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Abstract
Background Diabetic macular edema (DME) is a leading cause of vision loss in patients with diabetes. This study 
aimed to develop and evaluate an OCT-omics prediction model for assessing anti-vascular endothelial growth factor 
(VEGF) treatment response in patients with DME.

Methods A retrospective analysis of 113 eyes from 82 patients with DME was conducted. Comprehensive feature 
engineering was applied to clinical and optical coherence tomography (OCT) data. Logistic regression, support vector 
machine (SVM), and backpropagation neural network (BPNN) classifiers were trained using a training set of 79 eyes, 
and evaluated on a test set of 34 eyes. Clinical implications of the OCT-omics prediction model were assessed by 
decision curve analysis. Performance metrics (sensitivity, specificity, F1 score, and AUC) were calculated.

Results The logistic, SVM, and BPNN classifiers demonstrated robust discriminative abilities in both the training and 
test sets. In the training set, the logistic classifier achieved a sensitivity of 0.904, specificity of 0.741, F1 score of 0.887, 
and AUC of 0.910. The SVM classifier showed a sensitivity of 0.923, specificity of 0.667, F1 score of 0.881, and AUC 
of 0.897. The BPNN classifier exhibited a sensitivity of 0.962, specificity of 0.926, F1 score of 0.962, and AUC of 0.982. 
Similar discriminative capabilities were maintained in the test set. The OCT-omics scores were significantly higher in 
the non-persistent DME group than in the persistent DME group (p < 0.001). OCT-omics scores were also positively 
correlated with the rate of decline in central subfield thickness after treatment (Pearson’s R = 0.44, p < 0.001).
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Introduction
Diabetic retinopathy (DR) is a common neurovascular 
complication of diabetes mellitus and a leading cause of 
visual impairment among working-age individuals world-
wide [1]. Diabetic macular edema (DME) has emerged 
as the predominant form of vision-threatening DR, sur-
passing proliferative DR in terms of prevalence [2]. A 
comprehensive meta-analysis revealed a 6.8% global 
prevalence of DME in individuals aged 20–79 years with 
diabetes [3]. DME significantly impacts overall quality of 
life and imposes substantial socioeconomic burdens on 
healthcare systems.

Technological advancements, especially optical coher-
ence tomography (OCT), have revolutionized DME 
management [4, 5]. OCT has emerged as a cornerstone 
imaging modality, enabling non-invasive retinal visual-
ization and precise macular assessment [6, 7]. In recent 
years, anti-vascular endothelial growth factor (VEGF) 
intravitreal injections have emerged as a first-line treat-
ment for DME [8], improving visual outcomes and alter-
ing DR’s management paradigm [9]. Notably, patients 
who respond favorably to initial treatment and expe-
rience a significant reduction in macular edema and 
improvement in visual acuity tend to have better long-
term visual outcomes [10].

Multiple challenges exist in DME management and 
research. For instance, OCT-based central subfield 
thickness (CST), commonly employed as an endpoint in 
numerous clinical trials, inconsistently correlates with 
visual acuity [11]. OCT-derived prognostic markers 
like disorganisation of retinal inner layers (DRIL) show 
promise but are predominantly qualitative or semi-quan-
titative, limiting precision and reproducibility [12]. Addi-
tionally, approximately 40% of DME patients experience 
persistent DME (PDME) with minimal visual acuity and 
anatomical improvement despite undergoing multiple 
anti-VEGF therapies [13]. Notably, PDME lacks a con-
sensus definition and management, leading to varying 
treatment approaches and outcomes [14]. The absence of 
standardized criteria for switching between anti-VEGF 
drugs or combining with corticosteroid therapy compli-
cates treatment decision-making [15].

Radiomics, a valuable tool for high-throughput infor-
mation extraction from medical images like computed 
tomography, magnetic resonance imaging, and ultra-
sound, has found applications in clinical diagnosis, 
prognosis, and treatment efficacy assessment in various 
disciplines, including oncology and diagnostics [16–18].

