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Abstract 

Background Post COVID‑19 condition (PCC) is a complication of SARS‑COV‑2 infection and can lead to long‑term 
disability.

Methods The present study was designed to analyse the gene expression patterns of PCC through bulk RNA 
sequencing of whole blood and to explore the potential molecular mechanisms of PCC. Whole blood was collected 
from 80 participants enrolled in a prospective cohort study following SARS‑CoV‑2 infected and non‑infected individu‑
als for 6 months after recruitment and was used for bulk RNA sequencing. Identification of differentially expressed 
genes (DEG), pathway enrichment and immune cell deconvolution was performed to explore potential biological 
pathways involved in PCC.

Results We have found 13 differentially expressed genes associated with PCC. Enriched pathways were related 
to interferon‑signalling and anti‑viral immune processes.

Conclusion The PCC transcriptome is characterized by a modest overexpression of interferon‑stimulated genes, 
pointing to a subtle ongoing inflammatory response.
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Background
After widespread vaccination campaigns and the emer-
gence of new viral variants, there is a decline in severe 
COVID-19 cases and related deaths. The focus has there-
fore shifted from acute COVID-19, a viral disease caused 
by SARS-CoV-2, to Post COVID-19 condition (PCC). 
Research efforts are now concentrated on patients that, 
despite the resolution of the symptoms associated with 
the acute infection, experience ongoing long-term com-
plications. The prevalence of fatigue after acute COVID-
19 ranges from 13 to 33% at 16–20  weeks post disease 
onset, and is similar to reported fatigue after other acute 
infections (e.g. Epstein Barr virus infection), which can 
lead to a diagnosis of post-infective fatigue syndrome 
(PIFS) [1]. The pathogenesis of PCC and PIFS remains 
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largely unclear, which presents a bottleneck for the devel-
opment of targeted therapies.

Past research has tended to report on PCC in hospital-
ized, adult patients. Less attention has been focused on 
adolescents and young adults with long-lasting symp-
toms after an initially mild COVID-19 infection, as 
evidenced by fewer published studies and common limi-
tations in the studies (e.g. absence of control group) [2, 
3]. The estimated prevalence of PCC among children and 
young adults varies from 16.5 to 25.2% [4–6], but greatly 
depends on both post-infection window and inclusion 
of a control group. Studies with a COVID-19 negative 
control group or a longer follow-up time tend to report 
lower PCC prevalence [7–9]. While studies in adults have 
identified changes in immune subsets and their tran-
scriptional profiles as common features in PCC [10–12], 
similar evidence is lacking in young people. Hypothetical 
PCC mechanisms include persistent antigen reservoirs 
[13, 14], reactivation of latent viruses [15], increased sys-
temic inflammation and autoimmunity [16].

As ongoing inflammation beyond the acute phase of 
infection may have implications in potential treatment 
modalities, a thorough assessment of how the immune 
system is involved in PCC pathophysiology is required. 
Whole blood bulk RNA sequencing, a powerful tech-
nique for the study of gene expression profiles, is per-
formed here to reveal transcriptional features of PCC in 
adolescents and young adults. The aims of the study are 
to identify differences at the transcriptome level which 
are associated with persistent symptoms after COVID-19 
convalescence, and which are not present in individuals 
experiencing uneventful COVID-19 recovery or in unex-
posed controls. This study investigates whole blood tran-
scriptomes in a prospective cohort of adolescents and 
young adults with and without microbiologically con-
firmed COVID-19 infection and blinded, rigorous PCC 
case assessment.

