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adhesion [10]. Anoikis is a barrier to tumor metastasis, 
and tumor progression and metastasis need to overcome 
anoikis [11]. Cancer cells can overcome anoikis by chang-
ing the integrin repertoire expression [12, 13], promoting 
EMT [14, 15], and regulating anoikis resistance caused 
by oxidative stress or hypoxia [16–18]. Cancer cells also 
act on platelets. Cancer cells can release platelet agonists 
(ADP, thrombin, and TXA2), induce platelet activation 
and factor release, and interact with platelets to pro-
mote tumor angiogenesis and metastasis [19–24]. Tumor 
cells from primary tumors invade the matrix and base-
ment membrane, enter the blood flow, and form circu-
lating complexes with leukocytes and platelets [25]. The 
interplay between platelets and circulating cancer cells 
produces tumor microemboli, which may block distant 
organs and promote the interplay of the endothelium 
[26]. The formation of tumor microemboli is deemed a 
crucial step in tumor metastasis and colonization dur-
ing the intravascular phase. Metastasis is a key event in 
cancer-related deaths [27]. Tumor metastasis is closely 

Introduction
Platelets protect tumor cells from mechanical dam-
age caused by natural killer cell lysis and hemodynamic 
shear stress, which can discharge cytokines, secondary 
mediators, and growth factors, thus increasing invasion, 
epithelial–mesenchymal transition (EMT), and extrava-
sation of tumor cells and promoting angiogenesis and 
vascular remodeling [1–6]. In addition, platelets can 
induce resistance to anoikis by activating YAP1 signaling 
[7–9]. Anoikis is a form of apoptosis caused by the loss 
of extracellular matrix (ECM) adhesion or improper cell 
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Abstract
Platelets not only participate in thrombosis and hemostasis but also interact with tumor cells and protect them 
from mechanical damage caused by hemodynamic shear stress and natural killer cell lysis, thereby promoting their 
colonization and metastasis to distant organs. Platelets can affect the tumor microenvironment via interactions 
between platelet-related factors and tumor cells. Metastasis is a key event in cancer-related death and is associated 
with platelet-related factors in lung, breast, and colorectal cancers. Although the factors that promote platelet 
expression vary slightly in terms of their type and mode of action, they all contribute to the overall process. 
Recognizing the correlation and mechanisms between these factors is crucial for studying the colonization of 
distant target organs and developing targeted therapies for these three types of tumors. This paper reviews studies 
on major platelet-related factors closely associated with metastasis in lung, breast, and colorectal cancers.
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associated with platelet-related factors. This strategy 
opens new prospective avenues for developing therapeu-
tic strategies for lung, breast, and colorectal cancers.

Lung cancer and platelet-related factors
Lung cancer is the leading cause of cancer-related death 
worldwide [28]. According to the National Center for 
Health Statistics, approximately 127,750 individu-
als in the United States die annually from lung cancer 
[29]. Non-small cell lung cancer (NSCLC) accounts for 
approximately 80% of all lung cancers, and its incidence 
is increasing rapidly [30]. There are usually no obvious in 
the early stage of lung cancer, so it is necessary to find an 
appropriate screening method. MicroRNAs (miRNAs), 
long noncoding RNAs (lncRNAs) and exosomal lncRNAs 
can be regarded as noninvasive early biomarkers for lung 
cancer detection [31–33]. At present, many antitumor 
drugs, such as curcumin, cisplatin and doxorubicin, have 
been developed for the treatment of lung cancer [34–36]. 
In addition, treatment methods targeting the AMPK sig-
naling pathway in lung cancer have been proposed [37]. 
However, it is crucial to clarify the mechanism of lung 
cancer for its diagnosis and treatment because platelets 
are related to the growth and metastasis of lung cancer 
[38].

Programmed death-ligand 1 (PD-L1)
PD-L1 is the principal ligand of programmed death 
1 (PD-1) [39]. PD-1 (CD279) plays an important role 
in maintaining the tolerance of peripheral and central 
immune cells by binding to the ligands PD-L1 (B7-H1) 
and PD-L2 (B7-DC). Platelets from patients with NSCLC 
express PD-L1, which restrains CD4 + and CD8 + T cells 
[38, 40, 41]. Blood platelets often contact lung cancer 
cells both in vivo and in vitro. Platelets can also absorb 
PD-L1 from cancer cells in a manner dependent on fibro-
nectin, GPIbα, and integrin α5β1 [38]. EGFR activation 
by EGF stimulation or mutation can decrease the expres-
sion of PD-L1 in cancer cells through the p-ERK1/2/p-
c-Jun pathway, which plays an important role in the 
platelet-induced upregulation of PD-L1 in tumor cells 
[42]. The expression of PD-L1 can predict the response 
and overall survival (OS) rate in lung cancer patients [43]. 
PD-L1 is expressed in many malignant tumors and can 
be transferred from tumor cells to platelets in the form 
of integrins, thereby playing important roles in tumor 
immune escape [38, 43]. PD-L1 is related not only to 
tumor stage and metastasis but also to the prediction of 
immune checkpoint inhibition (ICI) [38].