However, the application of radiomics in ophthalmol-
ogy, particularly in OCT imaging, is relatively unex-
plored, Given the limitations in current markers for DME 
prognosis and management, our study aims to innovate 
by developing a machine learning predictive model that 
extracts radiomics features from OCT images, providing 
a quantitative, non-invasive solution that enhances DME 
management and assesses treatment efficacy.

Methods
Ethics
Ethical approval (No. 2017-053) for this retrospective 
study was obtained from the ethics committee of the 
Second Xiangya Hospital, Central South University. The 
study adhered to the Declaration of Helsinki and other 
applicable ethical guidelines. Patient data were anony-
mized and treated confidentially to ensure privacy and 
comply with data protection regulations.

Patient cohort
Patients diagnosed with DME between May 2019 and 
January 2023 at the department of ophthalmology, the 
Second Xiangya Hospital of Central South University, 
were eligible for inclusion in this retrospective study. The 
medical records of eligible patients were retrospectively 
collected from the electronic medical record system.

The inclusion criteria were: age > 18 years; DME-
related visual impairment and macular CST of ≥ 250 μm 
on OCT, where CST was determined as the mean thick-
ness between the internal limiting membrane and Bruch’s 
membrane within the central 1-mm diameter of the Early 
Treatment Diabetic Retinopathy Study grid; receipt of 
≥ 3 anti-VEGF intravitreal injections, including ranibi-
zumab 0·5  mg/0·05 mL (Novartis Pharma AG, Basel, 
Switzerland), aflibercept 2·0 mg/0·05 mL (Bayer Health-
care Pharmaceuticals, Berlin, Germany), or conbercept 
0·5 mg/0·05 mL (Kanghong Biotech Co., Ltd., Chengdu, 
China); and active follow-up prior to treatment and dur-
ing the administration of at least the first three intravit-
real injections. Exclusion criteria were: visual impairment 
from other ocular diseases (e.g., severe cataract, glau-
coma, age-related macular degeneration, macular edema 
associated with retinal vein occlusion, vitreomacular 
traction, or uveitis); switch to intravitreal steroids or vit-
reoretinal surgery; and missing follow-up information, 
including poor quality of medical images. In this study, 
PDME was defined as any visual deterioration or inad-
equate CST reduction after three intravitreal anti-VEGF 

Conclusion The developed OCT-omics model accurately assesses anti-VEGF treatment response in DME patients. 
The model’s robust performance and clinical implications highlight its utility as a non-invasive tool for personalized 
treatment prediction and retinal pathology assessment.
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treatments. Specific CST reduction cut-offs based on rec-
ommendations by Sorour et al [14]: <10% for ≤ 400  μm 
(pre-treatment status, same as below), < 15% for 401–
500 μm, < 20% for 501–600 μm, and < 25% for > 600 μm. 
All eyes were randomly divided into training and test sets 
at a ratio of 7:3.

Imaging acquisition and region of interest segmentation
In this study, we introduced the concept of “OCT-omics,” 
a novel approach that combines “OCT” and “omics” to 
extract and analyze high-throughput quantitative fea-
tures from OCT images, providing a comprehensive rep-
resentation of retinal pathology.

Spectral-domain OCT images were acquired using 
the Optovue RTVue XR Avanti system (Optovue Inc., 
Fremont, CA, USA) for all eyes in this study. Follow-up 
assessments utilized radial scans (6 × 6 mm) centered on 
the fovea. Region of interest (ROI) segmentation and fea-
ture extraction were performed on DICOM-formatted 
B-scan OCT images along the vertical meridian.

Manual segmentation of inner retinal layers (from the 
inner limiting membrane to the external limiting mem-
brane) [19, 20] was carried out using 3D Slicer software 
(version 5.0.3, https://www.slicer.org/) [21]. The seg-
mentation was performed independently by a radiation 
oncologist (Y.C., 6 years of experience) and an ophthal-
mologist (Z.M., 5 years of experience) without knowledge 
of patient groups or treatment outcomes, ensuring objec-
tivity and minimizing bias. The segmentation results 
were then reviewed and confirmed by a senior retina spe-
cialist (J.L., 30 years of experience).

