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Abstract 

Background Disease progression in biosystems is not always a steady process but is occasionally abrupt. It is impor-
tant but challenging to signal critical transitions in complex biosystems.

Methods In this study, based on the theoretical framework of dynamic network biomarkers (DNBs), we propose 
a model-free method, edge-based relative entropy (ERE), to identify temporal key biomolecular associations/networks 
that may serve as DNBs and detect early-warning signals of the drastic state transition during disease progression 
in complex biological systems. Specifically, by combining gene‒gene interaction (edge) information with the rela-
tive entropy, the ERE method converts gene expression values into network entropy values, quantifying the dynamic 
change in a biomolecular network and indicating the qualitative shift in the system state.

Results The proposed method was validated using simulated data and real biological datasets of complex diseases. 
The applications show that for certain diseases, the ERE method helps to reveal so-called “dark genes” that are non-
differentially expressed but with high ERE values and of essential importance in both gene regulation and prognosis.

Conclusions The proposed method effectively identified the critical transition states of complex diseases at the net-
work level. Our study not only identified the critical transition states of various cancers but also provided two types 
of new prognostic biomarkers, positive and negative edge biomarkers, for further practical application. The method 
in this study therefore has great potential in personalized disease diagnosis.

Keywords Critical transition of complex disease, Edge-based relative entropy, Direct interaction networks, Edge-
biomarker, Dynamic systems, Informational entropy

Introduction
Evidence shows that during the progression of 
heterogeneous complex disorders, such as various 
cancer diseases [1, 2], diabetes [3], and epilepsy [4], 
the deterioration processes are not always steady but 
occasionally abrupt. Overall, the dynamics of complex 
disorder development can be considered a nonlinear 
time-variant dynamical system wherein abrupt 
deterioration corresponds to a phase change or state 
transition at a bifurcation point. Thus, the development 
of diseases typically consists of three stages [5, 6], 
namely, a before-transition state, a pre-transition/
critical state, and an after-transition state (Additional 
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file  1: Fig. S1). Specifically, during a complex disease 
course, the before-transition state is characterized as a 
stage with high stability and resilience. The critical state 
represents the bound of the before-transition state. It 
is usually reversible and could return to the before-
transition state under proper medical interventions, 
implying the instability of this state [7]; nevertheless, 
the after-transition state, such as the stage of distant 
metastasis for cancer, is another steady state with strong 
irreversibility and resilience after acute deterioration 
[8]. To achieve the very goal of active prevention, early 
warning signals should be detected prior to acute 
disease aggravation; that is, the identification of the 
critical state throughout the disease course is of crucial 
importance in predictive and personalized medicine. 
However, for many complex disorders, it is extremely 
difficult to identify such a key transition due to few 
phenotypic distinctions between the before-transition 
state and the pre-transition state and a lack of effective 
universal disease models [9].

Great efforts have been devoted to discovering 
biomarkers for better diagnosing the after-transition 
state. Based on the differential expression of genes/
nodes, many important molecular biomarkers with 
consistently high/low expression in the deteriorated 
state, such as BRCA1 and TP53, were found to be 
effective in indicating the development of breast 
cancer and lung cancer [10, 11]. However, the onset of 
complex diseases usually arises from the dysregulation 
of signaling functions and/or the cell’s response to 
its microenvironment, which are driven by dynamic 
changes in complex interactions among many 
molecules or molecular modules rather than individual 
molecules [12]. In fact, intermolecular interactions, 
considered the edges of biological networks, constitute 
the foundation of and facilitate biological functions 
and signal transmission [13]. Hence, it is important 
and necessary to explore the dynamic change in 
biomolecular interactions of biological systems, thus 
identifying the tipping points or critical transitions 
in complex diseases by providing a comprehensive 
understanding of the biomolecular network. In 
addition, some studies suggest that subtle changes in 
some non-differentially expressed genes (non-DEGs) 
can also have significant biochemical consequences, 
thereby playing an important role in various biological 
functions [14, 15]. Thus, methods based on networks 
that explore differential intermolecular interactions/
edges rather than differential expression/nodes may 
better characterize the development of complex 
diseases before catastrophic deterioration [16]. Edge 
biomarkers, as a type of promising network biomarker, 
may reveal the underlying mechanism of dynamic 

changes in molecular associations or regulatory 
relationships and provide a comprehensive perspective 
for understanding complex disease pathogenesis from a 
network standpoint.

