of mental disorders, the 
complex etiology often makes it challenging to attribute 
the occurrence of mental disorders to a single genomic 
location [6]. This gap in understanding presents a 
significant challenge in effectively guiding the treatment 
of mental disorders and drug development. However, 
Genome-Wide Association Studies (GWAS) have 
successfully linked hundreds of specific genetic loci 
to mental disorders, offering the potential to alter this 
situation [7].

Mendelian Randomization (MR) offers an 
experimentally designed approach, utilizing the natural 
distribution of genetic variations revealed by GWAS 
to tackle causal inference challenges in observational 
studies on mental disorders [8]. Additionally, LD Score 
regression (LDSC), a statistical method utilizing GWAS 
data, enables the evaluation of genetic correlation 
among different loci, providing an estimate of the 
genetic relatedness among phenotypes [9]. In this study, 
we conduct a comprehensive analysis of the genetic 
correlation and causal associations among anxiety, 
depression, and schizophrenia using data from multiple 
GWAS sources, employing MR and LDSC.

While GWAS excels in identifying SNP variations 
associated with mental disorder risks, it falls short in 
pinpointing the exact causative genes, posing challenges 
to direct drug development [10, 11]. The Summary-
data-based Mendelian Randomization (SMR) method 
aims to investigate pleiotropic associations between 

gene expression levels and specific complex traits, 
using summarized data from GWAS and expression 
quantitative trait loci (eQTL) studies [12]. In this study, 
extending the exploration of genetic correlation among 
three mental disorders, we employ the SMR technique to 
reveal core genes and proteins that may play functional 
roles in anxiety, depression, and schizophrenia. This 
promises a more precise understanding of the diseases’ 
pathogenesis and enables an analysis of shared risk loci.

Subsequently, through a colocalization analysis of 
GWAS and QTL based on SMR findings, we confirm 
potential therapeutic targets and common driving 
factors between therapeutic targets and the risk of 
mental disorders. This analysis aids in determining 
the causal relationship between therapeutic targets 
and diseases while eliminating potential confounding 
factors [13]. Building upon this foundation, phenome-
wide association studies (PheWAS) analysis explores 
associations between potential therapeutic targets 
and other features, offering insights into their 
multifunctionality and potential impact mechanisms for 
further research and development of related therapeutic 
strategies [14]. Finally, by consolidating results from 
multiple drug target databases, molecular docking studies 
are conducted to discover and validate the credibility of 
therapeutic targets at the atomic level through computer 
simulation techniques [15]. The study design is presented 
in Fig. 1.

In conclusion, our research endeavors to unravel the 
pathogenesis of anxiety, depression, and schizophrenia 
individually, exploring their genetic correlation, causal 
relationships, and shared risk loci with potential 
functional roles. By integrating results from MR, LDSC, 
SMR, co-localization analysis, and PheWAS, we aim to 
provide valuable insights for the development of more 
effective and targeted treatment methods, thereby 
addressing a critical gap in current mental health 
research.

Methods
Datasets
GWAS summary statistics
We obtained GWAS data for anxiety, depression, 
and schizophrenia from three databases: Finngen R9, 
UK Biobank (UKBB), and the Psychiatric Genomics 
Consortium (PGC). These databases collectively 
provide comprehensive genetic insights into psychiatric 
disorders. The Finngen database, with a focus on the 
Finnish population, contains genetic data from hundreds 
of thousands of individuals and covers various clinical 
indicators related to psychiatric disorders [16]. UKBB, 
a large-scale biobank project in the United Kingdom, 
encompasses genetic, clinical, and lifestyle data from 
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approximately 500,000 participants, offering a vast 
dataset of genetic markers associated with psychiatric 
conditions [17]. The PGC database is an international 
collaborative initiative that consolidates genetic data 
from diverse regions, facilitating large-scale cross-
population studies on psychiatric disorders [18–21]. 
Detailed database links and references can be found in 
Additional file 2: Table S1.

eQTL summary statistics
Expression Quantitative Trait Loci (eQTL) are genetic 
variations or single nucleotide polymorphism (SNP) 
loci that influence gene expression levels. These loci 
exhibit associations with specific genes’ expression 
levels in an individual’s genome [22]. Studying eQTL 
provides insights into genetic factors that regulate gene 
expression, shedding light on gene functionality and its 

links to phenotypes. The Genotype-Tissue Expression 
(GTEx) project is a vital resource that collects tissue 
samples from diverse healthy individuals, encompassing 
organs like the heart, liver, kidney, lungs, brain, and more 
[23]. With contributions from thousands of donors, 
GTEx offers extensive eQTL data, revealing connections 
between genotypes and gene expression levels. In our 
analysis, we focused on GTEx V8 whole blood cis-eQTL 
summary statistics (p < 1 ×  10–5) for SMR analysis.

pQTL summary statistics
Protein Quantitative Trait Loci (pQTL) are genetic 
variations or loci linked to changes in protein levels 
[24]. Like eQTL, pQTL represents genomic positions 
associated with specific protein expression levels. These 
loci can co-localize with disease variants, helping identify 
pathogenic proteins, disease pathways, and potential 

Fig. 1 Study design. SNP, single nucleotide polymorphism; SMR, summary-data-based mendelian randomization; PPI, Protein–Protein Interaction
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drug targets. The deCODE Genetics team conducted a 
large-scale Genome-Wide Association Study (GWAS) 
using plasma proteomics technology. This study involved 
35559 individuals from Iceland, analyzing 4907 proteins 
and identifying 18084 pQTLs. These pQTLs establish 
connections between plasma protein levels and 373 
diseases and other traits based on genetic variations [25]. 
For our dataset, we initially filtered using a threshold 
of 1 ×  10–5. Subsequently, we conducted local plink 
clumping with default conditions  (R2 = 0.001, kb = 10000) 
using the 1000 Genomes European Phase V3 file as the 
reference. We then prepared the necessary files in the 
required format for SMR analysis according to SMR 
analysis guidelines.Included studies had been approved 
by corresponding ethical review committees.