Feature extraction and selection
Radiomics features were extracted from the segmented 
images using the Pyradiomics module within the 3D 
Slicer software platform [22]; OCT images were resa-
mpled to voxel dimensions of 1 × 1 × 1  mm, and the 
bin width value was set at 25.0. The extracted features 
encompassed eight distinct classes: first-order statistics, 
shape features, texture features based on the gray-level 
run length matrix (GLRLM), gray-level co-occurrence 
matrix (GLCM), gray-level size zone matrix (GLSZM), 
gray-level dependence matrix (GLDM), neighborhood 
gray-tone difference matrix (NGTDM), and wavelet-
based features. These feature classes collectively captured 
a wide range of quantitative information related to inten-
sity, shape, texture, and spatial relationships within the 
OCT images.

To ensure comparability and eliminate the influ-
ence of scale differences, all features were standardised 
by z-score transformation. The reproducibility of the 
extracted features was assessed using a subgroup of 20 
randomly selected eyes to calculate the intraclass corre-
lation coefficient (ICC). Features with ICC values > 0.75 

were considered to have good reproducibility, and these 
features were further screened using the Mann-Whitney 
U test (P < 0.05). Subsequently, to further exclude the 
effect of anti-VEGF agent type on outcomes, dummy 
variables were created for categorical agent types. These 
screened OCT-omics features, alongside the dummy 
variables representing drug types, were input to logistic 
regression models using a recursive feature elimination 
approach, iteratively eliminating features with the small-
est contributions to model performance.

Development of OCT-omics models
The OCT-omics model was constructed in the train-
ing set, and OCT-omics scores were computed for each 
sample. The Mann-Whitney U test was utilised to com-
pare OCT-omics scores between the PDME and non-
persistent DME (NPDME) groups in both sets. Pearson 
correlation analysis examined the correlation between 
OCT-omics scores and CST change rate after treatment. 
Clinical utility was assessed using decision curve analy-
sis (DCA) with net benefits quantified using the “rmda” 
R package.

Development and validation of machine learning models
In this study, we developed and trained two machine 
learning models using the selected OCT-omics feature: 
a support vector machine (SVM) and a back propaga-
tion neural network (BPNN). The SVM model had a 
linear kernel function with penalty factor C set to 1 and 
a maximum of 1000 iterations. For the BPNN model, a 
single hidden layer with 30 neurons and the Rectified 
Linear Unit (ReLU) activation function were used, along 
with the Limited-memory Broyden–Fletcher–Goldfarb–
Shanno (LBFGS) solver and an L2 regularisation term of 
1. Both models were trained using five-fold cross-valida-
tion. The classification performances and generalisation 
abilities of three classifiers (logistic, SVM, and BPNN) 
were assessed in this study. Performance metrics, includ-
ing accuracy (true positives+true negatives

total pupulation ), sensitivity (recall, 
true positives

true positives+false negatives), specificity ( true negatives
true negatives+false positives), 

positive predictive value (precision, true positives
true positives+false positives

), negative predictive value, ( true negatives
true negatives+false negatives), and 

F1 score (2 ×precision×recall
precision+recall) were computed for both the 

training and test sets. Confusion matrices and ROC 
curves with corresponding AUC (area under the curve) 
values were visualised to assess classifier performance 
using the R packages “ggplot2”, “reshape2” and “pROC”.

Statistical analysis
Statistical analyses were conducted using R software 
(version 4.1.1), Python (version 3.9.13), and the SPSSPRO 
online data analysis platform (https://www.spsspro.com). 
Continuous variables were described using means ± stan-
dard deviations (SD) or medians with interquartile 

https://www.spsspro.com
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ranges (IQR). Categorical variables were presented 
as counts and percentages. For comparisons between 
groups, independent t-tests or Mann-Whitney U tests 
were performed for continuous variables, depending on 
data normality. Chi-square or Fisher’s exact tests were 

used to examine associations between categorical vari-
ables. Pearson correlation analysis explored correlations 
between continuous variables. All tests were two-sided, 
with P < 0.05 considered statistically significant.