In this study, we propose a model-free method based 
on edge-based relative entropy (ERE) to identify early 
warning signals of disease deterioration (Fig.  1). The 
ERE method is theoretically based on the framework 
of dynamic network biomarkers [17]. By considering 
the combination of intergenic associations and assign-
ing samples accordingly (Fig. 1A), the ERE method con-
structs a vector form of edge-based relative entropy 
values that can be viewed as the “edge feature” to rep-
resent the interaction information between each pair 
of variables/nodes (Fig.  1B), which can be employed to 
measure the similarity between probability distributions 
of the corresponding two genes in high-dimensional non-
linear biosystems. In this way, ERE transforms the gene 
expression matrix (with only node information) into an 
entropy matrix (with information on gene associations 
and networks) and offers a quantitative way to identify 
whether the to-be-tested/case samples are derived from 
a critical state. Therefore, those pairs of molecules (or 
edges) can be identified from molecular interactions with 
high ERE values (Fig. 1C), thus serving as edge biomark-
ers that help to signal the critical transition in biological 
processes (Fig.  1D). Furthermore, these edge biomark-
ers can be categorized into two types according to cor-
responding disease outcomes, such as the prognosis of 
patients, that is, positive/negative edge biomarkers indi-
cating good/poor prognosis. Moreover, it is possible to 
uncover some “dark genes” that are non-differential at 
the expression level but the components of important 
gene interactions involved in key biological functions. 
Compared to the other algorithms representing the edge 
information using linear methods [18], e.g., Pearson cor-
relation coefficient (PCC), the ERE method elucidates 
the sample-specific nonlinear relationship between a 
pair of molecules/genes, which optimizes the identifica-
tion ability with strong robustness. Clearly, the proposed 
ERE method is of high applicability and can be utilized 
with any molecular network structure. To demonstrate 
the validity of the proposed method, the ERE method 
was applied to a simulated dataset and six real datasets, 
including colon adenocarcinoma (COAD), lung adeno-
carcinoma (LUAD), thyroid adenocarcinoma (THCA), 
kidney renal clear cell carcinoma (KIRC) and kidney 
renal papillary cell carcinoma (KIRP) datasets from The 
Cancer Genome Atlas (TCGA) database and an acute 
lung injury dataset (GSE2565) from the Gene Expres-
sion Omnibus (GEO) database. The critical states ahead 
of severe clinical deterioration were discriminated in the 
different stages of tumors. The identified critical states 
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Fig. 1 Schematic diagram of the edge-based relative entropy (ERE) method. A Given reference samples from a relatively healthy cohort and case 
samples to be tested, the probability corresponding to the expression of each gene in an individual sample under the two conditions is calculated 
separately using kernel density estimation (KDE). The entropy matrix is then obtained. B Matrices regarding node and edge features. C During 
the progression of complex diseases, ERE can effectively distinguish the before-transition and pre-transition states at the network level and identify 
some edge biomarkers for prognosis analysis. D The significant change in ERE may indicate a critical state of a complex disease
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were all coincident with experimental observations or 
survival analysis. Some of the edge biomarkers were also 
verified by a series of functional enrichment analyses and 
prognosis analyses. In summary, the ERE method may 
provide a reference computational method and quantita-
tive indicator for biomedical studies, and positive/nega-
tive edge biomarkers identified based on this method 
may be clinical early warning signs for diseases.

Materials and methods
The ERE algorithm
Given m reference samples from a comparatively healthy 
cohort that represent individuals in a healthy (relatively 
healthy) state and n case samples to be tested, we 
identify the critical state by carrying out the following 
procedures:

1. Mapping of the gene expression to the network 
structure. For gene gi , denote the expression values 
in the reference set as (xi1, xi2, ..., xim) and the 
expression values of case samples as (yi1, yi2, ..., yin).