P-selectin
Selectin is a key cell adhesion molecule that usually 
exists in platelet α particles. Generally, no or persistently 
low expression levels are observed in the resting state. 

When platelets are stimulated, P-selectin (CD62P) is 
promptly transferred to their surface through membrane 
fusion; thus, P-selectin is usually chosen as a marker of 
platelet activation [44, 45]. Sialyl-LewisX (sLeX) and 
its isomer sialyl-LewisA (sLeA) are the minimal rec-
ognition motifs for all selectins and are synthesized 
by α2,3-sialyltransferases, α1,3-fucosyltransferases IV 
or VII, N-acetyl glucosaminyltransferases, and β1,4-
galactosyltranferases. The combination of selectins with 
carbohydrates normally requires a glycoprotein scaffold, 
and P-selectin glycoprotein ligand-1 (PSGL-1) is the 
most characteristic ligand assembled at the tips of micro-
villi on the surface of white blood cells [46–48]. PSGL-1 
is expressed on different cell surfaces. PSGL-1 interacts 
with P-selectin to initiate platelet-mediated cell adhesion. 
Activated platelets and endothelial cells express P-selec-
tin, which interacts with PSGL-1 to aggregate activated 
platelets on leukocytes, progressing to activated endothe-
lial cells. P-selectin mediates the aggregation of activated 
platelets with cancer cells and the adhesion of cancer 
cells to activated endothelial cells [49]. Circulating tumor 
cells act on the normal endothelium in a leukocyte-like 
manner and adhere to the endothelium of the metastatic 
site via adhesion molecules [50] (Fig. 1). Activated plate-
lets act on lung cancer cells via PSGL-1, leading to dis-
tant hematogenous metastasis of lung cancer cells [51].

Integrins
Integrin is a cell-matrix adhesion molecule that not only 
provides mechanical engagement of the cell to the extra-
cellular matrix but also transduces signals related to can-
cer and malignant tumors. Integrins have two primary 
functions: mechanically linking cells to the extracellular 
matrix (ECM) and initiating signal transduction path-
ways. In other words, they serve as both the physical 
connection between cells and the ECM and as initiators 
of signaling processes [52]. Integrins are large glycopro-
teins composed of a group of noncovalently related type 
I transmembrane α- and β-subunits [53, 54]. There are 
two integrin subgroups in platelets, β1 and β3, which 
can compose five human platelet integrins [55]. Two β3 
integrins exist on platelets, namely, αIIbβ3 and αvβ3 [56, 
57]. Integrins are primary regulators of cell adhesion, dif-
fusion, and migration. Integrins play important roles in 
promoting oncogenic growth factor receptor (GFR) sig-
naling and GFR-dependent cancer cell invasion, as well 
as in determining the colonization of metastatic sites and 
promoting the survival of circulating tumor cells [58].

Integrin αIIbβ3
The integrin αIIbβ3 is the main integrin on platelets and 
is also referred to as the glycoprotein GPIIb/IIIa (CD41/
CD61) complex. This integrin is essential for normal 
platelet function. The integrin αIIbβ3 is also produced 
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in lung cancer cells [59]. Notably, integrin αIIbβ3 can 
recognize RGD peptide-binding sequences on different 
adhesive proteins, such as fibrinogen and von Willebrand 
factor (VWF). The main function of integrin αIIbβ3 is to 
promote platelet aggregation through its binding with 
plasma fibrinogen. Its dimeric structure ensures the 
effective linkage of platelets [60]. Transmitting bidirec-
tional signals is a key feature of integrin αIIbβ3. In the 
resting state, integrin αIIbβ3 is in an inactive conforma-
tion. However, the affinity of the extracellular domain for 
this ligand is low. Under agonist stimulation, the cyto-
plasmic tail of integrin αIIbβ3 can bind to intracellular 
proteins, especially talin or kinin. This combination leads 
to intracellular and transmembrane separation. The inte-
grin αIIbβ3 complex undergoes a conformational change 
in its extracellular domain, transitioning from a low-
affinity (inactive) state to a high-affinity (active) state for 
its ligand (fibrinogen) [61]. According to the literature, 
integrin αIIbβ3 exists in different tumor cells [62–65], 
promoting cancer cell adhesion and invasion [63–66].