Results
Summary of study design and participant characteristics
The study process involved a sequential flow, as depicted 
in Fig. 1. It encompassed the formulation of clinical con-
cerns, screening of clinical data, acquisition of medical 
images, segmentation of regions of interest (ROI), feature 
engineering, model building, and evaluation [23].

Some of the elements in Fig. 1 (eyes, syringes, crowd) 
are from Servier Medical Art (http://smart.servier.com/), 
licensed under a Creative Common Attribution 3.0 
Generic License.

A total of 113 eyes from 82 patients were included. 
Participant characteristics are summarised in Table  1. 
Among the 82 participants, 26 (31.71%) were women, 31 
(37.80%) had both eyes included, mean age was 54 years 
(SD = 10), and mean glycated hemoglobin (HbA1c) level 
was 7.60% (SD = 1.28). Of the 113 eyes, 58 (51.33%) were 
right eyes. Mean initial CST was 478 μm (SD = 172), and 
mean interval between first and third treatments was 
98.17 days (SD = 44.57). Table S1 illustrates the distribu-
tion of the initial three medication types (three individ-
ual drugs or a combination) among the total of 113 eyes, 
notably, no significant differences were observed, either 
between the training and test sets (P = 0.56) or within the 
NPDME and PDME subgroups (P = 0.64).

Table 1 Baseline demographic and clinical characteristics of the 
sample included
Characteristic
Eye level N = 113
Laterality Right (%) 58 (51.33)

Left (%) 55 (48.67)
Classification PDME (%) 38 (33.63)

NPDME (%) 75 (66.37)
CST, µm Mean (SD) 478 (172)

Median (IQR) 443 (205)
Interval between 1st and 3rd 
treatments, days

Mean (SD) 98.17 
(44.57)

Median (IQR) 76 (56)
Participant level N = 82
Sex Male (%) 56 (68.29)

Female (%) 26 (31.71)
Age, years Mean (SD) 54 (10)

Median (IQR) 55 (11.00)
HbA1c, % Mean (SD) 7.60 (1.28)

Median (IQR) 7.35 (1.76)
Eye involvement Unilateral (%) 51 (62.20)

Bilateral (%) 31 (37.80)
Abbreviations: CST, central subfield thickness; HbA1c, glycated haemoglobin; 
IQR, interquartile range; NPDME, non-persistent diabetic macular edema; 
PDME, persistent diabetic macular edema; SD, standard deviation

Fig. 1 Flow chart of the study design
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Development of an OCT-based radiomics classification 
model and its clinical implications
Among the 113 eyes, 75 had NPDME, and 38 had PDME. 
Figure  2 shows typical cases and OCT data from eyes 
with each type. 79 eyes were in the training set, and 34 in 
the test set.

In total 837 OCT-omics features were extracted from 
each eye. Within the training set, a screening process 
was conducted to refine the feature set. Initially, 775 
features were screened according to ICC. Subsequently, 
173 features were screened using the Mann-Whitney U 
test. From this combined set of selected features, along 
with the incorporation of 4 dummy variables represent-
ing drug types, a logistic regression model was con-
structed using the recursive feature elimination method 
(Table S2). The model included 11 key features, with the 
following equation: Y = 1.659 + 3.214 * original_glszm_
ZoneEntropy – 1.313 * wavelet-LHL_glcm_Cluster-
Shade + 2.542 * wavelet-LHL_glrlm_RunEntropy – 2.92 * 
wavelet-LHH_glcm_MaximumProbability + 1.146 * wave-
let-LHH_gldm_DependenceVariance + 2.239 * wavelet-LHH_
gldm_LargeDependenceHighGreyLevelEmphasis + 4.135 
* wavelet-HLL_glrlm_RunLengthNonUniformity-
Normalised – 1.645 * wavelet-HLH_firstorder_Maxi-
mum + 2.751 * wavelet-HLH_firstorder_Uniformity 
– 1.806 * wavelet-HHL_gldm_LargeDependenceLow-
GreyLevelEmphasis + 1.677 * wavelet-LLL_glrlm_Lon-
gRunHighGreyLevelEmphasis (Fig.  3a). OCT-omics 
scores were significantly higher in the NPDME group 
than in the PDME group in both the training and test 
sets (p < 0.001) (Fig.  3b). OCT-omics scores positively 
correlated with CST reduction after treatment (R = 0.44, 
p < 0.001) (Fig.  3c). In both the training and test sets, 
DCA showed consistently superior net benefit compared 
with the “Treat none” strategy across all threshold proba-
bilities and outperformed the “Treat all” strategy across a 
substantial portion of the threshold range, indicating that 
the OCT-omics score can provide a superior net benefit 
while minimising unnecessary treatment (Fig.  3d), indi-
cating OCT-omics scores’ value in predicting treatment 
response in DME patients.