2. Fitting of probability vectors for each gene/node, 
which was based on the reference and case samples 
(Fig.  1A). Specifically, for a gene gi , the probability 
pr
(

xij
)

 is calculated based on the reference samples 
(xi1, xi2, ..., xim) as follows:

 Here, the probability density estimator fh(z) is 
defined as

where  K   denotes a nonnegative  Gaussian  kernel 
function, and bandwidth h =

(

4σ 5

3N

)
1
5
> 0 denotes a 

smoothing parameter with σ as the standard 
deviation of samples and N  as the number of samples 
(see Additional file 1: Note S1 for details). Note that 
KDE excels at estimating unknown distributions 
from empirical data, accommodating irregular 
structures without the need for understanding 
underlying processes. But the values of bandwidths 
in KDE are calculated from the observed data 
reflecting the true state of the system. Therefore, we 
only focus on the sampled points when calculating 
the ERE values. Clearly, vector 
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can be calculated based on the case samples 
(yi1, yi2, ..., yin) , with

3. Calculation of the ERE value of each case sample by 
using the edges in the protein–protein interaction 
(PPI) network. Specifically, for a pair of associated 
genes gi and gj in the k th case sample,

where yik represents the expression val-
ues of gi in the k th case samples. In general, 
H�i,j�

(

xi, yjk
)

�= H�j,i�

(

xj , yik
)

 . In this study, we use 
the following symmetric measure:

which indicates the local ERE value calculated from 
the gene pair gi and gj for the k th case sample. For 
the k th case sample, we calculate the sample-specific 
ERE value Hk according to a crowd of gene pairs with 
the highest ERE values, i.e., Hk = 1

M

∑

�i,j�∈S H
k(i, j) , 

where 〈i, j〉 represents the gene pair gi and gj , S is the 
high-ERE value (top 5% by default) gene pair set in 
the k th case sample and constant M is set as the size 
of S for this study.

At each time point t , the ERE value H(t) is 
calculated based on the above procedures, with 
H(t) = 1

N (t)

∑N (t)
k=1 Hk(t) , where N (t) represents the 

case sample size at time point t . The effective signal 
is identified through the one-sample t-test, which is 
presented in Additional file  1: Note S3. Specially, when 
t = 2 , the time point T = t is considered a critical point 
if H(t) is significantly different from the mean of vector 
(H(1),H(3)).

Data processing and functional analysis
ERE was applied to six sets of gene expression data, i.e., 
the cancer datasets of COAD, LUAD, THCA, KIRC 
and KIRP from the TCGA database and the time-
course dataset of acute lung injury (GSE2565) from 
the NCBI GEO database. Concerning the microarray 
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data (GSE2565), we only reserved the probes with 
corresponding gene symbols and employed the mean 
value of multiple probes for the same gene as the 
expression level of the mapped gene. Each of the cancer 
datasets includes tumor-adjacent and tumor samples. 
The tumor-adjacent samples were utilized as reference 
samples. The tumor or case samples were screened and 
partitioned according to the corresponding clinical 
information (Table 1).

The pathway enrichment analysis was carried out 
through the clusterProfiler package [19] and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (https:// 
www. genome. jp/ kegg/). Survival analysis was carried 
out on the basis of Kaplan–Meier log-rank analysis. The 
PPI networks of Homo sapiens and Mus musculus were 
constructed based on information from the Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING, 
http:// string- db. org).

Results
The definition of the ERE value and its algorithm are 
presented in the Methods section. To demonstrate the 
effectiveness of ERE, it was tested on a simulated sixteen-
node dataset (see Additional file 1: Notes S2 and S9 for 
details) and applied in six real datasets, including acute 
lung injury (GSE2565) from the GEO database and 
COAD, LUAD, THCA, KIRC and KIRP from the TCGA 
database. The successful identification of the critical 
state in the complex disease progression verified the 
applicability of our method in quantitatively identifying 
the tipping point ahead of irreversible deterioration of 
health. In this process, some edges with high entropy 
in the critical state were selected as signaling edges for 
in-depth analysis.

