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Abstract 

Background SIRPB1 expression is upregulated in various tumor types, including gliomas, and is known to contribute 
to tumor progression; nevertheless, its function in the immune milieu of gliomas is still mainly unknown.

Methods This study, we analyzed 1152 normal samples from the GTEx database and 670 glioma samples from the TCGA 
database to investigate the relationship between the expression of SIRPB1 and clinicopathological features. Moreover, 
SIRPB1 gene knockout THP-1 cell lines were constructed using CRISPR/Cas9 and were induced into a co-culture of mac-
rophages and glioma cells in vitro to learn more about the role of SIRPB1 in the glioma immune milieu. Lastly, we estab-
lished a prognostic model to predict the effect of SIRPB1 on prognosis.

Results Significantly higher levels of SIRPB1 expression were found in gliomas, which had an adverse effect 
on the immune milieu and correlated poorly with patient survival. SIRPB1 activation with certain antibodies results 
in SYK phosphorylation and the subsequent activation of calcium, MAPK, and NF-κB signaling pathways. This phe-
nomenon is primarily observed in myeloid-derived cells as opposed to glioma cells. In vitro co-culture demonstrated 
that macrophages with SIRPB1 knockout showed decreased IL1RA, CCL2, and IL-8, which were recovered upon ectopic 
expression of SIRPB1 but reduced again following treatment with SYK inhibitor GS9973. Critically, a lower overall 
survival rate was linked to increased SIRPB1 expression. Making use of SIRPB1 expression along with additional clinico-
pathological variables, we established a nomogram that showed a high degree of prediction accuracy.

Conclusions Our study demonstrates that glioma cells can be activated by macrophages via SIRPB1, subsequently 
reprogramming the TME, suggesting that SIRPB1 could serve as a promising therapeutic target for gliomas.
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Background
Gliomas provide a serious challenge to neuro-oncology 
because of their aggressive nature and dismal prognosis, 
which are characteristics of their high malignancy [1]. 
Gliomas have an especially complex immune microen-
vironment, which is made up of many immune cells and 
pro-tumorigenic cytokines that aid in the development of 
tumors and immune evasion [2]. Although the brain has 
been proven to be privileged to a certain extent, subse-
quent studies have shown that the brain does not com-
pletely rule out immune cells from peripheral blood [3]. 
The majority of the immune subset in glioblastoma is 
made up of myeloid-derived cells, which include neutro-
phils, dendritic cells (DC), microglia, tumor-associated 
macrophages (TAM), and bone marrow-derived suppres-
sor cells (MDSC). TAM secretes chemokines and sub-
stances that promote the growth and survival of tumor 
cells, making up the majority of the non-tumor cells in 
gliomas [4, 5].

Signal Regulatory Protein Beta 1 (SIRPB1) is a notable 
molecule within this complex environment. SIRPB1, a 
cell surface glycoprotein, is mainly expressed in mono-
cytes and dendritic cells. It is a member of the immu-
noglobulin superfamily as well as the signal regulatory 
protein family [6, 7]. Some studies indicate that DAP12 
expression is crucial for surface presentation of SIRPB1 
[8]. Although SIRPB1’s functions were initially identified 
outside of oncological settings, new research highlights 
the critical role it plays in the glioma immunological 
landscape, especially when it comes to spleen tyrosine 
kinase (SYK) [9]. SYK significantly impacts the tumor 
microenvironment and antitumor immunity efficacy [10], 
influencing glioma progression by altering cell prolifera-
tion and migration pathways [11]. Our knowledge of the 
significance of SIRPB1 and SYK signaling in cancer biol-
ogy has significantly changed as a result of this interac-
tion’s recognition as being important in glioma immune 
response modulation.

We attempt to analyze the role of SIRPB1 in the glioma 
immune microenvironment in detail and determine its 
activation and related pathways, the release of tumor-
promoting cytokines, and its role in prognosis, which 
provides a basis for further exploration of SIRPB1 as a 
potential therapeutic target, given the complexity and 
importance of the glioma immune microenvironment 
and the incomplete understanding of its mechanism.

Methods
RNA sequencing and clinic information from TCGA 
and GTEx data repository
TCGA and GTEx expression data processed by the TOIL 
process [12] were obtained from XENA [13]. The prog-
nostic data were obtained from the study of Liu et  al. 

[14]. The clinical data, including WHO grade, IDH muta-
tion status, and 1p/19q co-deletion status, were sourced 
from the study by Ceccarelli et  al. [15]. Samples from 
GBM and LGG cohorts were included in the analysis of 
TCGA glioma samples. Missing data were noted, and 
tumor samples were categorized into high or low SIRPB1 
expression groups based on median levels. Our study 
followed ethical guidelines, including patient consent, 
and complied with Xena, TCGA and GTEx publication 
standards.

Differentially expressed genes (DEGs) analysis
The package DESeq2 was utilized for the analysis of 
differential gene expression [16]. Criteria for signifi-
cant gene identification included an absolute  log2 fold 
change > 1.5 and an adjusted P < 0.01. Results will be visu-
alized through Volcano plots and heatmaps. We further 
used Toil-processed RNAseq data in TPM format from 
TCGA and GTEx to compare SIRPB1 expression across 
33 tumor types [12].

Enrichment analysis
For enrichment analysis, we employed the R pack-
age ClusterProfiler [17] to conduct gene ontology (GO) 
enrichment analysis, covering biological process (BP), 
cellular components (CC), and molecular function 
(MF) categories [18, 19]. We also performed the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis [20–22]. A false discovery rate (FDR) 
threshold of < 0.05 was used to identify significant GO 
functions and KEGG pathways.