Mendelian randomization
Selection of genetic instruments
To explore potential causal relationships among the three 
psychiatric disorders, we conducted MR analysis using 
the R package "TwoSampleMR." Following the principles 
of the Instrument-Relevance Assumption, Instrument-
Independence Assumption, and Exclusion Restriction 
Assumption, we employed strict criteria (P < 5 ×  10–8) 
to select SNPs related to the exposure factor. For SNPs 
sourced from the anxiety phenotype GWAS data in the 
PGC database, we adjusted the screening threshold to 
P < 5 ×  10–6 to ensure an adequate number of SNPs for 
analysis.

Cluster analysis utilized a window size of 10,000  kb 
and a threshold of  R2 < 0.001. To minimize potential 
biases, we harmonized exposure and outcome variables, 
ensuring consistent matching of effect alleles within the 
same allele gene [26]. For each instrumental variable 
(IV), we systematically searched the PhenoScanner 
GWAS database, excluding any SNPs associated with 
confounding factors to mitigate potential bias [27].

Statistical analysis
The primary method employed in the MR analysis is 
the Inverse Variance Weighted (IVW) method, which 
effectively addresses heterogeneity among genetic 
instruments, enhancing the accuracy of estimates [28]. In 
addition to the IVW method, we employed various other 
MR models, including Weighted Median, MR-Egger, 
Simple Model, and Weighted Mode, to validate causal 
relationships [29]. To assess heterogeneity in gene 
exposure-outcome associations, Cochran’s Q test was 
utilized, comparing the variability in the estimation of 
genetic variant effects [30]. To account for potential 
outliers and pleiotropy, we applied the MR-Presso 
method for outlier correction [31]. For the assessment 
of horizontal pleiotropy, the MR-Egger intercept test 

was employed, using regression to evaluate the impact 
of genetic variation on exposure effect-associated 
outcomes, with p < 0.05 indicating the presence of 
horizontal pleiotropy [32].

For each SNP, a leave-one-out analysis was conducted, 
and a forest plot was generated to assess their individual 
contributions. Finally, the MR analysis results from 
multiple sources of GWAS data were subjected to meta-
analysis to provide robust evidence for causal inference.

LDSC analysis
Genetic correlation refers to the correlation generated by 
genotypes among phenotypes in a population. In GWAS 
analyses, the estimated effect size for a SNP often includes 
the effects of other SNPs in linkage disequilibrium (LD) 
with that SNP, meaning that SNPs with higher LD tend 
to have higher chi-square test statistics. This fact remains 
true when we replace the chi-square test statistic with 
the product of Z-scores from GWAS of two correlated 
 phenotypes9. Based on this principle, LDSC can be 
utilized to estimate the heritability of a trait and the 
genetic correlation across traits from GWAS summary 
statistics [33].

In our study, the “ldscr” R package was employed for 
LD score regression. The 1000 Genomes Phase 3 data 
of European ancestry served as the reference panel for 
calculating LD scores, and only SNPs in HapMap 3 with 
a minor allele frequency (MAF) > 0.05 were included 
as input [34]. In the results, rg represents the genetic 
correlation between two traits, ranging from -1 to 1; 
values closer to 1 or -1 indicate stronger correlation.  rg_P 
denotes the statistical significance, with values below 
0.05 considered statistically significant.

Three‑step SMR analysis
Based on the 1000 Genomes European reference, and 
utilizing SMR analysis, we conducted a three-step 
analysis to determine causal inferences between genetic 
loci and three mental disorders: (1) SMR analysis of 
GWAS data for three mental disorders and eQTL data 
from GTEx V8; (2) SMR analysis of GWAS data for 
three mental disorders and pQTL data from deCODE 
Genetics; (3) SMR analysis of eQTL data from GTEx V8 
and pQTL data from deCODE Genetics, with a focus on 
important signals identified in steps 1 and 2.

As a default, SNPs in strong linkage disequilibrium 
(LD) with an  R2 > 0.9 were removed, along with those 
associated with top eQTLs if the minor allele frequency 
(MAF) was > 0.01. Significant SMR probes were 
selected based on false discovery rate (FDR)-corrected 
thresholds for SMR P values < 0.05, and HEIDI test P 
value thresholds > 0.05 were applied to indicate the lack 
of heterogeneity [12].
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The SMR analysis was performed on GWAS data 
from all three database sources (Finngen, UKBB, PGC), 
as described above. The selected genes and protein loci 
must meet the filtering criteria in at least one database 
and maintain consistent directionality across all 
databases. In other words, the impact trend of these loci 
on the diseases should be consistent across all databases.