Evaluation of overall performance in multiple models
The OCT-omics classification models (logistic, SVM, 
and BPNN) demonstrated strong discriminative abili-
ties in both the training and test sets. In the training set, 
the logistic classifier achieved a sensitivity of 0.904 and 
a specificity of 0.741; the F1 score was 0.887, and the 
AUC was 0.910. The SVM classifier showed a sensitivity 
of 0.923 and a specificity of 0.667; the F1 score was 0.881 
and the AUC was 0.897. The BPNN classifier exhibited a 
sensitivity of 0.962 and a specificity of 0.926; the F1 score 
was 0.962 and the AUC was 0.982. In the test set, the 
classifiers maintained their discriminative capabilities. 

The logistic classifier achieved a sensitivity of 0.783 and a 
specificity of 0.727, with an F1 score of 0.818 and an AUC 
of 0.905. The SVM classifier showed a sensitivity of 0.826 
and a specificity of 0.636, with an F1 score of 0.826 and 
an AUC of 0.885. The BPNN classifier exhibited a sensi-
tivity of 0.913 and a specificity of 0.636, with an F1 score 
of 0.875 and an AUC of 0.929.

Table  2 summarises the results, highlighting the 
robustness and generalisability of the developed OCT-
omics classification models. High sensitivity values 
indicate efficacy in identifying positive cases (NPDME), 
whereas high specificity values indicate efficacy in identi-
fying negative cases (PDME). F1 scores provide an overall 
assessment of model performance in terms of balanc-
ing specificity and sensitivity. The AUC values highlight 
discriminative power in distinguishing between PDME 
and NPDME subgroups according to OCT-omics fea-
tures. Figure 4 visually represents the model performance 
through confusion matrices and ROC plots, providing an 
intuitive understanding of classifier performance and fur-
ther supporting their discriminative ability.

In summary, the OCT-omics classification models 
exhibit robust performance and hold potential clinical 
implications. These findings establish OCT-omics as a 
non-invasive tool for predicting individualised treatment 
responses and assessing retinal pathologies, laying the 
foundation for future research in this area.

Clinical implications of the pretreatment OCT-omics 
prediction model
Figure 5 illustrates the typical case with long-term anti-
VEGF intravitreal treatment outcomes and predictions 
based on the OCT-omics model. The patient, a 55-year-
old woman, underwent evaluation using the OCT-omics 
prediction model developed in this study.