Gene set enrichment analysis (GSEA)
In this study, we used the package clusterProfiler to con-
duct Gene Set Enrichment Analysis (GSEA) between 
high and low SIRPB1 expression groups [17]. We used 
C2.cp.v7.0.symbols.gmt[Curated] and H.all.v7.0.symbols.
gmt[Hallmarks] as reference gene sets. Significance crite-
ria included an adjusted P < 0.05, FDR q-value < 0.25, and 
an absolute normalized enrichment score (|NES|) > 1.

Immune infiltration analysis and immunological constant 
of rejection (ICR) analysis
We used the ssGSEA approach with the package GSVA 
to assess the infiltration of 24 immune cell types in 
malignancies [23]. This list includes macrophages, mast 
cells, neutrophils, eosinophils, various NK and DC sub-
sets, multiple T cell types, and B cells. Using hallmark 
gene expression profiles for these cells, we calculated 
relative enrichment scores for each cell type in individual 
samples.

To identify the cell types most closely linked with 
SIRPB1, we consulted two single-cell sequencing 



Page 3 of 19Geng et al. Journal of Translational Medicine          (2024) 22:338  

datasets: one focused on astrocytoma [24] and another 
on glioblastoma [25]. SIRPB1 expression across different 
cell types was analyzed using the Single Cell Portal.

The ICR scoring method refers to Roelands et  al. [26, 
27]. Based on the TPM data of 20 ICR genes (IFNG, 
IRF1, STAT1, IL12B, TBX21, CD8A, CD8B, CXCL9, 
CXCL10, CCL5, GZMB, GNLY, PRF1, GZMH, GZMA, 
CD274, PDCD1, CTLA4, FOXP3 and IDO1), the TCGA-
GBMLGG cohort was clustered using R package Con-
sensusClusterPlus (v.1.66.0) [28]. The optimal number 
of clusters for the best sample separation is determined 
to be two based on the Calinski-Harabasz criterion. The 
samples were classified as ICR-high and ICR-low based 
on the degree of ICR gene expression.

Protein–protein interaction (PPI) analysis
To explore interactions among the DEGs identified in 
Sect. "Differentially Expressed Genes (DEGs) Analysis" of 
the Methods, we performed a PPI analysis via Metascape 
[29]. We conducted protein–protein interaction enrich-
ment for the DEGs list using databases like BioGrid [30], 
InWeb_IM [31], and OmniPath [32]. Hub genes identified 
through Metascape’s MCODE algorithm [33] were fur-
ther analyzed for enrichment.

Single‑cell data analysis and pseudotime analysis
We used the GSE117891 dataset [34] for single-cell anal-
ysis. Cells were annotated and clustered by type. Micro-
glial and macrophage cells were then sorted into high and 
low IL1RN expression groups for GO, KEGG, and GSEA 
analyses. The Monocle2 and Monocle3 algorithms were 
used to do a pseudotime analysis of IL1RN [35–37].

Statistical analysis
For data analysis, we employed R software (version 3.6.2). 
Image analysis was done via Fiji, while GraphPad Prism 
8.0 was used for quantitative assessments. Statistical 
comparisons were made using the Student’s t-test and the 
Wilcoxon test. For multiple-group comparisons, we used 
analysis of variance. Survival analysis was executed using 
the Kaplan–Meier curve’s log-rank test via the survminer 
package (ver0.4.8, https:// cran.r- proje ct. org/ web/ packa 
ges/ survm iner/ index. html).

Construction and evaluation of the nomogram
To identify survival-related factors, we integrated SIRPB1 
expression and key clinicopathological variables into a 
multivariate COX regression-based nomogram. Utiliz-
ing the R package rms (ver.5.1–4, https:// cran.r- proje ct. 
org/ web/ packa ges/ rms/ index. html), we generated nomo-
grams and calibration plots to calculate patient scores. 
The C-index was used to assess how accurate the nomo-
gram was at making predictions.

Immunohistochemical staining and immunofluorescence
In summary, paraffin slides from glioma patients were 
obtained from the First Hospital of Jilin University’s 
Pathology Department. Slides underwent dewaxing, 
antigen retrieval, and peroxidase blocking. After BSA 
blocking, primary and secondary antibodies  (detailed in 
Additional file 1: Table S1) were applied sequentially, fol-
lowed by DAB chromogenic solution for immunohisto-
chemistry or TSA for multicolor immunofluorescence. 
Slides were then stained with DAPI, treated for autofluo-
rescence, and scanned.

Cell lines and culture conditions
Cell lines GL261, U87MG, T98G, U118MG, A172, 
LN229, and U251MG were sourced from iCell Bioscience 
Inc., while N9, BV2, LN18, and HEK293T were obtained 
from Neurosurgery Lab. THP-1 and HMC3 came from 
Procell Life Science, and RAW264.7 from Cas9X. HMC3, 
U87MG, and T98G were cultured in MEM with added 
Sodium Pyruvate. THP-1 cells were cultured in RPMI-
1640 with β-mercaptoethanol. The rest cells were cul-
tured in DMEM with 10% FBS and 1% PS. All cells were 
mycoplasma-tested and STR-verified (for all human-
sourced cell lines) and cultured at 37 ℃ in 5% CO2.