Analysis and screening of loci
The selected loci identified through SMR analysis were 
subjected to three analysis methods: (1) Protein–Protein 
Interaction (PPI) Analysis: Identifying key loci through 
the analysis of protein–protein interactions; (2) Cross-
Analysis of Causal Loci for anxiety, depression, and 
schizophrenia: exploring comorbid loci by analyzing loci 
implicated in the causation of anxiety, depression, and 
schizophrenia; (3)Selection of Implicated Loci in all three 
mental disorders: Selecting signals that meet the criteria 
of FDR < 0.05 and HEIDI_P > 0.05 in all three steps of 
SMR analysis. These are indicative loci that exert an 
influence on all three disorders at both the genetic and 
protein levels.

PPI analysis
Having conducted PPI analysis on the loci identified 
through SMR analysis for each of the three disorders, 
the underlying principle of PPI involves physical or 
chemical interactions between different proteins, leading 
to structural changes that can impact their functionality 
[35]. The online STRING database (string-db.org) was 
employed for PPI analysis with a medium confidence 
score set at 0.4.

To validate the hub genes, topological analysis 
methods, specifically the degree algorithm, were applied. 
The CytoHubba plugin, integrated into Cytoscape 3.8.0 
(University of California, San Diego, CA, USA), was 
utilized for this purpose [36]. Through an analysis of the 
topological structure of the PPI network, key nodes were 
identified.

Comorbidity locus analysis
A cross-analysis was performed on the pathogenic loci 
identified by SMR analysis for the three disorders, aiming 
to identify common loci and determine whether these 
loci exhibit consistent directional effects (either as risk 
factors or protective factors) across all diseases.

Three‑step SMR analysis
Screening for anxiety, depression, and schizophrenia 
identified loci that met the selection criteria in the 
Three-step SMR analysis. These loci provide systematic 
evidence for correlations: the correlation between 
gene expression and disease, the correlation between 

corresponding protein expression and disease, and the 
impact of gene expression on corresponding protein 
expression levels. This analysis substantially enhances the 
reliability of the identified loci.

Colocalization analysis
Colocalization analysis was conducted for the loci 
identified in anxiety, depression, and schizophrenia using 
GWAS and QTL data. This analysis aimed to confirm 
potential therapeutic targets and identify common 
driving factors associated with the risk of the three 
mental disorders. Its purpose was to strengthen the 
evidence of the association between targets and disease 
phenotypes, facilitating the determination of causal 
relationships between therapeutic targets and diseases 
while minimizing potential confounding factors [37, 38].

The colocalization analysis was conducted using the 
“coloc” R package, with a threshold of PPH4 > 0.8. This 
threshold was used to determine the presence of shared 
genetic effects between the targets and phenotypes, 
providing a reliable basis for further investigation and 
therapeutic development [39, 40].

PheWAS analysis
We performed a PheWAS analysis on GWAS summary 
statistics resources using the GWAS ATLAS analysis 
tool [41–43]. This analysis enabled us to investigate 
the associations of individual genetic loci with a wide 
range of traits across various GWAS datasets. We 
systematically examined and summarized the loci 
identified in the three mental disorders, shedding light 
on the multifunctionality of these loci and the potential 
mechanisms underlying their effects on various traits 
[44].

Candidate drug prediction
Before delving into further research and development 
of potential therapeutic drugs, we explored existing 
practical drugs’ interactions with the identified targets by 
assessing protein-drug interactions [45]. Specifically, we 
utilized five drug target prediction databases: DrugBank 
[46], Therapeutic Target Database [47], ChEMBL [48], 
DGIdb [49], and PharmSnap. These databases link drugs 
and other chemical substances to their target genes, 
aiding in the identification and prediction of candidate 
drugs targeting the discovered loci in our study.

This comprehensive approach enhances our 
understanding of the potential therapeutic interventions 
for the studied mental disorders and paves the way for 
the development of novel treatment strategies.
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Molecular docking analysis
To gain deeper insights into the impact of candidate 
drugs on the drug targets associated with the three 
mental disorders and assess the druggability of these 
targets at the atomic level, our study conducted 
molecular docking analysis. We employed Autodock 
Vina 1.2.2, a computational protein–ligand docking 
software, to evaluate the binding energy and interaction 
patterns between candidate drugs/small molecules and 
their respective targets [50].

The drug structure data were obtained from the 
PubChem compound database, while the protein 3D 
structure data were sourced from the PDB database 
[51]. All protein and molecule files were converted into 
PDBQT format, with the exclusion of water molecules 
and the addition of polar hydrogen atoms. The grid box 
dimensions were configured to 30 Å × 30 Å × 30 Å, with a 
grid point distance of 0.05 nm. Molecular docking studies 
were carried out using Autodock Vina 1.2.2.

Results
Results of Mendelian randomization analysis
We conducted bidirectional MR analysis using data 
from three databases to explore causal relationships 
among three mental disorders. Specifically, we used 
Finngen-derived GWAS data as the exposure variable 

with UKBB data as the outcome, PGC-derived GWAS 
data as the exposure variable with Finngen data as the 
outcome, and PGC-derived GWAS data as the exposure 
variable with UKBB data as the outcome. Utilizing five 
different MR methods and performing meta-analysis, 
we identified evidence supporting causal relationships 
between depression and anxiety (IVW OR = 1.79; 95% 
CI 1.59–2.02; P < 0.05), schizophrenia and anxiety 
(IVW OR = 1.17; 95% CI 1.13–1.21; P < 0.05), as well 
as schizophrenia and depression (IVW OR = 1.13; 
95% CI 1.10–1.17; P < 0.05) (Fig.  2a–c and Additional 
file  2: Table  S2). The analysis showed no significant 
heterogeneity or evidence of pleiotropy. Leave-one-out 
analysis indicated that the results were not driven by 
any single SNP (Additional file 1: Figs. S1–S18). Overall, 
this analysis provides strong evidence for the existence 
of causal relationships among these mental disorders, 
highlighting their intricate genetic connections.