Integrin αvβ3
Integrin αvβ3 is considered a recognized marker of 
breast, lung, and pancreatic cancers [67, 68]. Integrin 
αvβ3 can trigger nonanchored cell survival and tumor 
metastasis without ligand binding [69]. The expression 
of integrin αvβ3 is necessary for inducing the stem-
like properties of lung cancer cells [67]. Integrin αvβ3 
is usually not produced by epithelial cells and has been 
shown to be a remarkable regulator of tumor angiogen-
esis [70–72]. The fibrin-fibronectin complex induces 
the activation of integrin αvβ3, which triggers proin-
vasive EMT signaling and invasive protrusions in can-
cer cells [73, 74]. In tumor cells, integrin αvβ3 not only 

phosphorylates the adaptor protein p130 CRK-associated 
substrate (p130CAS) but also induces adhesion-depen-
dent activation of steroid receptor coactivator (Src) and 
focal adhesion kinase (FAK). These signaling events lead 
to the survival, proliferation, and invasion of tumor cells 
in combination with the ECM [67, 68]. The inhibition of 
integrin αvβ3 binding to ECM ligands can directionally 
block endothelial cell-mediated tumor metastasis and 
angiogenesis. Moreover, integrin-blocking agents have 
become a potential strategy for targeted therapy [52]. In 
lung cancers, clusters of integrin αvβ3 emerge on the sur-
face of suspended cells. This clustering is mediated by the 
interplay between galectin-3 and integrin αvβ3, which is 
irrelevant to its ligand binding domain [67]. Unligated 
integrin αvβ3 can drive tumor cells toward a stem-like 
state, whereas when connected to its ligands, it can con-
tribute to ECM-driven cell invasion and proliferation [68] 
(Fig.  2). Compared with blocking tumor integrin αvβ3 
alone, blocking both platelet integrin αIIbβ3 and tumor 
integrin αvβ3 simultaneously yields greater antiangio-
genic and antitumor effects. These findings indicate that 
antagonists targeting both platelets and endothelial inte-
grins may have clinical efficacy.

Autotaxin
Autotaxin (ATX) is a unique member of the nucleotide 
pyrophosphatase family. ATX induces lysophospholi-
pase D (lysoPLD) activity, which catalyzes lysophos-
phatidic acid (LPA) production [9]. By producing LPA, 
ATX and/or lysoPLD can promote tumor progression by 
providing a favorable microenvironment for tumor cell 
invasion and angiogenesis [75]. ATX is a multidomain 
protein consisting of two somatomedin B (SMB1,2)-like 
domains, a catalytic phosphodiesterase (PDE) domain 

Fig. 1 Stimulated endothelial cells and activated platelets express P-selection (CD62P), which interacts with PSGL-1 for leukocyte rolling on stimulated 
endothelial cells. P-selectin mediates the heterotypic aggregation of activated platelets with cancer cells and adhesion of cancer cells to stimulated en-
dothelial cells. Circulating tumor cells interact with the normal endothelium of the target organ in a leukocyte-like manner and attach to the endothelium 
of the future metastasis site by using the adhesion molecules of the leukocyte adhesion cascade
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and a nuclease-like domain [76]. Compared with that in 
healthy lung tissue, ATX overexpression in lung cancer 
tissue is significantly related to poorly differentiated or 
undifferentiated cells [77, 78].

VEGF and bFGF
Angiogenesis is an extremely important process in the 
development and metastasis of tumors. Tumor cells 
attempt to obtain an independent blood supply through 
a series of processes, including the release of proangio-
genic factors and binding to receptors on vascular endo-
thelial cells [79–81]. The interaction between tumor 
cells and platelets leads to platelet activation. The major 
angiogenic factors released by the alpha granules of acti-
vated platelets include vascular endothelial growth fac-
tor (VEGF) and basic fibroblast growth factor (bFGF) 
[82–84]. Both VEGF and bFGF are considered key regu-
lators of angiogenesis [85, 86]. The VEGF family consists 
of seven secreted glycoproteins, namely, VEGF-A, -B, -C, 
-D, -E, -F, and placental growth factor (PlGF). VEGF-A 
is the most effective factor for angiogenesis [87–89]. In 
addition, VEGF can be secreted by multiple cell types, 
including endothelial cells, epithelial cells of the retina, 
macrophages, stromal cells, and malignant cells. The 
main receptors of VEGF include VEGFR-1, VEGFR-2, 
and VEGFR-3 [90, 91]. The binding of VEGF and VEGFR 
induces receptor dimerization, which leads to the activa-
tion of tyrosine kinases in cells, thus exerting their bio-
logical effects in cells [87]. In vitro, VEGF and bFGF can 
induce the proliferation, migration and differentiation of 
angioblasts [92, 93]. Angioblasts build the primary vas-
cular plexus [94]. However, VEGF and bFGF regulate 