Plasmids, lentivirus packaging
For SIRPB1 targeting, we used pLenti-Crispr v2 with 
sgRNAs designed for exon 1 (sgRNA1 5ʹ-GAA TGC CCG 
TGC CAG CCT CC-3ʹ, sgRNA2 5ʹ-GGA GGC TGG CAC 
GGG CAT TC-3ʹ). A synonymous mutant plasmid was 
also created, rendering sgRNA1 ineffective. A FLAG pep-
tide sequence was added, and the plasmid was assembled 
using pTSB-CMV-puro. All plasmid was constructed by 
Transheep, Shanghai, China.

For lentivirus production, 80%-confluent HEK293T 
cells in 10cm dishes were switched to OPTI-MEM. Fol-
lowing TransEXP guidelines, we mixed pMD2.G (4  μg), 
psPAX2.0 (8  μg), and target plasmids (12  μg) in 1.5  ml 
OPTI-MEM, which was combined with another 1.5  ml 
OPTI-MEM containing 60  μl of transfection reagents. 
After a 20 min incubation, the mixture was added to the 
dish. Culture supernatant was collected at 48 and 72  h, 
filtered through a 0.45  μm PES filter, and concentrated 
using 5 × PEG8000. After overnight storage at 4 ℃, it was 
centrifuged at 4 ℃ and 4000 × g for 20 min. The superna-
tant was discarded, and the lentivirus was resuspended in 
a serum-free medium.

Construction of SIRPB1 knockout THP‑1 cell lines
THP-1 cells were infected by SIRPB1-WT/KO lentivirus 
with 8 μg/ml polybrene. After 48 h, 5 μg/ml puromycin 
was added. Post-7-d culture, T7E1 digestion confirmed 

https://cran.r-project.org/web/packages/survminer/index.html
https://cran.r-project.org/web/packages/survminer/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
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gene editing using a Genome-Editing Mutation Detec-
tion Kit (Beyotime). Cells were then diluted to 2 cells/ml 
and cultured in 96-well plates for 21 day. Genomic DNA 
was extracted using the Animal Tissue DNA Isolation Kit 
(FOREGENE) and verified via PCR with specific prim-
ers. Sanger sequencing at Sangon Biotech identified base 
deletions.

Induction and polarization of THP‑1 macrophages
For THP-1 cells in logarithmic growth, density was 
adjusted to 5 ×  105/ml and cultured in 6-well plates 
or 10  mm dishes with 100  ng/ml PMA for 48  h. After 
washing with PBS, cells were cultured in serum-free 
RPMI-1640 for 24 h. Depending on experimental needs, 
inhibitors GS-9973, SC-75741 (Targetmol), or DMSO 
were added. For M1 polarization, 100 ng/ml LPS (Beyo-
time) and 20  ng/ml INF-γ (Absin) were added and cul-
tured for 48  h. For M2 polarization, 20  ng/ml IL-4 and 
20 ng/ml IL-13 (Absin) were added and cultured for 48 h.

Protein extraction and western blot
In this study, nuclear and cytoplasmic proteins were sep-
arated using a Nuclear and Cytoplasmic Protein Extrac-
tion Kit (Beyotime). For total protein, cells were treated 
with 5  ug/ml Brefeldin A (Beyotime) for 4  h and lysed 
with RIPA lysate (Beyotime) containing protease and 
phosphorylase inhibitors (targetmol). SDS-PAGE gel 
electrophoresis was performed as needed, using gels of 
varying concentrations (6, 8, 10, 12, 15% from Sangon 
Biotech.), and specific antibodies (detailed in Additional 
file 1: Table S1) were applied.

Co‑immunoprecipitation (Co‑IP)
After discarding the culture medium, cells were lysed on 
ice using IP lysate (Beyotime) containing protease inhibi-
tors. The protein extract was incubated overnight at 4 ℃ 
with either mouse IgG or FLAG antibody. Protein A/G 
beads (Abmart) were added and incubated at 4 ℃ for 6 h, 
followed by elution with 1 × loading buffer.

Cellular calcium detection
For calcium assays, THP-1 cells induced into mac-
rophages were loaded with a Fluo-4 calcium probe using 
a Fluo-4 Calcium Assay Kit (Beyotime). Cells were then 
exposed to U87 cell culture supernatant and imaged 
every 5 s under a fluorescence microscope. Images were 
analyzed by FIJI software.

Flow cytometry
The induced THP-1 macrophages were collected, Fc 
receptors were blocked by human Fc Receptor Blocking 
Solution (Maokangbio), stained with FITC Anti-Mouse/
Human CD11b Antibody (Elabscience, clone:M1/70), 

7-AAD (Elabscience), APC Anti-Human CD206 Anti-
body (Elabscience, clone:15–2) and PE Anti-Human 
CD86 Antibody (Elabscience, clone:BU63), and detected 
and analyzed by Beckman cytoflex flow cytometry.

Real‑time quantitative PCR (RT‑qPCR)
Total RNA was extracted using TRIGene (Genstar). 1 μg 
of RNA was reverse transcript using the RT Easy II kit 
(Foregene). qPCR was performed using SYBR Green 
Master Mix (Yeasen), with GAPDH as the reference gene. 
Primer sequences are in Additional file 1: Table S2.

Luminex multi‑cytokines detection
For co-culture experiments, U87 cells were placed in a 
transwell chamber above THP-1-induced macrophages 
in a 6-well plate. After 48 h, culture media from both lay-
ers were collected, filtered through a 0.45 μm filter, and 
stored at –  80  ℃. Luminex assays were conducted by 
Labex (Shanghai). Data were analyzed post-standardiza-
tion per million THP-1 macrophages.