Estimation of genetic correlations
We employed LDSC analysis to assess the genetic 
correlations among anxiety disorder, depressive 
disorder, and schizophrenia. Analysis using GWAS 
data from the PGC revealed the following correlation 
estimates: between anxiety and depressive disorder 
 (rg = 0.907, P = 4.44 × 10–21), between anxiety and 

Fig. 2 Summary of MR and LDSC analysis results between anxiety disorder, depression, and schizophrenia. a Results of MR Analysis of anxiety 
and other two diseases; b Results of MR Analysis of depression and other two diseases; c Results of MR Analysis of schizophrenia and other 
two diseases; d LDSC analysis using GWAS data from PGC database; e LDSC analysis using GWAS data from Finngen database.MR, Mendelian 
randomization; LDSC, linkage disequilibrium score regression
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schizophrenia  (rg = −  0.0175, P = 0.472), and between 
depressive disorder and schizophrenia  (rg = 0.00121, 
P = 0.863) (Fig. 2d). Analysis using GWAS data from the 
FinnGen database yielded similar correlation estimates: 
between anxiety and depressive disorder  (rg = 0.884, 
P = 2.64 ×  10–39), between anxiety and schizophrenia 
 (rg = 0.356, P = 3.34 ×  10–5), and between depressive 
disorder and schizophrenia  (rg = 0.201, P = 0.00494) 
(Fig.  2e). These results indicate a strong and consistent 
genetic correlation between anxiety and depressive 
disorder (Additional file  2: Table  S3). In the FinnGen 
database, there is also a moderate genetic correlation 
between anxiety and schizophrenia, as well as between 
depressive disorder and schizophrenia, although it is 
relatively weaker. Furthermore, in the PGC database, this 
genetic correlation is weak and less stable.

Integration of GWAS and mental disorders‑related QTL 
data from three databases
To identify potential pathogenic genes for the three 
mental disorders and explore their genetic mechanisms 
in gene regulation and protein translation, we conducted 
a Three-step SMR Analysis. Significant results from 
each step were systematically documented as indicative 
causal genes or proteins (Additional file 1: Figs. S19–S30). 
Within the three databases, we identified a total of 5 cis-
eQTLs that met the criteria and exhibited suggestive 
causal relationships with anxiety, 39 with depression, 
and 217 with schizophrenia. Notably, 2 cis-eQTLs 
consistently affected Anxiety, 27 affected Depression, and 
97 influenced Schizophrenia across all three databases 
(Additional file 2: Table S4).

Furthermore, for cis-pQTLs that met the filtering 
criteria, 2 displayed suggestive causal relationships with 
Anxiety, 12 with Depression, and 41 with Schizophrenia. 
Among these, 1 cis-pQTL for Anxiety, 11 for Depression, 
and 17 for Schizophrenia consistently influenced all three 
disorders in the same direction across the three databases 
(Additional file 2: Table S5).

To enhance understanding of the genetic characteristics 
of these mental disorders, we created manhattan plots to 
visually illustrate the genotype distribution of key eQTLs 
and pQTLs associated with anxiety, depression, and 
schizophrenia at both the genetic and protein regulation 
levels (Fig. 3).

Core site analysis and verification
After identifying genes and protein sites that may be 
causally related to anxiety, depression, and schizophrenia, 
as described in the methods section, we proceeded with 
three analytical methods for further validation.

PPI Analysis
Due to the limited number of anxiety-related 
sites, constructing a PPI network was challenging. 
Consequently, we performed PPI network analysis 
on pathogenic sites associated with depression 
and schizophrenia. Using Cytoscape software, we 
identified and visualized the relationships within these 
subnetworks. The biological significance of proteins 
within these subnetworks was assessed by examining 
depression and schizophrenia betweenness centrality. 
This metric identifies ’bottleneck’ nodes crucial for 
communication within the network. Notably, ITIH3, 
ITIH4, and NT5C2 were selected for depression 
(Fig.  4a), while PSMA4 and ITSN1 were identified for 
schizophrenia (Fig. 4b).

Comorbidity site analysis
We did not identify any comorbidity sites between 
anxiety and depression or schizophrenia. However, we 
conducted a cross-analysis of potential sites associated 
with depression and schizophrenia, which revealed four 
intersecting sites: BTN3A1, CYP21A2, PSMB4, and 
TIMP4 (Fig.  4c). The consistent impact of these four 
sites on both depression and schizophrenia suggests 
that they may be shared factors contributing to the 
comorbidity of these two disorders.

Three‑step SMR analysis‑identified site
We filtered sites that met the criteria in all three steps 
of the Three-step SMR analysis for anxiety, depression, 
and schizophrenia. These sites satisfy both the 
correlation between gene expression and the disease 
and the correlation between corresponding protein 
expression and the disease, concurrently demonstrating 
that the gene expression level can impact the 
corresponding protein expression level. A total of three 
such sites were identified: CCS for depression and 
CTSS and DNPH1 for schizophrenia (Fig. 4d, e).