Figure  5a shows the long-term status of the patient’s 
right eye. The initial CST was 697  μm, and the OCT-
omics score assigned by the prediction model was − 1.27. 
The SVM model predicted a 41% probability for NPDME, 
while the BPNN model predicted a 21% probability for 
NPDME. Subsequent treatments did not lead to signifi-
cant improvement in DME, as indicated by persistently 
high CST values: 731 μm after three treatments, 557 μm 
after six treatments, and 599 μm after 14 treatments. Fig-
ure 5b shows the long-term status of the patient’s left eye. 
The initial CST was 755  μm, and the OCT-omics score 
assigned by the prediction model was 1.79. The SVM 
model predicted a 69% probability for NPDME, while the 
BPNN model predicted an 88% probability for NPDME. 
This eye displayed a more favourable response to subse-
quent treatments; CST gradually decreased to 339  μm 
after three treatments, 274 μm after six treatments, and 
317 μm after 14 treatments.
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Fig. 2 Images and ROI segmentation schematics of representative NPDME and PDME cases. (a) Representative NPDME case: 48-year-old woman with 
left eye involvement, initial CST of 842 μm, and baseline BCVA of counting fingers. After the receipt of three anti-VEGF treatments over 71 days, the CST 
substantially decreased to 141 μm and BCVA improved to 20/200. (b) Representative PDME case: 57-year-old man with right eye involvement, initial CST 
of 347 μm, and baseline BCVA of 20/40 (comparatively better than representative NPDME case). However, after the receipt of three anti-VEGF treatments 
over 90 days, the CST substantially increased to 639 μm and the BCVA decreased to 20/80. (c, d). Schematics illustrating the ROI segmentation procedure 
based on initial pretreatment OCT images for the two cases described above (a and b); the ROI comprises the region from the inner limiting membrane 
to the external limiting membrane
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These retrospective findings highlight the predictive 
power of the pretreatment OCT-omics model in assess-
ing the long-term prognosis of DME. The OCT-omics 
model provides valuable insights into potential treatment 
responses and disease progression in individual patients. 
It holds promise as a valuable tool for clinicians to make 
informed decisions and tailor treatment strategies for 
patients with DME.

Discussion
In this study, we introduced the concept of OCT-omics, 
which combines OCT with radiomics analysis to improve 
the overall understanding of inner retinal layers in DME. 
By exploring the predictive capabilities of the OCT-omics 
classification model in assessing the response to anti-
VEGF treatment in DME patients, it provides a compre-
hensive and quantitative evaluation of retinal pathology, 
offering a promising paradigm for precise and personal-
ized management strategies.

Table 2 Performances of predictive models in terms of treatment responses in patients with DME
Training set Test set

Logistic SVM BPNN Logistic SVM BPNN
SEN 0.904 0.923 0.962 0.783 0.826 0.913
SPE 0.741 0.667 0.926 0.727 0.636 0.636
ACC 0.848 0.835 0.949 0.765 0.765 0.824
PPV 0.870 0.842 0.962 0.857 0.826 0.840
NPV 0.800 0.818 0.926 0.615 0.636 0.778
F1 0.887 0.881 0.962 0.818 0.826 0.875
AUC 0.910 0.897 0.982 0.905 0.885 0.929
SEN, sensitivity; SPE, specificity. ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; F1, F1 score; AUC, area under the receiver operating 
curve

Fig. 3 OCT-omics model evaluation and correlation analysis. (a) Coefficient distribution of the 11 features included in the logistic regression model. 
(b), Violin plots comparing OCT-omics scores between NPDME and PDME groups in the training and test sets. (c) Scatterplot showing the correlation 
between OCT-omics score and rate of CST reduction after treatment in the training set. (d) Decision curve analysis curves of the OCT-omics model in the 
training and test sets
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Fig. 5 Retrospective follow-up of a patient with DME in both eyes after anti-VEGF treatment. (a) Long-term status of DME in the right eye. (b) Long-term 
status of DME in the left eye

 

Fig. 4 Classification performances of logistic, SVM, and BPNN models in training and test sets. (a). Confusion matrices for logistic, SVM, and BPNN models 
in the training set. (b) ROC curves for logistic, SVM, and BPNN models in the training set. (c) Confusion matrices for logistic, SVM, and BPNN models in the 
test set. (d) ROC curves for logistic, SVM, and BPNN models in the test set
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The advent of anti-VEGF therapy significantly trans-
formed the treatment landscape for DME. However, 
challenges such as safety concerns related to repeated 
injections, high costs, and variable treatment responses 
remain [8]. PDME rates ranging from 23% to 40% in 
various studies [24, 25]. In our study, PDME eyes consti-
tuted 33.63% of all cases, which is in line with previous 
reports. Due to the lack of a consensus on the definition 
and optimal management of PDME [14, 15], treatment 
strategies such as monthly or three loading doses, pro re 
nata (PRN), and treat and extend (T&E) are widely used 
[26, 27]. In our research, we explored PDME based on 
the completion of three anti-VEGF injections, consistent 
with current clinical practice. Additionally, we used the 
dynamic thresholds for PDME assessment based on the 
initial CST, providing a novel objective metric for evalua-
tion of treatment response. These exploratory approaches 
will advance DME management and lay the foundation 
for further investigations. Previous studies have indicated 
that early initiation of anti-VEGF therapy and favorable 
treatment response are associated with better long-term 
outcomes [28]. Although our cross-sectional study did 
not include long-term follow-up data, we observed con-
sistent treatment outcomes in some patients with long-
term PDME who received anti-VEGF therapy. Further 
studies with larger sample sizes and longer follow-up 
periods will provide valuable insights into the long-term 
outcomes of patients with DME and the potential appli-
cations of our proposed method in clinical practice.