angiogenesis differentially. Angiogenesis can be driven 
by VEGF alone but not by bFGF [95]. NSCLC cells can 
secrete VEGF, increase the number of VEGF and VEGF 
receptors, and subsequently promote angiogenesis and 
metastasis [96–98]. However, bFGF- targeted therapy for 
lung cancer has limitations. Blocking bFGF can inhibit 
cell growth but promote cell invasion [99]. The overex-
pression of bFGF may indicate poor prognosis in patients 
with lung cancer [100].

Breast cancer and platelet-related factors
Breast cancer (BC) is the most common malignancy in 
women [101]. Currently, the 5-year overall survival rate 
of patients with BC without metastasis is > 80% [102]. 
However, 20–30% of patients with BC develop metasta-
sis after primary tumor treatment [103]. Furthermore, 
metastasis is the primary cause of death in patients with 
BC [104], and platelet-related factors are associated with 
tumor metastasis.

PD-L1
PD-L1 expression was independently detected in cir-
culating tumor cells and platelets from patients with 
metastatic BC [105]. The platelet PD-L1 expression level 
markedly differed between and within patients [105]. 
This heterogeneity aligns with the varying sensitivities of 
patients to immune checkpoint inhibition therapy [106, 
107].

P-selectin
P-selectin exists on the surface of endothelial cells and 
platelets. PSGL-1 is the primary ligand of P-selectin and 

Fig. 2 Integrin signaling generated by binding to extracellular matrix (ECM) ligands occurs. In the absence of ligand binding, αvβ3 integrin recruited 
kras and src to drive cell reprogramming events, which led to phenotypic changes, thus promoting stem dryness, metastasis and drug resistance. Fibrin-
fibronection complex induces the activation of αvβ3 integrin, which triggers Survival, prolifera on, adhesion, migra? on, invasion in cancer cells
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is responsible for leukocyte rolling on active endothelial 
cells [108]. In the resting state, P-selectin is expressed at 
a low level. In the activated state, most P-selectin mole-
cules are transferred from in-granules to platelet mem-
branes [109]. P-selectin initiates interactions between 
platelets and sialylated fucosylated mucins in circulat-
ing tumor cells [25, 110]. Furthermore, P-selectin par-
ticipates in platelet signaling through protein kinase 
B (Akt), leading to the phosphorylation of the Src fam-
ily kinases Fyn and Hck, as well as Erk. These processes 
appear to be prerequisites for platelet granule secretion 
and aggregation [111–113]. P-selectin interacts with 
intracellular talin-1 and subsequently activates integrin 
GP IIb/IIIa, resulting in the P-selectin-GP IIb/IIIa-talin 
complex and the accumulation of platelets in tumor tis-
sues [114]. P-selectin can activate additional intracellular 
signaling pathways that are beneficial for the secretion 
and aggregation of α-granules and dense granules [109]. 
Low-molecular-weight heparin (LMWH) combines with 
P-selectin and simultaneously inhibits the plasma coagu-
lation cascade. Therefore, it is a potentially valuable drug 
for cancer treatment [109].

Lysophosphatidic acid
Lysophosphatidic acid (LPA) is a bioactive lipid. It 
serves as a multifunctional lipid mediator that regu-
lates cell growth, movement, and differentiation [115]. 
LPA induces several cellular activities, including adeny-
lyl cyclase activation, Ca2+ mobilization, and mitogen-
activated protein kinase stimulation [116]. There are six 
distinct G protein-coupled receptors: LPA1, LPA2, LPA3, 
LPA4, LPA5, and LPA6 [75, 116–118]. LPA is produced 
by aggregated platelets during tumor cell-induced plate-
let aggregation. It actss as a paracrine factor in tumor 
cells through the LPA1 receptor, thereby promoting the 
proliferation, migration, and secretion of proinflamma-
tory factors [119].

Autotaxin
ATX can be stored in platelet α-particles. Platelet-derived 
lysophosphatidylcholine degrades LPA [9]. β3 integrin 
may bind ATX on the surface of cancer cells/platelets, 
providing a mechanism for the production of LPA near 
its receptor, thus enhancing the spread of cancer cells 
[119]. The interplay between circulating tumor cells and 
platelets induces platelet aggregation and LPA release. In 
the blood, LPA acts on tumor LPA1 to promote survival 
and invasion and may act on platelet LPA5 to promote 
platelet aggregation [119–121]. Moreover, LPA promotes 
the migration, invasion, and proliferation of BC cells in 
vivo [122].