Identifying the critical transition in acute lung injury
ERE was applied to the microarray gene expression 
data of mice obtained from an experiment of phosgene-
induced acute lung injury [20]. The control and case sam-
ples were generated by exposing two sets of mice to air or 
phosgene, respectively. Subsequently, lung tissues from 

air- or phosgene-exposed mice were collected at 0.5, 1, 4, 
8, 12, 24, 48, and 72 h. It was found that a 50–60% death 
rate in the case group was observed after 12 h, while there 
was a 60–70% mortality rate after 24 h. Notably, the most 
deadly acute lung injury caused by phosgene occurred 
approximately 12  h after exposure [20]. For the case 
group, the ERE value sharply increased from 4 to 8 h after 
exposure (Fig.  2A), implying a correspondence between 
the critical state and the 4-h time window from 4 to 8 h, 
with the system entering the after-transition state after 
the 8-h point. However, the average normalized expres-
sion of differentially expressed genes (DEGs) fails to sig-
nal the forthcoming system state transition (Fig. 2A). The 
computational results agree with the experimental obser-
vations, suggesting the effectiveness of the ERE method 
in the biological experiment. More details describing the 
variability of the ERE value at each time point and the 
expression calculation of DEGs are provided in Addi-
tional file 1: Fig. S19 and Note S10.

Identifying the critical states for various cancers
Then, ERE was applied to five TCGA datasets: COAD, 
LUAD, THCA, KIRC and KIRP (Additional file  1: Fig. 
S2). Implementing the procedure in the Materials and 
Methods, we obtained the ERE value for each individual 
tumor sample. Then, the average ERE value at every stage 
was calculated and visualized for the identification of the 
critical state (Fig. 3).

By applying the proposed method, the significant 
increase in the ERE value identified the critical states 
for four common cancers, i.e., stage IIB ( P = 0.0022 ) 
for COAD (Fig.  3A), stage IIIB ( P = 0.0009 ) for LUAD 
(Fig. 3C), stage II ( P = 0.0196 ) for THCA (Fig. 3E), and 
stage II ( P = 0.0316 ) for KIRC (Fig.  3G). Clearly, the 
mean expression of DEGs and traditional gene biomark-
ers (Additional file 1: Table S1 and Fig. S11) cannot indi-
cate such critical transitions. The heat maps of local ERE 
values for the four cancers (Fig. 3B, D, F, H) illustrate that 
the local ERE values of signaling edges increase drasti-
cally in a collective manner at the identified critical states 
during disease progression. The computational results 

Table 1 The number of samples in each tumor stage in each TCGA dataset

TA samples: tumor-adjacent samples

Types of cancer TA samples Stage I Stage II Stage III Stage IV

Stage IA Stage IB Stage IIA Stage IIB Stage IIIA Stage IIIB Stage IIIC

COAD 42 72 154 11 28 55 37 62

LUAD 59 162 29 39 51 7 0 19

THCA 58 268 52 109 53

KIRC 72 199 39 63 51

KIRP 32 160 19 45 14

https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
http://string-db.org
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are consistent with the clinical observations. Specifically, 
at the identified critical state (stage IIB) of COAD, the 
cancer has not yet metastasized, whereas at stage IIIA, it 
has already spread to the nearby lymph nodes [21]. At the 
identified critical state of LUAD (stage IIIB), the metas-
tasis of cancer has not occurred, whereas cancer cells 
enter distant tissues or organs through the bloodstream 
at stage IV [22]. For THCA, metastasis has not occurred 
yet at the identified critical state (stage II); neverthe-
less, regional lymph node metastasis occurs at stage III 
[23]. For KIRC, the tumor is noninvasive at the identified 

critical state (stage II), whereas at stage III, tumor cells 
spread to surrounding tissues [24]. Additional file 1: Fig. 
S11 B, D, F, and H show that the survival expectancy is 
much higher before the identified critical state than after-
ward. Moreover, the prognosis analysis also supports the 
computational results based on ERE. For example, the 
difference in survival expectancy before and after the 
identified critical state of THCA, i.e., stage II, is the most 
significant ( P < 0.0001 ) compared with the prognosis 
analysis based on other stage divisions (see Additional 
file 1: Fig. S13 for details of the prognosis analysis).