Colocalization verification
To verify the co-localization of the sites identified in 
the screening of anxiety, depression, and schizophrenia, 
we conducted co-localization analysis. We performed 
co-localization analysis on PPI core sites, comorbidity 
sites, and sites filtered through the three-step SMR 
analysis. The co-localization results, with PPH4 > 0.8, 
included ITIH3, BTN3A1, PSMB4, TIMP4, CCS, CTSS, 
and DNPH1 from the three-step SMR analysis. These 
results are presented in Table 1.
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Identification of key genes and proteins
Through our analysis, we identified several key genes 
and proteins associated with the onset of anxiety, 
depression, and schizophrenia. Notably, sites such as 
ITIH3, CCS, CTSS, and DNPH1 were found to play 
pivotal roles in shaping the genetic landscape of mental 
health. ITIH3 is involved in regulating inflammation 
and neurotransmitter balance, while CCS is implicated 
in the regulation of oxidative stress and copper 
homeostasis. Additionally, tissue proteinase S (CTSS) 
is renowned for its involvement in protein degradation 
and maintenance of blood–brain barrier integrity, 
suggesting potential connections with schizophrenia. 

Furthermore, DNPH1, which is involved in axonal 
transport and brain structure, may be associated with 
the development of schizophrenia. These findings 
align closely with our current understanding of 
the neurobiology of psychiatric disorders and offer 
promising avenues for therapeutic intervention, which 
will be further discussed in the subsequent sections.

PheWAS Analysis
Utilizing the GWAS ATLAS analysis tool, we aggregated 
the traits associated with potential causal genes for 
the three diseases. Given the limited number of 
anxiety-related sites identified, further selections 

Fig. 3 Manhattan plots depicting the use of SMR to screen for QTLs in whole blood related to anxiety, depression, and schizophrenia. a Manhattan 
plots depicting eQTLs in whole blood related to anxiety; b Manhattan plots depicting pQTLs in whole blood related to anxiety; c Manhattan plots 
depicting eQTLs in whole blood related to depression; d Manhattan plots depicting pQTLs in whole blood related to depression; e Manhattan 
plots depicting eQTLs in whole blood related to schizophrenia; f Manhattan plots depicting pQTLs in whole blood related to schizophrenia. SMR, 
Summary-data-based Mendelian Randomization; eQTL, expression quantitative trait loci; pQTL, Protein Quantitative Trait Loci. Chr, Chromosome
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were challenging. Therefore, we proceeded to conduct 
PheWAS analysis directly on the identified sites. For 
patients with depression and schizophrenia, we selected 
sites through three screening methods for PheWAS 
analysis (Additional file 2: Tables S6–S9).

Given the multitude of traits associated with each site, 
we excluded duplicate traits and present only the top 
20 primary traits based on the total sample size (Fig. 5). 
Detailed information on additional traits is available in 
the Additional Table.

Drug prediction and molecular docking of candidate 
compounds
Using five databases, including DrugBank, Therapeutic 
Target Database, ChEMBL, DGIdb, and pharmSnap, we 
predicted existing drugs for the analyzed and screened 
sites. We identified a total of 12 potentially effective 
existing drugs. Excluding zinc ions and copper ions, 
which were too small for docking, and clozapine, which 
had well-established efficacy and extensive research, we 
conducted molecular docking for the remaining drugs 
with the target proteins using Autodock Vina v.1.2.2. 

We calculated the binding energies for each interaction 
(Table  2 and Additional file  2: Table  S10) and included 
docking images illustrating the strongest binding 
energy for each interaction. The results demonstrate 
that each candidate drug can bind to the target proteins 
through visible hydrogen bonds and strong electrostatic 
interactions (Fig. 6).

Discussion
In this study, we leveraged GWAS data from three 
large-scale databases to analyze evidence of causal 
relationships and overlapping genetic structures among 
anxiety, depression, and schizophrenia. Our findings 
contribute novel insights into the comorbidity of 
mental disorders and may offer implications for disease 
prediction, diagnosis, and treatment.

We observed a significant and consistent genetic 
correlation between anxiety and depression across 
multiple databases. Furthermore, LDSC analysis of 
GWAS data from the Finngen database revealed a weaker 
genetic correlation between schizophrenia and anxiety 

Fig. 4 Core Site Analysis and Verification. a PPI analysis on the loci identified through SMR analysis for depression; b PPI analysis on the loci 
identified through SMR analysis for schizophrenia; c comorbidity sites between depression and schizophrenia; d Three-step SMR Analysis 
sites for depression; e Three-step SMR Analysis sites for schizophrenia. PPI, Protein–Protein Interaction; SMR, Summary-data-based Mendelian 
Randomization
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and depression, supporting the significant role of genetic 
factors in these psychiatric disorders.

Mounting evidence suggests that psychiatric disorders 
share common neurobiological features and exhibit 
high comorbidity. The p-factor theory posits that a 
single-dimensional trait can measure an individual’s 
susceptibility to mental disorders, comorbidity among 
psychiatric disorders, the duration of illnesses, and the 
severity of symptoms [4]. Various explanations for this 
high comorbidity include similar life experiences, social 
stressors [52], environmental factors like trauma [53], and 
potential medication risks where drugs used to treat one 

psychiatric disorder may increase the risk of others [54]. 
Moreover, a recent meta-analysis of studies identified 
a common brain network sensitive, specific, robust, 
and consistent with injury-induced effects, mapping 
the atrophy coordinates of psychiatric disorders to this 
network [55]. This may reveal shared abnormalities or 
dysfunctions in certain regions or functions of the brain’s 
neural network, providing stronger evidence for the 
theory of psychiatric disorders’ comorbidity.