Results
Clinical characteristics
In this study, we analyzed 670 RNA-seq datasets with 
clinical data from TCGA LGG and GBM projects 
(Table  1). The cohort consisted of 386 males and 284 
females, median age of 46. The data included 216 WHO-
II, 237 WHO-III, and 160 WHO-IV grade cases. IDH 
mutations were present in 424 patients (64.1%) and 
1p/19q co-deletion in 168 (25.3%). SIRPB1 expression 
correlated significantly with WHO grade, IDH status, 
1p/19q co-deletion, primary therapy outcome, histologi-
cal type, and age (all P < 0.001) but not with race, PIK3CA 
status, EGFR status, and gender.

Differential expression of SIRPB1
We compared the expression of SIRPB1 in normal 
GTEx samples with 33 TCGA cancer types using the 
Wilcoxon test (Fig.  1A). Elevated SIRPB1 levels were 
observed in several cancers, including GBM and LGG, 
while decreased levels were found in cancers like LUAD 
and PRAD (all P < 0.001). The high expression of SIRPB1 
is associated with poor prognosis in glioma and kid-
ney renal clear cell carcinoma, but it seems to be a pro-
tective factor in skin cutaneous melanoma (Fig.  1B). 
Kaplan–Meier curves in Fig. 1C show that higher SIRPB1 
expression is linked to poorer Overall Survival (OS) and 
Progression-Free Interval (PFI) in gliomas. SIRPB1 was 
notably high in glioma samples (P < 0.001, Fig.  1D). The 
ROC curve suggested SIRPB1’s potential as a diagnos-
tic marker (AUC = 0.674, Fig.  1E). In the areas where 
glioma cells gathered, SIRPB1 staining increased with 
the increase of glioma grade (Fig.  1F, G). Through the 
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Table 1 Characteristics and association between SIRPB1 expression and clinicopathologic features of patients with glioma based on 
TCGA 

# Shown as median [IQR], Wilcoxon rank sum test

CR complete response, PD progressive disease, PR partial response, SD stable disease

Variable No SIRPB1 expression P

Low (%) High (%)

WHO grade

 WHO-II 216 138 (46.9%) 78 (24.5%)  < 0.001

 WHO-III 237 127 (43.2%) 110 (34.5%)

 WHO-IV 160 29 (9.9%) 131 (41.1%)

IDH status

 Mutant 424 266 (80.4%) 158 (47.9%)  < 0.001

 Wild type 237 65 (19.6%) 172 (52.1%)

1p/19q co-deletion

 Co-deletion 168 123 (36.8%) 45 (13.6%)  < 0.001

 Non-co-deletion 496 211 (63.2%) 285 (86.4%)

Primary therapy outcome

 CR 135 93 (35.1%) 42 (23.5%) 0.016

 PD 103 50 (18.9%) 53 (29.6%)

 PR 62 35 (13.2%) 27 (15.1%)

 SD 144 87 (32.8%) 57 (31.8%)

Gender

 Female 284 154 (46.0%) 130 (38.8%) 0.072

 Male 386 181 (54.0%) 205 (61.2%)

Race

 Asian 13 6 (1.8%) 7 (2.1%) 0.897

 Black or African American 32 15 (4.6%) 17 (5.2%)

 White 613 308 (93.6%) 305 (92.7%)

Histological type

 Astrocytoma 192 103 (30.7%) 89 (26.6%)  < 0.001

 Glioblastoma 160 29 (8.7%) 131 (39.1%)

 Oligoastrocytoma 128 75 (22.4%) 53 (15.8%)

 Oligodendroglioma 190 128 (38.2%) 62 (18.5%)

EGFR status

 Mutant 73 28 (8.6%) 45 (13.7%) 0.05

 Wild type 583 299 (91.4%) 284 (86.3%)

PIK3CA status

 Mutant 49 24 (7.3%) 25 (7.6%) 1

 Wild type 607 303 (92.7%) 304 (92.4%)

Age# 42.00 [33.00,55.00] 50.00 [36.00,61.00]  < 0.001

Fig. 1 A SIRPB1 expression in 33 tumor types vs. controls; Wilcoxon test. B Forest plot of SIRPB1’s prognostic value in TCGA tumor types. C Kaplan–
Meier curves for OS and PFI. D SIRPB1 levels in normal vs. glioma tissues; Wilcoxon test. E ROC curve for SIRPB1’s diagnostic accuracy in gliomas; 
x-axis: FPR, y-axis: TPR. F Immunohistochemical staining of SIRPB1 in normal and glioma brain tissues and (G) statistical analysis. H Kaplan–Meier 
curves for OS of glioma patients in First Hospital of Jilin University. I Western blot of SIRPB1 in paracancerous (P) and glioma (T) brain tissues. 
Significance: ns: P ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001

(See figure on next page.)
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follow-up of 70 patients with different grades of glio-
mas in this study center, we found that the expression of 
SIRPB1 was associated with poor prognosis (Fig. 1H). In 
the fresh glioma tissue samples we collected, the expres-
sion of SIRPB1 detected by Western blot was significantly 
higher than that in paracancerous tissues (Fig. 1I, Addi-
tional file 1: Figure S1A).

The correlation between SIPRB1 expression and immune 
infiltration
We used the Single Cell Portal to evaluate datasets for 
glioblastoma and astrocytoma in order to identify the 
cells in gliomas that had high expression of SIRPB1. 
SIRPB1 was predominantly found in macrophages or 
microglia, with low expression in tumor cells (Fig.  2A, 
B) consistent with our Western blot and immunohisto-
chemical findings.