Integrin αvβ3
Breast and lung cancers share similarities, as both express 
the integrin αvβ3. Furthermore, their mechanisms of 
action in cancer cells are similar. Integrin αvβ3 has differ-
ent functions in tumors, such as promoting angiogenesis, 
cell proliferation, invasion, and metastasis in different 
cancers [67, 69]. The integrin αvβ3 ligand L1 cell adhe-
sion molecule (L1-CAM) expressed on BC cells is nec-
essary for BC metastasis to the lungs, where it allows 
tumor cells to combine and extravasate through the lung 
endothelium [123]. Specific integrins can dominate the 
localization and activity of matrix metalloproteases to 
promote invasive migration. For example, integrin αvβ3 
controls matrix metalloproteinase 9 (MMP9) in MDA-
MB-435 BC cells [124]. Integrin β3 and KRAS interact 
via galectin-3 propels to activate RALB. RALB subse-
quently activates TANK-binding kinase 1, which activates 
the NF-κB pathway, thus promoting cell survival [69]. 
Ligated integrins activate FAKs and other downstream 
signaling molecules, resulting in anchorage-dependent 
survival and proliferation [125]. However, unligated inte-
grins can induce a form of death called integrin-medi-
ated death (IMD) by activating the apoptosis pathway, 
thus negatively affecting the malignant characteristics of 
tumor cells [126].

VEGF and bFGF
Angiogenesis is an important process related to tumor 
development [79, 80], which regulated by proangiogenic 
factors (VEGF, bFGF, and PDGF) and the microenviron-
ment (hypoxia) [127, 128]. In breast cancer cells, VEGFR1 
mainly activates the MAPK/ERK1/2 and PI3K/AKT sig-
naling pathways, leading to tumor growth and EMT and 
thus promoting tumor invasion and metastasis [129]. In 
addition to promoting angiogenesis, bFGF is involved 
in plasminogen activator synthesis, cell growth and dif-
ferentiation, and tumor invasion [130, 131]. Some studies 
have shown that angiogenesis, tumor growth and metas-
tasis of breast cancer cells can be inhibited by blocking 
VEGFR1 and VEGFR2 [132–136], and the expression of 
bFGF is related to a shorter survival time in patients with 
tumors [137]. Bevacizumab is an effective treatment for 
metastatic breast cancer targeting VEGF ligands [138]. 
The success of VEGF- targeted drugs has encouraged the 
research on targeted therapy for breast cancer, indicating 
that targeting VEGF is a potentially valuable treatment 
for breast cancer.

Colorectal cancer and platelet-related factors
Colorectal cancer (CRC) is a major cause of death world-
wide [139]. CRC occurs mainly in the older population, 
with a median age > 60 years at diagnosis. However, pop-
ulation-based studies have reported that the incidence 
of CRC is greater in younger populations than in those 



Page 6 of 13Xue et al. Journal of Translational Medicine          (2024) 22:371 

aged > 50 years [140, 141]. Fecal occult blood tests and 
colonoscopy are the main screening methods for CRC; 
however, the invasive nature of colonoscopy limits its 
application [142]. Therefore, it is important to develop 
sensitive screening methods for colorectal cancer. Inves-
tigations on the expression of platelet-related factors 
have revealed their association with colorectal cancer 
cells [142]. These findings could lead to encouraging 
prospects for future colorectal cancer screening. Under-
standing the role of platelet-related factors in CRC may 
offer new insights for the diagnosis, treatment, and prog-
nosis of CRC.

Platelet-derived growth factor (PDGF)
PDGF is a nonhomogeneous molecule that exists in its 
active form as a dimer through the formation of four 
chain proteins: PDGF-A, PDGF-B, PDGF-C, and PDGF-
D. PDGF-A and PDGF-B can simultaneously form 
homodimers and heterodimers, whereas the PDGF-C and 
PDGF-D chains can only form homodimers. PDGF-AB is 
the most commonly detected form of PDGF-AB in the 