Methods
Enrolment of participants and collection of samples
Blood samples were obtained from 80 participants 
enrolled in the Long-Term Effects of COVID-19 in 
Adolescents and Young Adults (LoTECA) study, a pro-
spective, observational cohort study of non-hospital-
ized adolescents and young adults testing positive and 
negative for SARS-CoV-2 (ClinicalTrials.gov identifier: 
NCT04686734). A detailed recruitment procedure and 
selected data have been reported elsewhere [17–20]. All 
participants underwent a one-day investigational pro-
gram at our study center (Akershus University Hospi-
tal, Norway) at inclusion and at 6-month follow-up. The 
assessment included a standardized medical assessment, 
symptom surveys, biological sampling, and function 

testing. In this paper, results from a composite question-
naire containing validated inventories including the Chal-
der Fatigue Questionnaire[21], the De Paul Symptom 
Questionnaire [22], the Pediatric Quality of life Inven-
tory (PedsQL) [23], the Hospital Anxiety and Depression 
Scale [24] and a modified COVID-19 symptom inventory 
[25] were used to chart fatigue, post-exertional malaise, 
quality of life, depression/anxiety symptoms and infec-
tious/respiratory/cognitive symptoms respectively [19, 
20].

After the 6-month follow-up, all participants were 
classified as PCC cases/non-cases and PIFS cases/non-
cases according to their adherence to two standardized, 
operationalized definitions of PCC: the World Health 
Organization’s definition of Post COVID-19 Condition 
(PCC) and the Fukuda criteria for post-infectious fatigue 
syndrome (PIFS) [26, 27]. Classification was carried out 
rigorously, blinded for initial SARS-CoV-2 status and 
based on evaluation of all collected data and assessment 
of medical or psychiatric comorbidity. Of note, SARS-
CoV-2 negative participants were subject to testing of 
nasopharyngeal secretion and serology for SARS-CoV-2; 
both were confirmed to be negative. The sample selec-
tion for this sub study was based on reported fatigue, the 
hallmark symptom of PCC and PIFS, which was recorded 
using the Chalder Fatigue Questionnaire (CFQ) [21]. 
Selection based on CFQ numerical scores allowed for 
better contrast between the experimental groups with 
regards to symptom intensity and frequency, with higher 
scores pointing to higher symptom burden. Twenty 
SARS-CoV-2 positive participants with high fatigue score 
(numerical CFQ ≥ 21) and adherence to both the WHO 
PCC and the Fukuda PIFS criteria were selected for bulk 
RNA sequencing. Additionally, twenty SARS-CoV-2 pos-
itive participants with uncomplicated recovery, defined 
by low fatigue scores (numerical CFQ ≤ 11) and non-
adherence to PCC/PIFS case criteria were included. Fur-
thermore, forty SARS-CoV-2 negative participants were 
included as controls. The uninfected controls included 
twenty participants that did not report fatigue and 
did not adhere to PCC/PIFS case definitions, as well as 
twenty participants that were identified as fatigue-cases 
by the Chalder Fatigue Questionnaire (bimodal CFQ ≥ 4)

[21]. Thus, the experiment included four groups: SARS-
COV-2 positive cases with fatigue (SARS + F +), SARS-
COV-2 positive cases without fatigue (SARS + F-), and 
SARS-COV-2 negative cases with fatigue (SARS-F +) 
and without fatigue (SARS-F-) (Fig. 1). All selected par-
ticipants were female to avoid confounding due to gender 
differences in differentially expressed genes [28], to take 
into account a higher PCC prevalence among women 
[29], and for practical reasons since our cohort was com-
posed of 60% females [19]. This study was approved by 
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the Norwegian National Committee for Ethics in Medi-
cal Research and written informed consent was obtained 
from all participants (or their guardians).