Next, we assessed immune infiltration in the TCGA 
database (Fig.  2C). SIRPB1 expression positively cor-
related with macrophages, neutrophils, and aDCs but 
negatively with pDCs, Tcm, and Tgd. No significant cor-
relation was found with CD56bright NK cells, dendritic 
cells, mast cells, and Tem (P > 0.05). Wilcoxon and Spear-
man analyses revealed higher macrophage (P < 0.001, 
cor = 0.574, Fig. 2D) and Th17 cell (P < 0.001, cor = 0.297) 
infiltration in the high-SIRPB1 group, while pDCs, Tcm, 
and Tgd showed lower levels (P < 0.001, cor = −  0.314; 
P = 0.003, cor = − 0.144; P = 0.012, cor = − 0.134, respec-
tively; not shown). Further analysis using Timer2.0 
confirmed a strong correlation between SIRPB1 and 
macrophage infiltration in GBM, particularly M2 mac-
rophages (P < 0.001, Rho = 0.386 and Rho = 0.371, 
Fig. 2E). Furthermore, a significant correlation was found 
between high SIRPB1 levels and unfavorable patient out-
comes in samples with high ICR scores (Fig. 2F).

We used the CCLE database to analyze SIRPB1 expres-
sion in monocyte and common glioma cell lines in order 
to validate our hypothesis. THP-1 monocytes showed 
significantly higher SIRPB1 levels than glioma cell lines 
(Fig.  2H). Subsequent cultures of glioma cell lines, 
macrophages, monocytes, and microglial cells in both 
humans and mice confirmed that SIRPB1 is primarily 
expressed in macrophages and monocytes (Fig. 2I).

Polychromatic immunofluorescence revealed that 
SIRPB1 co-localizes with TMEM119 (microglia marker), 
CD86 (M1 macrophage marker), and CD163 (M2 mac-
rophage marker) indicating that SIRPB1 is predominantly 
found in TAMs, which in glioma tissues exhibit both M1 
and M2 characteristics (Fig. 2G).

DEG identification and functional enrichment analysis 
of DEGs
In the combined TCGA-GBM and LGG datasets, 387 
DEGs were identified between high and low SIRPB1 
expression samples, based on cut-off criteria of adjust 
P < 0.01 and |log2FC|> 1.5, including 352 up-regulated 
and 35 down-regulated genes (Additional file 1: Table S3). 
These DEGs are visualized in a volcano plot (Fig. 3A).

We performed GO and KEGG enrichment analysis 
on the 387 DEGs to investigate the functional role of 
SIRPB1 in glioblastoma. A total of 703 significant terms 
were enriched (Additional file 1: Table S4). According to 
z-score enrichment results, SIRPB1 is likely involved in 
cytokine-mediated signaling, cell chemotaxis, and leuko-
cyte migration. The DEGs primarily relate to the external 
side of the plasma membrane and receptor-ligand activ-
ity (Fig. 3B). The enrichment analysis suggests that these 
DEGs are mainly associated with immune response.

SIRPB1‑related signaling pathways based on GSEA
We used GSEA on low- and high-SIRPB1 samples to 
identify pathways that are differentially active in gliomas. 
Significant differences were found in the TYROBP causal 
network in microglia, IL10 signaling, and cytokine-
cytokine receptor interaction (|NES|> 1, adjust P < 0.05, 
FDR q < 0.25, Fig. 3C).

Protein–protein interaction analysis
To further elucidate SIRPB1’s role in glioma, we created a 
PPI network with 246 nodes and 931 edges using Metas-
cape (Fig. 3D). MCODE analysis identified eleven mod-
ules (Fig. 3E). Modules 1–5 were rich in cytokines (e.g., 
IL6, IL10), cytokine receptors (e.g., CCR2, CCR4), and 
immune cell markers (e.g., CD3D, CD3E), indicating that 
the DEGs primarily regulate the immune microenviron-
ment rather than tumor malignancy traits like prolifera-
tion and invasion.

SIRPB1 gene knockout and classical M1 and M2 
polarization of macrophages
We generated SIRPB1 knockout THP-1 cell lines using 
CRISPR-Cas9. T7E1 assay confirmed successful DNA 
mismatch induction by both sgRNAs (Fig.  4A). Sanger 
sequencing identified clone #1 with 8-base deletions 
and clone #2 with 80-base deletions, causing frameshift 
mutations (Fig. 4C). Western blot verified SIRPB1 knock-
out in both clones (Fig. 4B).

To assess the impact of SIRPB1 knockout on THP-1 
cell polarization, we examined STAT1 and STAT6 phos-
phorylation in M1 and M2 polarizations. No significant 
changes were observed in the  SIRPB1KO group com-
pared to  SIRPB1WT, suggesting SIRPB1 knockout does 
not affect STAT phosphorylation (Fig.  4D, Additional 
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file 1: Figure S1B). qPCR revealed that SIRPB1 knockout 
reduced the transcription levels of IL1B (only for KO#2), 
TNF, and IL10 but didn’t affect IL6 and TGFB1. Notably, 
SIRPB1 knockout significantly downregulated IL-8 and 
CCL2 in M1 and IL1RA in M2 polarization (Fig.  4E). 
Flow cytometry showed no impact on classical M0, M1, 
and M2 macrophage surface markers CD11b, CD86, and 
CD206 (Fig. 4F).