serum [143]. PDGFs have a series of biological functions 
and are induced by activating the tyrosine kinase recep-
tors (TKRs) PDGFR-α and PDGFR-β [144]. PDGFR-αα 
combines with all growth factors, including PDGF-AA, 
PDGF-AB, PDGF-BB, and PDGF-CC but not PDGF-DD. 
PDGFR-αβ combines with all growth factors, namely, 
PDGF-AB, PDGF-BB, PDGF-CC, and PDGF-DD, but 
not PDGF-AA. PDGFR-β combines with PDGF-BB and 
PDGF-DD. However, its interaction with PDGF-DD has 
not been determined [145] (Fig.  3). PDGFR/PDGF sig-
naling results from interactions between dimeric PDGF 
isoforms and PDGFRs. The specific binding of PDGF 
ligands to PDGFRs leads to dimerization of these recep-
tors, thus enhancing their stability through interactions 
with the receptors [146]. Changes in PDGFR family 
signaling play important roles in CRC. CRC is associ-
ated with PDGFR overexpression in tumors and tumor-
related stromal cells [145, 147]. Overexpression of 
PDGFRs in CRC is associated with invasion, angiogen-
esis, metastasis, low survival rates, and targeted therapies 
[142]. A high PDGF-AB blood concentration may be an 

Fig. 3 PDGFR-αα binds to all growth factors except PDGF-DD, PDGFR-bb binds to PDGF-BB and PDGF-DD, and PDGFR-αβ binds to all proteins except 
PDGF-AA. PDGFR/PDGF system initiate a complex cascade of MAP-kinase signaling to activate genes involved in angiogenesis, proliferation, invasion and 
metastasis
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important parameter for CRC recurrence [142]. In sum-
mary, PDGF-BB may be involved in the progression of 
CRC, maintaining angiogenesis by augmenting pericytes 
within tumors, which is related to disease severity [142]. 
PDGF-CC has similar mitogenic activity comparable to 
that of PDGF-AB and PDGF-BB and is also considered 
to be an important oncogene in the PDGF/PDGFR sig-
naling pathway due to its affinity for both PDGFR-αα 
and PDGFR-αβ. PDGF-CC induces angiogenesis in vivo 
[148]. Peripheral blood PDGF-C levels may be useful for 
the early diagnosis of CRC. In different types of cancers, 
PDGF-DD is upregulated; however, its role in CRC has 
not yet been determined [142]. The interplay between 
platelets and tumor cells improves their survival rate in 
the blood and promotes tumor metastasis [149, 150].

Glycoprotein VI (GPVI)
GPVI is a receptor for collagen, laminin, and fibrin [151–
153] and can regulate platelet functions such as adhesion, 
aggregation, and procoagulant activity. GPVI is a mem-
ber of the Ig superfamily and has two Ig domains (D1 
and D2), a stalk containing an O-glycosylation site, and 
a cytoplasmic tail for binding Src kinase and calmodulin 
[152, 154]. The signal transduction of GPVI relies on its 
association with the dimeric Fc receptor chain (FcRγ). 
GPVI activation results in the phosphorylation of two 
conserved tyrosine residues that are dependent on Src 
kinase, which binds to the tandem SH2 domain of Syk. 
Subsequently, a signaling cascade is initiated, leading to 
the activation of phospholipase Cγ2 [155]. Glycoprotein 
VI is thought to bind to galectin-3 (Gal-3) in tumor cells, 
inducing platelet activation and promoting metastasis in 
CRC cells [156].

Gal-3 is a member of the β-galactoside-binding lec-
tin family that is located mainly in the cytoplasm [157]. 
Gal-3 is present in the nucleus and on the cell surface 
and can be secreted into the circulation [158, 159]. As the 
main GPVI ligand in tumor cells, Gal-3 induces platelet 
activation and promotes BC metastasis [160]. The inter-
play between Gal-3 and GPVI promotes platelet acti-
vation, degranulation, and tumor cell transendothelial 
migration [160].

Autotaxin
ATX is a unique member of the ectonucleotide pyro-
phosphatase/phosphodiesterase (ENPP) family, which 
has lysoPLD activity and can convert lysophosphatidyl-
choline (LPC) into LPA [161–164]. LPA interacts with G 
protein-coupled receptors on the cell membrane, which 
can activate downstream signaling molecules, such as 
Ras, Rho, PLC, and PI3K [165]. In the early stage of CRC, 
the expression of ATX is positively correlated with tumor 
angiogenesis [166]. The up-regulation of ATX is related 
to cancer invasion and metastasis [9, 167].