Transcriptome amplification, library construction 
and sequencing
Total RNA was isolated from whole blood collected and 
stored in PAXgene® Blood RNA tubes (BD Bioscience, 
NJ, USA). RNA purification was performed according 
to the manufacturer’s protocol using the QIAsymphony 
SP (QIAGEN, Germany) and the QIAsymphony PAX-
gene Blood RNA kit (QIAGEN, Germany). RNA qual-
ity and concentration were appraised using an Agilent 
2100 Bioanalyzer (Agilent Technologies, CA, USA) and 
NanoDrop (Thermo Fisher Scientific, MA, USA). Prepa-
ration of RNA library, transcriptome sequencing using 
Illumina NovaSeq 6000 (Illumina, CA, USA), read quality 

assessment, mapping to the human reference genome 
version GRCh38 (Genome Reference Consortium) and 
gene expression quantification was conducted by Novo-
gene CO. LTD (Beijing, China). An expression matrix 
containing counts of 58 735 mRNA-Seq transcripts was 
used for downstream analyses.

Statistical analysis
The count data of the mRNA-Seq transcripts were nor-
malized using the Bioconductor package DESeq2 (ver-
sion 1.42.0) [30]. To identify differentially expressed 
genes related to PCC based on our prospective cohort 
design, we used DESeq2 by introducing an interac-
tion term between the SARS-CoV-2 indicator variable 
(SARS ±) and the fatigue caseness indicator variable (F ±), 
which adjusts the additional effect of SARS-CoV-2 com-
pared to non-fatigued groups.

Fig. 1 Flow diagram of study design. Participant allocation throughout the study is depicted in Fig. 1: baseline (A), follow‑up (B), transcriptome 
sequencing analysis (C). WHO World Health Organization; PCC Post COVID‑19 Condition; PIFS, post‑infectious fatigue syndrome
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To control the false discovery rate, the strictest Bon-
ferroni correction for multiple testing of our 58 735 
transcript features is too conservative and has low 
statistical power, which might be not able to identify 
truly significant transcript features. To increase the 
statistical power, we applied the Benjamini–Hochberg 
correction for multiple testing [31]. Mann Whitney-
U test was used for a group comparison of specific 
DEGs. To understand the biological functionality of 
the identified differential expressed genes associated 
with PCC, we performed over-representation analysis 
(ORA) based on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG), Gene Ontology (GO) and the Reac-
tome pathway databases using the WEB-based GEne 
SeT AnaLysis Toolkit (WebGestalt) [32]. The Web-
Gestalt 2019 version was used, which includes func-
tional categories KEGG Release 88.2, Gene Ontology 
accessed on 01/14/2019 and Reactome Version 66. In 
addition, enrichment analysis of transcription factor 
binding sites (TFBSs) was performed using the UniB-
ind enrichment tool [33], which can locate interactions 
between our identified genes and transcription factors 
to understand transcriptional regulation. For all the 
enrichment analyses, the FDR was kept under 5% using 
Benjamini–Hochberg correction for multiple testing.

To study whether differences in relative abundance of 
distinct cell types are related to PCC, we used CIBER-
SORTx [34] to estimate cell type proportions. The leu-
kocyte matrix containing 22 cell types blood signature 
(LM22) for 10 subtypes was used as reference data for 
gene expression deconvolution. The Dirichlet regres-
sion model was applied to jointly analyze the com-
position of the 10 cell types associated with SARS ± , 
F + /F- and SARS-fatigue interaction by adjusting age, 
body-mass index (BMI) and vaccine conditions of 
participants [35]. BMI, age and infectious agents may 
affect immune cell composition and may contribute to 
inter-sample variability [36], confounding the associa-
tion between PCC and immune cell subsets.

Furthermore, we explored relationships between 
differentially expressed genes (DEGs) and seven PCC 
related symptom variables (i.e., fatigue score, post-
exertional malaise, cognitive symptoms, respiratory 
symptoms, symptoms of depression, symptoms of anx-
iety, quality of life). Group-penalized multiresponse 
regression with group- and ridge-penalties was used to 
account for the correlations between the seven symp-
tom variables [37]. P-values of the DEGs correspond-
ing to the seven symptom variables were computed 
using the bootstrap.

design =∼ SARS + F + SARS : F Results
Participant characteristics
At the time of sampling, the recruited participants were 
at a mean of 216  days from SARS-COV-2 PCR testing. 
Mean age was 19.3  years. All participants were female. 
Participants in the SARS + /F + and SARS-/F + group 
reported markedly higher fatigue and post exertional 
malaise than the participants in the SARS + /F- and 
SARS-/F- groups. Similarly cognitive symptoms, res-
piratory symptoms and symptoms of anxiety or depres-
sion were more common in the SARS + /F + and 
SARS-/F + group than in the other two groups. The 
SARS + /F + group reported the lowest quality of life 
among the four groups. Further details are shown in 
Table 1.