Fig. 2 Performance of ERE in acute lung injury. A Performance comparison of ERE and DEGs in identifying the critical state. B The dynamic 
evolution of the molecular network consisting of the signaling edges (with the top 5% ERE values) revealed a significant change in the network 
at 8 h. The networks represent the aggregation of ERE values from all the samples within each time point
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Fig. 3 Identifying critical states for tumor deterioration. The performance comparison of ERE and DEGs in identifying the critical states for different 
tumor datasets: A COAD, C LUAD, E THCA, and G KIRC. The local ERE values of the high-entropy edges in the identified critical stages are depicted 
as two-dimensional heatmaps across all stages for each dataset: B COAD, D LUAD, F THCA, and H KIRC
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In addition, the PPI network composed of high-ERE 
value gene pairs (top 5% in the critical stage) helps us 
understand the dynamic changes in the ERE signal-
ing edges at a network level. Drastic changes in the PPI 

networks occurred at stage IIB of COAD (Fig. 4A), stage 
IIIB of LUAD (Fig. 4B), stage II of THCA (Fig. 4C), and 
stage II of KIRC (Fig. 4D), suggesting the following cata-
strophic deterioration for each disease. Notably, there are 

Fig. 4 Dynamic evolution of networks consisting of ERE signaling edges in COAD, LUAD, THCA, and KIRC. A In COAD, the subnetwork 
composed of ERE signaling gene pairs evolved, with a clear distinction between stage IIB and other stages. B Similarly, there were clear changes 
in the subnetworks at stage IIIB for LUAD. C The subnetwork in THCA showed abrupt changes at stage II. D The subnetwork in KIRC also showed 
dramatic changes at stage II. The networks represent the aggregation of ERE values from all the samples within each time point
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some essential cancer-related hub genes captured in the 
above network, such as GATA4, which is well known for 
its antitumor function in COAD [25]. More details for 
the networks in each cancer are provided in Additional 
file 1: Table S3 and Fig. S12.

Positive and negative edge biomarkers
Based on the clinical information, the samples were clas-
sified into a long-survival group (with a long survival 
expectancy, i.e., more than 5 years) and a short-survival 
group (with a short survival expectancy, i.e., less than 
5  years). If an edge presented a high ERE value in over 
80% of samples of the long-survival/short-survival group, 
it was defined as a positive/negative edge biomarker, as 
shown in Fig. 5A–F for three positive/negative edge bio-
markers. These edge biomarkers quantitatively identify 
the critical states during disease progression as signal-
ing gene pairs and are also effective for analyzing the 
prognosis of cancer. Taking LUAD as an example, the 
survival expectancy of patients with high ERE values for 
the positive edge biomarker ADH1C-GSTM1 was sig-
nificantly longer ( P = 0.0068 ) than that of patients with 
low ERE values for the biomarker (Fig. 5B). Furthermore, 
edge biomarkers may exert important regulatory effects 
on disease progression from the perspective of cancer-
related signaling pathways. For example, EGFR-MYC and 

EGFR-RAC1 were identified as negative edge biomarkers 
for LUAD. By KEGG pathway enrichment analysis, they 
were found to be enriched in the MAPK signaling path-
way, which is an essential signaling cascade in the growth 
and development of tumor cells [26]. More details about 
the edge biomarkers for the four cancers are shown in 
Additional file 1: Table S4, Fig. S8 and Note S4.

Revealing non‑differentially expressed “dark genes” 
and potential signaling mechanisms via the ERE method
The ERE-based analysis suggests that some non-DEGs may 
be regarded as “dark genes” and exert important functions 
in disease progression and prognosis analysis (Table 2). For 
example, DKK1 was non-differentially expressed but could 
distinguish the prognosis of LUAD patients as the compo-
nent of an edge (DKK1-FZD1) based on the ERE method. 
The results of KEGG enrichment analysis illustrated that 
these “dark genes” were closely related to cancer develop-
ment (Additional file 1: Table S2).