OCT has revolutionised DME management and 
research by providing a high-resolution, non-invasive, 
and rapid imaging modality [29]. Various OCT-based 
DME classification approaches, such as the “SAVE” clas-
sification [30] and “TCED-HFV” grading protocol [31] 
have been developed to quantitatively analyse changes in 
retinal structure, providing valuable insights for clinical 
decision-making. However, there remains a substantial 
gap in establishing consensus and guidelines for reliably 
predicting treatment outcomes using OCT parameters 
[32] Previous studies have explored various quantitative 
parameters, such as DRIL and ellipsoid zone/external 
limiting membrane integrity, as potential predictors of 
DME treatment response [14, 33]. However, most stud-
ies of DRIL have been qualitative (presence or absence) 
or semi-quantitative (measuring absolute length or pro-
portion), limiting their predictive power [12]. In the pres-
ent study, OCT-omics as a novel quantitative analysis 
approach that utilises deeper features from OCT images 
of the retina, facilitating the transition from visual inter-
pretation to data-driven analysis. There is a need to estab-
lish standardised image processing and feature screening 
protocols, as well as more interpretable and clinically 
applicable OCT-omics models, to further advance the 
field of DME research and management.

Machine learning proves to be an effective tool in 
addressing complex classification problems encountered 
in the screening, diagnosis, and categorization of patients 
with DME [34]. Previous studies have predominantly 
focused on demographic indicators, laboratory tests, and 
established OCT parameters to predict DME treatment 
efficacy [35]. In contrast, the present study combines 
OCT-omics with machine learning, enabling the inte-
gration of comprehensive quantitative predictive indica-
tors. The robustness of this approach is demonstrated by 
its performance evaluation metrics. Future research may 
involve further expansion of the training dataset, explora-
tion of techniques such as automatic segmentation based 
on deep learning to improve feature extraction, and utili-
sation of other emerging technologies to enhance the 
precision and individualisation of DME management.

It is crucial to acknowledge the limitations of this study, 
particularly its retrospective nature and reliance on sin-
gle-center data. The inherent biases such as selection 
bias, incomplete data, and potential confounding vari-
ables, can affect the generalizability of results to broader 
populations or diverse healthcare settings. However, 
despite these limitations, the study’s strengths, notably 
as the inaugural exploration of OCT-omics in assessing 
DME, offer significant insights into pioneering a novel 
research methodology for clinical decision-making. Mov-
ing forward, prospective studies encompassing larger 
cohorts and a comprehensive exploration of various ROI 
layers (outer retinal layer, whole retinal layer, choroidal 
layer) are imperative to validate and build upon these ini-
tial findings. On the basis of our proposed OCT-omics 
methodology, there is a pressing need for multicenter, 
large-sample, prospective studies with nuanced subgroup 
analyses at diverse levels, encompassing different demo-
graphics, medications, and other variables. These efforts 
are pivotal for steering towards a more evidence-based 
approach in understanding and managing DME.

Conclusions
In conclusion, this study introduces a pioneering meth-
odology, OCT-omics, which integrates OCT imaging 
with radiomics analysis to comprehensively assess DME. 
The developed radiomics model demonstrates promising 
predictive capabilities in evaluating treatment responses 
and propels future research paradigm for individualized 
DME management.
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