A PCC transcriptional profile characterized 
by overexpression of 13 genes.
Whole blood derived transcriptome sequencing resulted 
in 58 735 profiled features. A global overview of the data 
through principal components analysis (PCA) did not 
reveal distinct clustering among the four experimen-
tal groups (Fig.  2). However, 13 genes were returned as 
differentially expressed in the SARS + /F + group versus 
SARS + /F- group after adjustment using the gene expres-
sion data from the SARS-/F + and SARS-/F- groups 
as control data. These DEGs were retained for further 
analysis. Interestingly, these 13 genes only showed dif-
ferential expression for participants that reported both 
fatigue symptoms and a prior SARS-COV-2 infection. 
The comparisons of SARS + /F- versus SARS-/F- groups 
and SARS-/F + versus SARS-/F- groups did not show 
any differentially expressed genes after multiple testing 
correction. To illustrate, the expression levels of OAS3, 
a member of the OAS antiviral effector protein family, 
show similar levels between symptomatic and symptom-
free participants in the SARS-CoV-2 negative group, but 
show different levels in the COVID-19 positive group 
(Fig.  3). The volcano plot, the heat map and the output 
data table contain the log2 fold-change as well as the 
adjusted p-values for the 13 DEGs (Fig.  4, Additional 
file  1: Table  S1). Of note, RSAD2, an interferon-induci-
ble member of the radical S-adenosylmethionine (SAM) 
superfamily of enzymes which inhibits viral replication 
and assembly, was the most upregulated gene and OASL, 
an enhancer of antiviral activity through retinoic acid-
inducible gene I (RIG-1)-based signalling, had the lowest 
p-value [38, 39]. Elevated expression was further found 
for IRF7, a member of the interferon regulatory tran-
scription factor family, and several interferon-stimulated 
genes (ISGs), including the IFIT family of viral replication 
inhibitors (IFIT1, IFIT2, IFIT3) [40], the ubiquitin ligase 
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HERC5 responsible for ISGylation of viral target pro-
teins [41], and ubiquitin-like ISG15 [42]. Moreover, we 
found an upregulation of IFI6, an ISG and antiapoptotic 
protein, which was recently shown to enhance SARS-
CoV-2 infection [43]. Other DEGs with immune-related 
functions include SELL, a cell surface adhesion molecule 
that belongs to a family of adhesion/homing receptors 
and is required for binding and rolling of leucocytes on 
endothelial cells [44], MX1, a guanosine triphosphate 
(GTP)-metabolizing anti-viral enzyme [45] and PLSCR1, 
a phospholipid scramblase family member preventing 

viral entry [46]. None of the identified DEGs in this study 
were downregulated.

Enrichment of anti‑viral responses in PCC at 6 months 
after acute SARS‑CoV‑2 infection
To integrate the information obtained from the RNA 
sequencing output, we performed an enrichment analy-
sis of the DEG list by ORA based on the gene ontology 
(GO) biological process database. This showed enriched 
generic responses to viral infections, including several 

Table 1 Participant characteristics by experimental group

BMI body mass index; MCP monocyte chemotactic protein; IP interferon gamma induced protein; hsCRP high-sensitive assay of C-reactive protein; PCR polymerase 
chain reaction
a with the exception of quality of life, higher values imply more symptoms. For quality of life, higher values imply higher quality of life and less functional impairment
b From the Chalder Fatigue Questionnaire
c From the DePaul Symptom Questionnaire
d The sum score across the 3 items memory problems, concentration problems, and decision-making problems
e The sum of scores across dyspnea and coughing
f From the Hospital Anxiety and Depression Scale anxiety subscale
g From the Hospital Anxiety and Depression Scale depression subscale
h From the Pediatric Quality of Life Inventory
i Total antinucleocapsid immunoglobulin G and M