Tumor progression is a process of dysfunctional 
changes [27]. To further explore the functional relevance 
of signaling gene pairs and tumor progression, we per-
formed pathway enrichment analysis for signaling gene 
pairs. As illustrated in Fig.  6A and B, the gene pairs 
were mainly enriched in some classic cancer-relevant 
pathways, such as the TGF-β and JAK-STAT signaling 

Fig. 5 Survival analysis based on positive and negative edge biomarkers. A–C The survival expectancy of patients with high ERE values for positive 
edge biomarkers is significantly longer than those with low ERE values for the biomarkers. D–F The survival expectancy of patients with high ERE 
values for negative edge biomarkers is significantly shorter than those with low ERE values for the biomarkers
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pathways, for COAD and THCA, respectively (see Addi-
tional file  1: Table  S2 for details). These pathways are 
involved in cell proliferation and migration, angiogenesis, 
immune changes and metastasis in tumor progression 
[28, 29].

To further investigate how signaling genes affect 
alterations in gene expression before and after the pre-
transition state in the PI3K-Akt signaling pathway, the 
underlying molecular mechanism was unraveled based 
on the functional analysis of the COAD signaling gene 
pairs, as shown in Fig. 6C. In stage IIA and earlier stages, 
tumor cells were disordered and might have prompted 
critical transitions by cytokines (signaling genes), such 
as IL6, CSF3 and OSM, in the microenvironment. After 
the critical stage (stage IIB), signaling receptor genes 
(IL4R) were highly expressed, which might have triggered 
the phosphorylation of PI3K and AKT proteins and 
further upregulated the expression of the apoptosis 
inhibitor BCL2L1 and enhanced tumor cell growth and 
proliferation. Overall, ERE signaling gene pairs affected 
the PI3K/AKT signaling pathway in tumor progression 
and were involved in many cancer-related pathways (for 
details, see Additional file 1: Fig. S7 and Notes S6 and S7).

Discussion
Early diagnosis is helpful to prevent the development of 
severe disease. Therefore, it is of vital importance to detect 
early warning signals before catastrophic deterioration. 
Nevertheless, disease progression usually results from 
dynamic changes in complex interactions among many 
molecules rather than individual molecules. The short-
comings of conventional node-based methods are becom-
ing apparent when they differentiate the critical state from 
the before-transition state due to their static nature, where 

molecules exhibit limited expression changes from the 
before-transition state to the critical state. The previous 
DNB method, which is based on genes/nodes and neglects 
edges/gene‒gene associations or network structure, 
employs the fluctuation (i.e., the standard deviation) and 
covariance of samples to identify the tipping point of the 
disease process (see Additional file 1: Note S8 for details). 
In addition, the DNB method necessitates a balanced num-
ber of control group samples and case group samples at 
each time point, which proves to be exceedingly challeng-
ing to achieve in practical biomedicine. In this study, from 
a network analysis standpoint, we propose a computational 
method to quantify the dynamic changes in the coopera-
tive effects of biomolecular interactions, thus effectively 
signaling the tipping points during disease progression. The 
proposed ERE method is different from the previous DNB 
method in the following two aspects. First, our approach 
detects critical points by calculating a composite ERE value 
based on the structure of biomolecular networks (such 
as the PPI network), aligning more closely with the basic 
principles of systems biology. Second, the ERE method 
only necessitates a reference sample set. The unbalanced 
number of reference group samples and case group sam-
ples (which aligns with realistic scenarios) does not impact 
the calculation. Based on the ERE method, we successfully 
identified the critical states in six complex disorders, which 
were validated according to clinical information or related 
literature (see Additional file 1: Note S5 for details). Moreo-
ver, the edge biomarkers screened from ERE signaling gene 
pairs can be classified into two categories depending on the 
outcomes, such as the prognostic survival time of patients, 
i.e., positive and negative edge biomarkers. According to 
Kaplan‒Meier survival analysis, we found these edge bio-
markers to be statistically significant, including some gene 