Investigating the effect of SIRPB1 on IL1RA expression 
at the single‑cell level
We examined a single-cell dataset (GSE117891) that was 
centered on macrophages and microglia in order to clar-
ify the signaling pathways associated with SIRPB1. We 
identified 8 cell clusters based on marker genes (Fig. 5A). 
IL1RN and CXCL8 were highly expressed in neutrophils, 
while CCL2 was predominant in macrophages-microglia 
(Fig. 5B and Additional file 1: Figure S2A). In these cells, 
high IL1RN expression was associated with processes 

like tumor necrosis factor response and cell chemotaxis 
(Fig.  5C). KEGG analysis revealed enrichment in path-
ways like phagosome and TNF signaling (Additional 
file  1: Table  S5). Monocle pseudotime showed a devel-
opmental trajectory of increasing IL1RN expression 
(Fig. 5D-I).

Co‑culturing U87 with macrophages reveals that SIRPB1 
can influence the immune microenvironment of gliomas
We set up a co-culture system (Fig. 6A) and collected a 
conditioned medium after 48  h. The medium revealed 
elevated VEGF, PDGF-BB, IL-8, and G-CSF levels in 
the upper chamber (U87MG) and higher CCL2, IL1B, 
and CCL5 levels in the lower chamber (macrophages). 
 SIRPB1KO had lower inflammatory factors than 
 SIRPB1WT (Fig.  6B). Specifically, IL-8 and IL1RA were 
significantly lower in the  SIRPB1KO group (Fig. 6C). After 
48 h of HUVEC conditioning, CXCL10 levels surged, but 
the increase was less pronounced in the  SIRPB1KO group 
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(Fig. 6D). We investigated the function of SIRPB1 in cal-
cium signaling and discovered that it mostly affects early-
stage calcium signaling, having little effect on the peak 
but delaying the beginning (Fig. 6E, F).

For recovery experiments, we chose  SIRPB1KO #2 
and counteracted sgRNA2 effects with synonymous 
mutations, appending a FLAG peptide (Fig.  6G, H). 
Post-activation probing revealed increased SYK phos-
phorylation at 6  h and activated MAPK and NF-kB 
pathways, evidenced by ERK phosphorylation and 
NF-κB p50 nuclear translocation. Elevated NFAT2 and 

C/EBPβ levels were also noted, supporting our ear-
lier findings (Fig.  6I, J, Additional file  1: Figure S1C). 
Restoring SIRPB1 expression led to recovered IL1RA, 
CCL2, and IL-8 levels, while STAT1 and STAT6 phos-
phorylation remained unchanged (Fig.  6K, Additional 
file 1: Figure S1D).

Phosphorylation of SYK is necessary for SIRPB1 to reshape 
immune microenvironment
We detected that SIRPB1 binds to SYK through 
DAP12 adaptor protein in macrophages by 
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co-immunoprecipitation (Fig.  7A). Anti-FLAG antibody 
was used to activate SIRPB1 to up-regulate the expres-
sion of CCL2, IL-8 and IL1RA (Fig. 7B, Additional file 1: 
Figure S1E), which could be blocked by SYK inhibitor 
GS-9973 (Fig.  7C, Additional file  1: Figure S1F), con-
firming that SYK was involved. Furthermore, we found 
that there was a constitutive phosphorylation of SYK in 
the co-culture experiment. The level of SYK phospho-
rylation in  SIRPB1KO was lower than that in  SIRPB1WT 
at the early stage of co-culture, indicating that SIRPB1 
was partially involved in the phosphorylation of SYK. 
The absence of SIRPB1 could not completely block the 
phosphorylation of SYK (Fig.  7D, Additional file  1: Fig-
ure S1G). We found that compared with 2 μM GS-9973, 
5 μM SC-75741 could only slightly inhibit the expression 
of CCL2 but had no significant inhibitory effect on the 
expression of IL1RA and IL-8 (Fig. 7E, Additional file 1: 
Figure S1H). Blocking SIRPB1 binding (without second-
ary antibody) did not significantly inhibit these expres-
sions (Fig.  7F, Additional file  1: Figure S1I). Combined 
with the existing results and literature, we can prelimi-
narily explain the role of SIRPB1 in glioma-associated 
macrophages (Fig. 7G).

Correlations between SIRPB1 expression and clinical 
characteristics in glioma patients
Statistical analysis of TCGA data showed significant 
correlations between SIRPB1 expression and clinical 
parameters like WHO grade, IDH status, and 1p/19q co-
deletion (Fig. 8A, all P < 0.001). Additionally, a poor prog-
nosis was predicted by the expression level of SIRPB1 in 
the LGG cohort, while this was not the case for the GBM 
group (Fig. 8B). Logistic regression analysis further con-
firmed SIRPB1’s significant association with WHO grade, 
IDH status, 1p/19q co-deletion, primary therapy out-
come, and EGFR status in glioma samples (Table 2).

Construction of a prognostic model incorporating SIRPB1 
and clinicopathological features
Table  3 details univariate and multivariate Cox regres-
sion analyses for OS. The multivariate model contained 
variables that were significant in the univariate analy-
sis (P < 0.05). These included WHO grade, IDH status, 
1p/19q co-deletion, primary therapy outcome, age, EGFR 
status, and SIRPB1 expression (all P < 0.001). Multivariate 
analysis identified IDH status, primary therapy outcome, 
age, and SIRPB1 expression as independent OS prognos-
tic factors. Nomograms for OS and PFI were developed 
based on multivariate findings, displayed in Fig. 8C and 
D. The Concordance Index (C-index) for OS is 0.831 and 
for PFI is 0.738. Calibration plots in Fig. 8E validate the 
model’s accuracy in predicting 1-, 3-, and 5-year survival 
rates, with bias-corrected lines closely aligning with the 

ideal line. We validated the prognostic model with the 
prognostic information of patients followed up by our 
medical institution and the level of SIRPB1 expression in 
IHC sections of patients and confirmed the effectiveness 
of this prognostic model again (Fig. 8F).