Focusing on the comorbidity of anxiety, depression, 
and schizophrenia, approximately 90% of individuals 
with depressive disorders exhibit symptoms of anxiety. 

Table 1 Colocalization results of QTLs for site with mental disorder

PPI

Target Mental disorders eQTL‑PP.H4 pQTL‑ PP.H4

ITIH3 Depression 0.999

ITIH4 Depression 0.069

NT5C2 Depression 0.000

ITSN1 Schizophrenia 0.003

PSMA4 Schizophrenia 0.000

Comorbidity sit

Target depression‑PP.H4 schizophrenia‑PP.
H4

CYP21A2 Depression/schizophrenia 0.000 0.000

BTN3A1 Depression/schizophrenia 0.969 0.969

PSMB4 Depression/schizophrenia 1.000 1.000

TIMP4 Depression/schizophrenia 0.992 0.992

Three‑step SMR analysis

Target eQTL‑PP.H4 pQTL‑PP.H4

CCS Depression 0.000 0.989

CTSS Schizophrenia 0.013 0.998

DNPH1 Schizophrenia 0.000 0.998

Fig. 5 Circular dendrogram displaying the findings of PheWAS analysis. a Results of PheWAS for sites related to anxiety; b Results of PheWAS 
for sites related to depression; c Results of PheWAS for sites related to schizophrenia; d Results of PheWAS on comorbid-related loci for depression 
and schizophrenia. PheWAS, phenome-Wide Association Studies
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Patients with comorbid disorders of depression 
and anxiety can range from 46 to 75% [56], and the 
comorbidity rate between schizophrenia and anxiety 
reaches up to 38% [57]. Additionally, the comorbidity 

rate between schizophrenia and depression is as high as 
40% [58]. These data align with our research results. In 
contrast to traditional observational studies, our LDSC 
analysis method, which does not require specific familial 
data, provides broader genomic-level support for the 
p-factor comorbidity theory.

However, genetic correlation alone cannot distinguish 
causal relationships from genetic confounding. 
Therefore, this study conducted a meta-analysis of 
MR results across three databases, revealing strong 
causal associations between depression and anxiety, 
schizophrenia and anxiety, and schizophrenia and 
depression. Notably, the causal relationship between 
depression and anxiety, especially Major Depressive 
Disorder (MDD) and anxiety, has been extensively 
researched and widely accepted [59]. In contrast, 
causal studies on schizophrenia and anxiety, as 
well as schizophrenia and depression, are limited 
and yield unstable conclusions [60, 61]. Our study 
results contribute evidence in these aspects. MR 

Table 2 Docking results of available proteins with small 
molecules

Target Drug Binding energy

CTSS Fostamatinib − 8.663

CTSS Petesicatib − 8.224

NT5C2 Pentoxifylline − 6.872

NT5C2 Cytarabine − 6.914

NT5C2 Didanosine − 6.809

NT5C2 Mercaptopurine − 5.566

NT5C2 Nelarabine − 7.717

PSMA4 Cotinine − 5.703

CYP21A2 Ketoconazole − 10.552

Fig. 6 Docking results of available proteins small molecules. a CTSS docking Fostamatinib; b CTSS docking Petesicatib; c NT5C2 docking 
Pentoxifylline; d NT5C2 docking Cytarabine; e NT5C2 docking Didanosine; f NT5C2 docking Mercaptopurine; g NT5C2 docking Nelarabine; h PSMA4 
docking Cotinine; i CYP21A2 docking Ketoconazole. (The PDB number of CTSS is 1GLO, the PDB number of NT5C2 is 2J2C, and the PDB number 
of CYP21A2 is 5VBU)
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analysis outcomes heavily rely on data sources, and 
by conducting a meta-analysis of MR results from 
three large-scale databases, we mitigated data biases, 
obtaining more reliable results. This finding reinforces 
the notion that individuals with one psychiatric 
disorder are more prone to developing other psychiatric 
disorders, emphasizing the necessity of early control 
for a single psychiatric disorder given the increased 
difficulty in treating comorbid conditions and the 
challenging drug selection process.

After confirming the comorbidity and causal 
relationships among the three psychiatric disorders, 
this study employed methods such as Three-step SMR 
Analysis, PPI network analysis, and coloc analysis to 
explore the causal effects of all circulating proteins and 
genes in human whole blood on anxiety, depression, 
and schizophrenia. The goal was to identify disease-
specific pathogenic genes and overlapping comorbid 
genes, providing preliminary clues for drug development. 
Through coloc analysis, ITIH3 was conclusively 
associated with the onset of depression, CCS exhibited 
associations with depression at both the gene and protein 
levels, and CTSS and DNPH1 were implicated in the 
onset of schizophrenia at both the gene and protein 
levels. Shared comorbidity loci between depression and 
schizophrenia included BTN3A1, PSMB4, and TIMP4.