VEGF and bFGF
Related studies have shown that the density of blood ves-
sels at the infiltrating edge of CRC tissue is significantly 
greater than that in other areas of the tumor [168], and a 
high density of blood vessels is related to CRC progres-
sion and metastasis [169]. Both VEGF and bFGF are con-
sidered key regulators of angiogenesis [85, 86]. VEGF-A 
is the main angiogenic factor in CRC and is related to 
poor prognosis [170]. VEGFR-1 is expressed in human 
CRC cells and participates in tumor progression and 
metastasis [171]. Inhibition of VEGF signaling can lead 
to a decrease in protein activity related to cell movement, 
which further reduces the invasion of CRC cells [172]. 
There is a self-regulating mechanism for angiogenesis 
in colon cancer. VEGF expression is up-regulated, while 
bFGF expression is down-regulated [173]. Increased 
angiogenesis is associated with poor prognosis in patients 
with CRC, and targeting angiogenesis is a good therapeu-
tic option. In the future, more drugs targeting angiogen-
esis will be developed, and we need to further explore 
drugs with high efficacy and minimal adverse effects.

Conclusions and perspectives
As an important source of circulating angiogenesis-
related factors, platelets can affect the tumor microenvi-
ronment through interactions with tumor cells. Different 
platelet-related factors have independent or overlapping 
effects on the proliferation and metastasis of tumors, and 
they cross-talk with each other to regulate tumor angio-
genesis and vascular integrity. High PD-L1 expression is 
observed in NSCLC, BC, and CRC [174]. Additionally, 
P-selectin expression is strongly and positively corre-
lated with PD-L1 expression [38]. In particular, lung and 
breast cancers highly express P-selectin, integrin αvβ3, 
VEGF, bFGF, and ATX. Moreover, breast cancer cells 
express high levels of LPA and ATX in addition to PD-L1, 
P-selectin, integrin αvβ3, VEGF, bFGF, and PDGF. Integ-
rin αvβ3 promotes bone metastasis through strengthened 
breast cancer cell adhesion [69]. Colorectal and breast 
cancers express high levels of ATX, PDGF, VEGF, bFGF, 
and GPVI. Overexpression of PDGF-AA/BB in patients 
with stage 4 breast cancer is associated with a relatively 
shorter survival time [175].

The inhibition of tumor proliferation and metasta-
sis has always been a focus of research. The interaction 
between platelet-related factors and tumors opens a new 
direction for research. In lung, breast, and colorectal can-
cers, we found that tumor cells interact with platelets and 
that different platelet-related factors have independent or 
overlapping effects on the proliferation and metastasis of 
tumors, as these factors can predict the degree of tumor 
progression, prognosis, and metastasis. Platelet-related 
factors are interconnected and engage in crosstalk, 
which introduces a novel concept for tumor treatment. 
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Targeting coexpressed platelet-related factors indepen-
dently expressed by certain tumor cells to block signaling 
pathways may inhibit tumor metastasis.

Therapeutic options targeting platelet-related factors 
are currently being investigated. PD-L1 is expressed in 
many different types of tumors and platelets in patients 
with metastatic BC [176]. Immune checkpoint inhibitors 
targeting PD-L1 and PD-L1 receptors have been verified 
for tumor treatment [177]. Medi4736 is an antagonist 
of PD-L1 that can inhibit the growth of human tumors 
[178]. Low-molecular-weight heparin (LMWH) and 
unfractionated heparin can bind to P-selectin and inhibit 
its function [110, 179, 180]. Targeting the activation and 
inhibition of integrin αIIbβ3 is a promising therapeutic 
strategy. Adapter protein (ADAP) promotes the activa-
tion of integrin αIIbβ3 [181, 182]. Some proteins are also 
believed to directly bind to the cytoplasmic tails of integ-
rin αIIb or β3 to inhibit the activation of integrin αIIbβ3 
[61]. Moreover, α-actin is valuable for keeping integrin 
αIIbβ3 inactive [183]. Therapeutic drugs targeting integ-
rin αIIbβ3, such as the integrin αIIbβ3 antibody fragment 
abciximab, antagonists, and small molecule inhibitors, 
have been used in clinical settings [184]. Therapeutic 
drugs targeting the integrin αvβ3 molecule, such as cilen-
gitide MRL-123, have been widely investigated for can-
cer and osteoporosis treatment [185]. Bevacizumab is 
an antiangiogenic agent, and the FDA approved bevaci-
zumab for the treatment of advanced NSCLC, metastatic 
breast cancer (mBC) and metastatic colorectal cancer 
(mCRC) [138, 186, 187]. Inhibitors of Src, Syk, and Tec 
tyrosine kinases block platelet activation via CLEC-2 
and GPVI. Phase II trials using human GPVI-blocking 
F(ab) ACT-017 have achieved encouraging results [155]. 
Glenzocimab targets platelet GPVI by binding to the D2 
domain of GPVI, inducing steric hindrance and structural 
modifications, thus inhibiting the interaction between 
GPVI and its main ligands [188]. PD173074 is an FGFR 
inhibitor that blocks small cell lung carcinoma (SCLC) 
growth both in vitro and in vivo [189]. LPA receptors 
are expressed in the vasculature and brain, which has led 
to consideration of the toxicity of LPA inhibitors. LPA3 
is restricted and abnormally expressed in many cancer 
lineages, making it a particularly attractive target [75]. 
Inhibitors against LPA and ATX monoclonal antibodies 
have been used in clinical trials for treating fibrosis but 
have not yet entered clinical trials for cancer treatment 
[190]. GLPG1690 is a new ATX inhibitor [191–193]. 
PDGFs play important roles in tumor occurrence and are 
upregulated in many different malignant tumors [194]. At 
present, numerous drug studies are underway with the 
aim of inhibiting cancer progression by targeting PDGF. 
For example, 6B3 is a high-affinity monoclonal anti-
body that can effectively neutralize PDGF-CC-induced 
PDGFR-α phosphorylation and activation [195]. 