The role of high SIRPB1 expression in different subgroups 
of clinicopathological characteristics
The forest plot in Fig.  8G highlights SIRPB1’s prognos-
tic impact across TCGA subgroups. Specifically, SIRPB1 
was significant in WHO-II&III (HR: 2.304, P < 0.001), 
non-codel 1p/19q co-deletion (HR: 2.531, P < 0.001), and 
IDH wildtype (HR: 2.123, P < 0.001) subgroups. Elevated 
SIRPB1 levels correlated with worse OS and PFI in these 
specific patient categories, as shown in Fig. 8H and Addi-
tional file  1: Figure S2C, emphasizing the SIRPB1’s role 
in affecting the prognosis of glioma patients with varied 
pathological features.

Discussion
Signal Regulatory Proteins (SIRPs) are immunoglobulin 
superfamily members with three main subtypes: SIRPα, 
SIRPβ, and SIRPγ [38, 39]. SIRPβ causes tyrosine phos-
phorylation through DAP12 or DAP10 adaptors even 
though it lacks a tyrosine-based signaling unit [6, 8]. 
Prior work by Song et  al. [40] linked SIRPB1 to tumor 
growth in prostate cancer via the AKT pathway.

Considering the predominant expression of the SIRP 
family in neurons and myeloid cells [41] and the high fre-
quency of TAMs in gliomas [5], Our attention was drawn 
to SIRPB1’s function in TAMs. Using TCGA data, sin-
gle-cell portal, and TIMER databases, we found a strong 
correlation between SIRPB1 and macrophages. Consist-
ent with the notion that glioma-associated macrophages 
exhibit both M1 and M2 features, further cell line analy-
ses and immunofluorescence staining verified SIRPB1 
expression in monocytes and macrophages [42].

Numerous cells release a variety of mediators in the 
glioblastoma multiforme (GBM) microenvironment, 
such as chemokines and cytokines [43, 44]. These mol-
ecules activate G-protein-coupled receptors, influencing 
cell migration and gene expression [45, 46]. Chemokines 
and their receptors are pivotal in cancer growth and 
immune cell interactions [47, 48]. Our research connects 
SIRPB1 to important chemokines, cytokines, and immu-
nological markers using GSEA and PPI network design, 
indicating its function in regulating immune-related 
pathways.

The JAK/STAT pathway is essential for various cellu-
lar functions, including immune responses and inflam-
mation [49]. JAK is activated by extracellular chemicals, 
phosphorylating STAT proteins, which in turn alter the 
nucleus’s gene expression patterns [50]. This pathway 
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regulates macrophage phenotype and activation. For 
example, interferon-γ increases inflammation and micro-
bial death by activating STAT1 [51], while IL-4 and IL-13 
activate STAT6, which is crucial for M2a macrophage 
polarization [52]. We looked into how macrophage 
polarization markers and STAT phosphorylation were 
affected by SIRPB1 deletion. While most classic markers 
remained stable, TNFα and IL10 levels decreased in the 
 SIRPB1KO group, suggesting a nuanced role for SIRPB1 in 
macrophage function. We propose two potential explana-
tions for this observation. First, one or more of the mol-
ecules LPS, IFN-γ, IL-4, and IL-13 may serve as ligands 
for SIRPB1. However, direct interaction between these 
compounds and SIRPB1 has not been demonstrated by 
either endogenous or exogenous CO-IP assay (results not 
shown). Second, M1, M2, or TAMs may produce secre-
tory factors that act as ligands for SIRPB1 during polari-
zation, thereby activating SIRPB1 through autocrine or 
paracrine pathways. We intend to investigate this latter 
possibility in further work by employing CO-IP and pro-
tein mass spectrometry techniques to optimize the tag 
peptide’s location and create antibodies with increased 
affinity and specificity.

The literature review deepened our understanding of 
CCL2, IL-8, and IL1RA. CCL2, acting through pathways 
like PI3K/AKT and JAK/STAT, is crucial for macrophage 
and glioma cell migration [53–55], making it a potential 
target for tumor microenvironment modulation [56–58]. 
Numerous cells release IL-8, which attracts neutrophils 
and other immune cells [59–61] and is becoming more 
widely known for its functions in the formation of glio-
mas [62–64]. The natural IL1 receptor antagonist IL1RA 
exhibits neuroprotective and anti-inflammatory proper-
ties, and it can promote the growth of glioma by blocking 
the inhibitory effect of IL-1 on the proliferation of glioma 
cells [65–68].

Our study of a single-cell dataset using the signaling 
pathway of the IL1RN gene showed that IL1RN expres-
sion in glioma-associated macrophages changes from low 
to high. TNF, NF-κB, osteoclast differentiation, and SYK 
pathways may explain these findings [69]. We speculate 
that after SIRPB1 deletion, inadequate early SYK phos-
phorylation could impact downstream pathways. It will 
need further investigation to comprehend the intricate 
interactions between these routes fully.