ITIH3 is a protein involved in the formation of Inter-
Alpha-Trypsin Inhibitors (ITIs). Its primary functions 
include participating in the regulation of inflammation, 
tissue repair, and inhibiting the activity of proteases. 
Proteases play a role in processes such as the release, 
breakdown, and reuptake of neurotransmitters in 
the nervous system. Abnormal protease activity may 
disrupt the balance of neurotransmitters, leading to 
the onset of psychiatric disorders [62]. Additionally, 
protease abnormalities can affect synaptic plasticity, 
causing abnormal adaptations in neuronal connections 
and communication, contributing to the development 
of psychiatric disorders. Therefore, ITIH3 is intricately 
involved in the potential occurrence of various 
psychiatric disorders [63]. Recent research in Japan 
found a close correlation between ITIH3 polymorphism 
and prenatal depression symptoms in a case–control 
study [64]. Genome-wide association studies have also 
identified ITIH3 loci in a broad depression phenotype, 
emphasizing its role in the genetic correlation of 
depression traits and even schizophrenia. The shared 
genetic risk factors among these disorders suggest 
common pathogenic pathways [65, 66]. Furthermore, the 
rs2535629 variant of ITIH3 is associated with the efficacy 
response to antipsychotic drugs, potentially impacting 
the treatment of mental health disorders, including 
depression [67].

CCS protein serves as a companion protein to SOD1, 
assisting in the correct folding and insertion of copper 
ions into the SOD1 enzyme. This capability enables 
CCS to ensure that SOD1 receives necessary copper 
ions to effectively neutralize reactive oxygen species 
(ROS), protecting cells from oxidative damage [68]. 
Additionally, CCS participates in maintaining cellular 
copper homeostasis, constituting its two major functions. 
Oxidative stress and copper homeostasis are closely 
linked to neurodegenerative and psychiatric disorders. 
The central nervous system is particularly susceptible to 
oxidative stress, leading to neuronal damage, and such 
damage may be associated with mental health. Recent 
research underscores the role of copper in depression, as 
it is the third most abundant trace metal in the human 
body after iron and zinc, with high levels of copper 
accumulation in the brain [69]. The relationship between 
serum copper and mental disorders is currently debated, 
with some studies showing a positive correlation between 
serum copper levels and depression, while others show 
no correlation or even a negative correlation. However, 
the widely accepted view is that the imbalance of copper 
homeostasis leading to oxidative stress and inflammatory 
responses is associated with depression. In addition to its 
involvement in copper metabolism, some studies suggest 
that CCS is also related to zinc ions. CCS may form 
complexes with zinc ions, playing a crucial regulatory 
role in psychiatric disorders, including influencing 
neurotransmitter synthesis and release [70]. Through 
drug target predictions, we found that copper and zinc 
ions can bind to CCS, demonstrating their potential 
as therapeutic drugs, which may represent a novel 
treatment direction for depression.

CTSS, or Cathepsin S, is a lysosomal cysteine protease 
enzyme involved in the degradation of proteins within 
lysosomes. Research highlights Cathepsin S’s involvement 
in memory function in the brain and its association with 
psychiatric disorders such as MDD, bipolar affective 
disorder, and schizophrenia [71]. Cathepsin S also plays 
a role in regulating the integrity of the blood–brain 
barrier (BBB), and changes in BBB permeability may 
affect the entry of immune cells and inflammatory factors 
into the brain, potentially contributing to the onset of 
psychiatric disorders [72]. Recent genetic studies have 
found potential associations between the CTSS gene 
and susceptibility to schizophrenia [73]. However, it’s 
crucial to note that the relationship between CTSS 
and psychiatric disorders, especially schizophrenia, is 
complex and multifactorial. Further research is needed to 
elucidate the specific molecular and cellular processes of 
lysosomal protease S in psychiatric disorders.

DNPH1 is related to the regulation of axonemal dynein, 
a motor protein involved in various cellular processes, 
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including retrograde transport in axons and intracellular 
positioning of organelles. Specific research on the 
connection between DNPH1 and psychiatric disorders 
is limited. A recent study on schizophrenia and brain 
structure found that certain gene variations (SNVs) are 
associated with schizophrenia and brain features such as 
surface area and thickness. DNPH1 is highly expressed in 
the cerebral cortex and is one of the genes significantly 
associated with schizophrenia and brain structure 
features [74]. This suggests a potential role of DNPH1 in 
schizophrenia and its potential as a therapeutic target.

As mentioned earlier, patients with schizophrenia 
are more likely to experience depression. The overlap 
in symptoms and genetic risk factors between the two 
disorders suggests a common etiological mechanism. 
Factors such as maternal immune activation, social 
isolation, neurotransmitters, the immune system, 
environment, and metabolism may contribute to their 
comorbidity. We have identified shared comorbidity 
loci between schizophrenia and depression, including 
BTN3A1, PSMB4, and TIMP4.

BTN3A1, Butyrophilin Subfamily 3 Member A1, 
belongs to the butyrophilin protein family and encodes 
a transmembrane protein. Proteins in the butyrophilin 
family are known to participate in immune system 
regulation. BTN3A1 plays a crucial role in antigen 
presentation and is highly expressed in the cerebral cortex 
[75].This suggests a potential close association between 
BTN3A1 and psychiatric disorders. However, research 
on the relationship between BTN3A1 and mental illness 
is still limited and requires further exploration.

PSMB4 is a proteasome subunit, and the proteasome 
is a large protein complex responsible for ubiquitin-
mediated degradation and recycling of damaged or 
misfolded proteins to maintain cellular homeostasis. 
Dysfunction in ubiquitin–proteasome function can 
lead to the accumulation of misfolded and damaged 
proteins, contributing to the development of diseases 
such as Alzheimer’s, Parkinson’s, and schizophrenia 
[76, 77]. Impaired proteasome function can also result 
in mitochondrial dysfunction and oxidative stress, both 
linked to various mental health conditions. Similarly, the 
research team led by M-L Wong identified a correlation 
between certain variations in the PSMB4 gene, revealed 
through polymorphism analysis of inflammatory genes, 
and susceptibility to MDD [78]. Therefore, targeting 
PSMB4 for treatment and thereby improving ubiquitin–
proteasome function could be a promising approach to 
correct psychiatric disorders.