MOR8457 is a PDGF antibody that can effectively bind to 
and neutralize PDGF-BB [196]. Compound P2 can effec-
tively inhibit PDGF-BB-induced autophosphorylation of 
PDGFR-β with low toxicity [197] (Table 1). However, the 
interactions of platelet-related factors with tumors are 
complex and require further exploration. Understanding 
these new mechanisms and exploring novel approaches 
to treat tumors in the future are therefore warranted.

Abbreviations
EMT  epithelial–mesenchymal transition
ECM  extracellular matrix
NSCLC  non-small cell lung cancer
miRNAs  MicroRNAs
lncRNAs  long noncoding RNAs
PD-L1  programmed death-ligand 1
LPA  lysophosphatidic acid
ATX  autotaxin
PDGF  Platelet-derived growth factor
GPVI  Glycoprotein VI
PD-1  programmed death 1
OS  overall survival

Table 1 Drug targeting platelet-related factors in the lung, 
breast and colorectal cancer
Cancer 
name

Platelet-
related 
factor

Targeted drug Drug trial phase Refs

Lung 
cancer

PD-L1 Medi4736 Clinical Phase [178]

P-selection LMWH Clinical Phase [110, 179, 
180]

Integrin 
αIIbβ3

Abciximab Clinical Phase [184]

Integrin 
αvβ3

Cilengitide 
MRL-123

Clinical Phase III [185]

ATX GLPG1690 Clinical Phase [191, 193]
VEGF Bevacizumab Approval [186]
bFGF PD173074 In vitro and in 

vivo
[189]

Breast 
cancer

PD-L1 Medi4736 Clinical Phase [178]

P-selection LMWH Clinical Phase [110, 179, 
180]

LPA LPA monoclo-
nal antibodies

Clinical Phase I [190]

ATX GLPG1690 Clinical Phase [191, 192]
Integrin 
αvβ3

Cilengitide 
MRL-123

Clinical Phase III [185]

VEGF Bevacizumab Approval [138]
bFGF PD173074 In vitro and in 

vivo
[189]

Colorec-
tal 
cancer

PDGF 6B3, MOR8457, 
Compound P2

Clinical Phase [195–197]

GPVI Glenzocimab Clinical Phase [188]
ATX GLPG1690 Clinical Phase [191]
VEGF Bevacizumab Approval [187]
bFGF PD173074 In vitro and in 

vivo
[189]
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ICIs  immune checkpoint inhibitors
sLeX  Sialyl-Lewis X
sLeA  sialyl-Lewis A
PSGL-1  P-selectin glycoprotein ligand-1
GFR  growth factor receptor
vWF  von Willebrand factor
ADAP  Adapter protein
Src  a steroid receptor coactivator
FAK  focal adhesion kinase
lysoPLD  lysophospholipase D
PDE  phosphodiesterase
VEGF  vascular endothelial growth factor
bFGF  basic fibroblast growth factor
PlGF  placental growth factor
BC  breast cancer
Akt  protein kinase B
LMWH  low molecular weight heparin
PDE  phosphodiesterase domain
L1-CAM  L1 cell adhesion molecule
MMP9  matrix metalloproteinase-9
IMD  integrin-mediated death
ITAM  immunoreceptor tyrosine-based activation motif
ENPP  ectonucleotide pyrophosphatase/phosphodiesterase
LPC  lysophosphatidylcholine
Gal-3  Galectin-3
CRC  colorectal cancer
TKRs  tyrosine kinase receptors
mBC  metastatic breast cancer
mCRC  metastatic colorectal cancer
SCLC  small cell lung carcinoma
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