Table 2 Logistics regression. SIRPB1 expression associated with clinical pathological characteristics

CR complete response, PD progressive disease, PR partial response, SD stable disease

Characteristics Total (N) Odds Ratio (OR) in SIRPB1 expression P

WHO grade (WHO-IV vs. WHO-II&III) 613 6.37 (4.14–10.08)  < 0.001

IDH status (Wildtype vs. Mutant) 661 4.45 (3.16–6.33)  < 0.001

1p/19q co-deletion (codel vs. non-codel) 664 0.27 (0.18–0.40)  < 0.001

Primary therapy outcome (CR vs. PD&SD&PR) 444 0.57 (0.37–0.87) 0.009

EGFR status (Mutant vs. Wildtype) 656 1.69 (1.03–2.81) 0.039

PIK3CA status (Mutant vs. Wildtype) 656 1.04 (0.58–1.87) 0.899

Table 3 Univariate regression and multivariate survival model of prognostic covariates in patients with glioma

CR complete response, PD progressive disease, PR partial response, SD stable disease, Mut mutant, WT wildtype

Characteristics Total (N) Univariate analysis Multivariate analysis

HR(95% CI) P HR(95% CI) P

WHO grade (WHO-IV vs. WHO-II&III) 612 9.504 (7.162–12.611)  < 0.001 3.317 (0.958–11.487) 0.059

IDH status (WT vs. Mut) 660 9.850 (7.428–13.061)  < 0.001 3.907 (2.181–6.998)  < 0.001

1p/19q co-deletion (codel vs. non-codel) 663 0.216 (0.138–0.338)  < 0.001 0.736 (0.413–1.313) 0.3

Primary therapy outcome (CR vs. PD&SD&PR) 443 0.238 (0.115–0.489)  < 0.001 0.335 (0.152–0.736) 0.006

Gender (Male vs. Female) 669 1.230 (0.955–1.585) 0.109

Age (> 60 vs. <  = 60) 669 4.716 (3.609–6.161)  < 0.001 3.558 (2.115–5.984)  < 0.001

Race (White vs. Asian&Black or African American) 657 0.806 (0.492–1.321) 0.393

EGFR status (Mut vs. WT) 655 3.628 (2.672–4.927)  < 0.001 1.606 (0.763–3.379) 0.212

PIK3CA status (Mut vs. WT) 655 1.011 (0.625–1.635) 0.966

SIRPB1 (High vs. Low) 669 3.003 (2.294–3.932)  < 0.001 2.203 (1.415–3.429)  < 0.001
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We detected the phosphorylation level of ERK after 
co-culture, but we found that after about 12 h–24 h, the 
phosphorylation level of ERK became irregular, and even 
at 48h, the phosphorylation level of  SIRPB1KO could be 
higher than that of  SIRPB1WT in some repeated experi-
ments, possibly due to the activation of some feedback 
mechanism. For example, Zhang et  al. [70] found that 
two transcripts of IL1RN (ENST00000259206.9 and 
ENST00000361779.7) were generated by mutually exclu-
sive exons, which could inhibit ERK through some nega-
tive feedback mechanism. Between macrophages and 
microglia in  vivo and the THP-1 model in  vitro, there 
were variations in their expression profiles.

We have made every effort to investigate the link 
between the key components of gliomas, including tumor 
cells, TAM, and blood vessels; however, the true condi-
tion in  vivo cannot yet be fully restored. In an effort to 
investigate further SIRPB1 in  vivo experimental mecha-
nisms, our team is building SIRPB1 knockout mice. 
Future studies could explore the potential of SIRPB1 as 
a therapeutic target through the development of specific 
inhibitors or monoclonal antibodies.

We have shown a negative correlation between high 
levels of SIRPB1 and important clinical markers such as 
WHO grade, IDH status, and 1p/19q co-deletion, which 
is the first study to investigate SIRPB1’s function in the 
immune milieu of gliomas. Our study, for the first time, 
investigate SIRPB1’s role in glioma’s immune micro-
environment, and associates high SIRPB1 levels with 
poor prognosis and key clinical markers, such as WHO 
grade, IDH status, and 1p/19q co-deletion. Keeping this 
in mind, and considering Roelands et al. [26, 27] and the 
results that have been published so far, we try to inter-
pret the role of SIRPB1 in gliomas from a variety of 
angles, such as ICR. We found that in the samples with 
high ICR, the high expression of SIRPB1 still indicates 
a poor prognosis. It is also established that SIRPB1 may 
not “exist” but rather be “involved” in the pathologi-
cal process of glioma in conjunction with the outcomes 
of in vitro investigations. We found that SIRPB1 had no 
prognostic significance when analyzing GBM cohorts 
alone, and we further analyzed the distribution of SIPRB1 
expression in the whole LGG and GBM cohorts. We 
found that the expression of SIRPB1 in the GBM cohort 
was generally higher than that in the LGG cohort (Addi-
tional file 1: Figure S2B). One possible explanation for no 
correlation between SIRPB1 and GBM prognosis is that 
forced subdivision into SIRPB1-HIGH and SIRPB1-LOW 
in GBM with generally high expression of SIRPB1 will 
result in insufficient sample size of SIRPB1-LOW to pro-
duce sufficient statistical differences. Biological features, 
immunological microenvironment, and subtype diver-
sity are all more complex in GBM, and while these may 

be important in predicting prognosis, they are not with 
simple GBM analysis.

Conclusions
This work established SIRPB1’s function in the glioma 
inhibitory immune milieu. High expression of SIRPB1 
is associated with poor prognosis. SYK affects the 
expression of CCL2, IL1RA, and IL8 and participates 
in the formation of the glioma immune microenvi-
ronment, which is considered to be an independent 
risk factor for glioma patients. According to our find-
ings, SIRPB1 might be a useful prognostic indicator for 
gliomas.
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