TIMP4’s main function is to inhibit metalloproteinases, 
especially matrix metalloproteinases (MMPs). MMPs 
are involved in the degradation of various components 
of the extracellular matrix, such as collagen, gelatin, 

and proteoglycans [79]. By inhibiting MMPs, TIMP4 
regulates tissue remodeling, maintains the extracellular 
matrix, and participates in synaptic plasticity, neuronal 
differentiation, and neuroprotection in the central 
nervous system. One study investigated the correlation 
between the TIMP gene and protein expression levels 
and depression.The results indicate that changes in the 
expression of MMPs and TIMP may be a common factor 
in recurrent depression and somatic diseases, possibly 
even serving as a marker [80].

Contrary to expectations, a study in 2013 found no 
significant correlation between a SNP (rs3755724) 
encoding TIMP4 and schizophrenia [81]. However, the 
lack of association with a single SNP does not rule out 
the potential linkage between TIMP4 and psychiatric 
disorders. Psychiatric disorders result from complex 
interactions of multiple genes, environmental factors, 
and genetic heterogeneity. Other TIMP4 variations or 
interactions with different genes may still be relevant 
to psychiatric disorders. Additionally, the study was 
conducted on a Korean population, and genetic 
heterogeneity between different populations suggests 
that the role of TIMP4 in psychiatric disorders may vary 
across different ethnic groups. Further exploration is 
needed to understand the relationship between TIMP4 
and mental illnesses.

We also observed certain loci that haven’t undergone 
co-localization testing, and we conducted drug 
predictions and molecular docking for these specific 
targets. Currently, the evidence for the causal relationship 
between these loci and the three mental disorders may be 
relatively limited, requiring further validation.

The strength of this study lies in the fact that, following 
the determination of the correlation of the three mental 
disorders through LDSC and MR, we employed SMR and 
co-localization analysis to estimate the specific causal 
impact of circulatory proteins and genes on anxiety, 
depression, and schizophrenia using genetic variation. 
The SMR design minimizes biases caused by confounding 
and reverse causation, thus improving causal inference. 
We conducted analyses in three datasets to ensure the 
robustness of our findings. Co-localization analysis has 
been proven as a powerful tool to reveal the pleiotropic 
effects of certain loci on multiple traits, allowing us to 
analyze the pathogenic loci and comorbidity mechanisms 
of the three diseases. Additionally, we used phewas 
analysis to summarize the correlations and predict 
related drugs for these loci, providing possibilities for 
drug development. Another strength is that we primarily 
limited the analysis to populations of European descent, 
significantly reducing population stratification bias.

However, some limitations in the analysis of this 
study should be noted. Firstly, the current literature 
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predominantly addresses the general association 
between COVID-19 and mental disorders, as well as the 
overarching trend of genetic susceptibility, rather than 
delving into specific genetic loci. As a result, this study 
did not extensively investigate the correlation between 
COVID-19 patients carrying specific genetic variants 
and the onset of mental disorders, thereby missing an 
opportunity to elucidate the significant role of genomic 
features in mental illness. Despite the exclusion of bias 
caused by linkage disequilibrium and potential reduction 
of horizontal pleiotropy through HEIDI tests in 
co-localization analysis, biases and horizontal pleiotropy 
cannot be completely eliminated. Furthermore, although 
the overlap of populations is minimal, there is still some 
population overlap among the UKBB, Finngen, and PGC 
datasets, which may introduce bias in the analysis. This 
could lead to interference effects where experimental 
conditions may impact each other among certain 
individuals, disrupting randomization. Additionally, 
focusing on the analysis primarily on individuals of 
European descent minimizes population structure 
bias. However, this may limit the generalizability of 
our research results to other populations.Secondly, 
plasma proteomic data is derived from the Icelandic 
population. However, data on the three mental disorders 
and the genome are primarily based on European 
populations. Despite adjusting for the top genetic 
principal components as population structure indicators 
in GWAS, differences in the ancestry of data sources 
may introduce population structure bias. Moreover, it’s 
worth noting that we focused only on the cis-regulatory 
regions of eQTL and pQTL in our analysis, while trans-
regulatory regions could also have a widespread impact 
on regulatory networks. Finally, further functional 
experiments are needed to validate the identified loci and 
predict the efficacy of drugs.

Conclusions
In this study, we conducted a comprehensive 
analysis of the genetic relationships and overlapping 
gene structures among anxiety, depression, and 
schizophrenia by integrating GWAS data from three 
large-scale databases. We discovered significant 
and consistent associations at the genetic level 
among the three disorders. Through MR analysis, we 
confirmed relationships among anxiety, depression, 
and schizophrenia. Furthermore, we explored the 
associations of circulating proteins and genes with 
these disorders, identifying specific pathogenic genes 
that offer preliminary clues for drug development. 
Despite some limitations, such as the impact of 
population structure and the need for functional 
experiments, our findings reinforce the understanding 

of the genetic mechanisms underlying these psychiatric 
disorders, providing valuable insights for future 
personalized treatment and drug development.
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