Group

SARS + /F + (n = 20) SARS + /F‑ (n = 20) SARS‑/F + (n = 20) SARS‑/F‑ (n = 20)

Time since symptom onset/PCR test
(days, median (IQR))

212 (12) 213 (12) 211 (15) 215 (13)

Demographic characteristics

 Sex (female, %)) 20 (100) 20 (100) 20 (100) 20 (100)

 Age (median (IQR)) 21 (7) 19 (7) 19 (3) 19 (5)

 BMI (median (IQR)) 21 (6) 21 (4) 23 (6) 23 (4)

 Ethnicity (European (%)) 14 (70) 15 (75) 20 (100) 20 (100)

 Current comorbidity (any (%)) 2 (10) 0 (0) 3 (15) 0 (0)

 COVID‑19 immunization (yes (%)) 15 (75) 14 (70) 18 (90) 19 (95)

Symptoms and functional impairment  scoresa

  Fatigueb (score 0–33, mean (SD)) 25 (3) 10 (2) 17 (3) 11 (2)

 Post exertional  malaisec (score 0–100, median (IQR)) 73 (26) 0 (5) 23 (23) 0 (6)

 Cognitive  symptomsd (range 3–15, median (IQR) 13 (3) 3.5 (2) 8.5 (5) 4.5 (2)

 Respiratory  symptomse (range 2–10, median (IQR)) 5 (2.3) 3 (1) 3 (1) 3 (1)

 Symptoms of  anxietyf (range 0–21, median (IQR)) 10 (6.5) 4 (3.5) 9 (5.3) 4 (3.3)

 Symptoms of  depressiong (range 0–21, median (IQR)) 7 (4.3) 1.5 (2.5) 3.5 (6) 1 (2.3)

 Quality of  lifeh (range 0–100, median (IQR)) 49 (12) 89 (7.6) 70 (15) 87 (11)

Laboratory findings

 Hemoglobin g/dL (mean, SD) 12.73 (0.56) 12.7 (1.50) 13.52 (0.87) 13.42 (0.55)

 Leukocyte count, 109 cells/L (mean, SD) 6.5 (1.7) 6.4 (2.2) 6 (1.6) 5.8 (1.5)

 hsCRP (plasma, mg/L, median (IQR)) 0.8 (0.9) 1.1 (1.1) 2.4 (5.0) 3.5 (4.9)

 IP10 (plasma, pg/mL, median (IQR)) 124 (56) 112 (78) 98 (70) 91 (77)

 Eotaxin (plamsa, pg/mL, median (IQR)) 14.2 (4.1) 13.9 (3.8) 11.3 (3.9) 10.1 (6.0)

 MCP‑1 (plasma, pg/mL, median. (IQR)) 4.6 (3.2) 5.2 (3.1) 3.0 (2.7) 1.9 (4.9)

 SARS‑CoV‑2 antibody  titeri 22 (23) 17 (56) 0.1 (0) 0.1 (0)
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biological categories of interferon-mediated responses 
(Fig.  5). To further understand the biological meaning 
of the DEGs, we ran an enrichment analysis using the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Reactome databases. The KEGG enrichment analy-
sis showed, in line with the results of GO enrichment 
analysis, that the induced genes are primarily found in 
human viral disease pathways (Fig. 6). Influenza A, hep-
atitis C and measles viruses infect a host by inhibiting 
interferon-stimulated gene induction [47]. The Reac-
tome output confirms the common biological theme of 
interferon related signalling (Fig. 7). The ranked lists of 
relevant pathways are described in Additional Table 2.