Table 2 Dark genes as components of edge biomarkers in LUAD and KIRC

Gene Associated 
edge 
biomarker

Type Location Family Relation with tumors

DKK1 DKK1-FZD1 Negative Extracellular Other DKK1 guides epithelial-mesenchymal transition and promotes non–
small cell lung cancer (NSCLC) invasion and metastasis [30]

MYC DKK1-MYC Negative Nucleus Transcription factor MYC functions as a metastasis promoter for NSCLC [31]

WNT1 DKK1-WNT1 Negative Plasma membrane Other WNT1 is closely related to tumor proliferation and angiogenesis 
in NSCLC [32]

GAPDH GAPDH-MYC Negative Cytosol Enzyme GAPDH is related to the proliferation and migration of lung cancer [33]

GNG4 GNB1-GNG4 Negative Plasma membrane Other GNG4 may promote the proliferation and metastasis of cancer cells 
by affecting their EMT progression [34]

EGFR EGFR-MYC Negative Endosome Protein kinase EGFR mutations usually result in tumor cellular proliferation in lung 
cancer [35]

FOSL1 FOSL1-MYC Negative Nucleus Transcription factor FOSL1 likely exerts essential functions in tumor growth and metastasis 
[36]

NOG BMP7-NOG Negative Extracellular Other NOG may inhibit tumor- suppressing properties of the BMPs and cause 
tumorigenesis [37]
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pairs among which there is indeed a biological regula-
tory relationship that can affect the survival and health 
of the patient. Moreover, our study shows that gene pairs 
with differential ERE values clearly indicate a shift in bio-
logical states despite non-differential expression of the 
involved genes. In addition, compared to other methods 
(including a node-based method and the direct interac-
tion network-based divergence (DIND) method [38]), 
which focus on individual molecules or local biomolecu-
lar direct interaction networks, the ERE method can iden-
tify the critical state by exploring differential associations 

among molecules, providing a systematic and dynamic 
way to decipher the biological system responding to drug 
or therapy treatment [39]. Furthermore, as shown in Addi-
tional file 1: Fig. S6 and Fig. S20, ERE is effective in identify-
ing the critical points of the simulated data under different 
noise strengths and groups of edges with highest ERE val-
ues, validating the robustness of ERE. To further assess the 
applied issue of ERE, we have discussed the applicability 
scenarios and optimal selection of edges for our method. 
Additionally, we compared the ERE method with pure 
physical approaches [40, 41] to emphasize its efficiency in 

Fig. 6 The regulatory mechanism of cancer development revealed by ERE signaling gene pairs. KEGG pathway enrichment analysis for the ERE 
signaling gene pairs of A COAD and B THCA. C Switching dynamics of downstream differential genes before and after the critical state conducted 
by upstream ERE signaling gene pairs in COAD. Cytokines are coded by IL6, CSF3, and OSM, which correspond to signaling gene pairs after mapping 
into the PPI network
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identifying critical points in the disease progression. We 
also analyzed the relationship between ERE and informa-
tional entropy as well as thermodynamic entropy [42], to 
help the scientific understanding of the proposed method 
and results. Further details can be found in Additional 
file 1: Note S11. However, the reliance on reference samples 
and the inability to directly apply the algorithm on the indi-
vidual sample to be tested constitute limitations of the ERE 
method.

Conclusions
In summary, the proposed approach functions as a 
reliable computing tool with the following advantages. 
First, in contrast to the common node-based methods, 
the ERE method is more sensitive to early-warning 
signals with strong robustness against sample number 
and noise. Second, the ERE strategy represents a 
promising way to signal the critical transitions in 
complex diseases from a gene-pair perspective, which 
is helpful to track the dynamic changes of cooperative 
effects on molecular associations. Third, as a model-
free computational method, the ERE method does 
not require model training procedure, differing from 
conventional classification or machine learning methods 
requiring massive numbers of samples for supervised 
or unsupervised learning. Combined with the dynamic 
prediction method [43] or the statistic-based analysis 
method [44], the ERE method may help to reveal the 
dynamic change in molecular associations and networks 
in a complex biological system near its bifurcation point.
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