STAT1/STAT2 are key regulators in the PCC transcriptional 
profile.
Changes in transcript abundance in bulk sequenc-
ing data can be attributed to changes in transcrip-
tional regulation or changes in composition of 
leucocyte populations. Therefore, a deconvolution of 
whole blood leucocyte populations was performed “in 
silicio” using CIBERSORTx. This deconvolution into 
immune cell subsets revealed statistically significant 
differences in population abundance of monocytes, 
CD4 memory resting and CD8 cell types between the 
whole SARS + group and the whole SARS- group, but 
no evidence of statistical differences related to the 
SARS + /F + group (Additional file  1: Fig. S1). Tran-
scription factor binding profile enrichment analysis 
using UniBind, however, revealed five upstream tran-
scription regulators (TF) for the DEG list: STAT1, 
STAT2, IRF1, GFI1b, CUX1 (Fig. 8). STAT1 and STAT2 
belong to the signal transducer and activator of tran-
scription family and play a key role in the immune 
response against viruses. They are major mediators of 
the signal from interferons and initiate the transcrip-
tion of interferon-stimulated genes in the nucleus [48, 
49]. A similar function is exerted by Interferon Regu-
latory Factor 1 (IRF1), a transcription factor induced 
by interferon I and mediating the pro-inflammatory 
response of interferon I [50].

Association of DEG with PCC associated clinical markers.
To explore relationships between gene expression and 
clinical markers, a multivariate multiresponse regres-
sion was performed on the 13 DEG expression levels 
and PCC associated symptoms (fatigue score, post-
exertional malaise, cognitive symptoms, respiratory 
symptoms, symptoms of depression, symptoms of 
anxiety, quality of life). Several positive correlations 
between DEG expression levels and clinical symptoms 
were revealed (Fig.  9, Additional file  1: Table  S3). All 
DEGs, except RSAD2, were positively correlated with 
post-exertional malaise, a hallmark symptom of PCC 
[51]. As expected, an opposite pattern was shown for 
quality of life, where higher DEG expression levels 
were associated with lower quality of life scores. SELL, 
encoding a leukocyte adhesion molecule which regu-
lates leukocyte trafficking to sites of inflammation [52] 
and which has been linked to severe COVID-19 illness 
[53], has the largest effect on clinical markers in the 
correlation analysis. Taken together, these results point 
to an association between DEG expression and symp-
tom load.

Fig. 2 Dimensionality reduction by principal components analysis 
based on log2 normalized counts of all genes for all participants. 
Each dot corresponds to the sample of one participant. The smaller 
the distance between the dots, the greater the similarity of the gene 
expression profiles. PC1, principal component 1; PC2, principal 
component 2; percentage expresses contribution to the overall 
variability in the data

Fig. 3 Line plot of expression levels of OAS3, an interferon‑inducible 
antiviral effector protein. The colour indicates SARS‑COV‑2 infection 
history: pink = prior SARS‑CoV‑2 infection, green = no SARS‑CoV‑2 
infection. The groups are further divided based on fatigue 
symptom load: fatigue versus no fatigue. The p‑value shows 
the significance when comparing the expression levels of OAS3 
between SARS + subjects with fatigue and no fatigue by Mann 
Whitney‑U test
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Discussion
In this study, we identified a PCC-related RNA expres-
sion pattern comprising 13 differentially expressed 
genes. To our knowledge, this is the first comparative 
analysis of whole blood transcriptomes in adolescents 
and young adults with PCC after a COVID-19 infec-
tion and several control groups including recovered 
infected, symptomatic uninfected and symptom- free 
uninfected participants. This design considers that 
fatigue symptoms in the follow-up period can be a con-
sequence of pandemic living conditions with disruption 
of routine life, social isolation, and physical distancing 

rather than a viral infection itself. It takes into account 
that fatigue symptoms are frequently reported in the 
general population [54].

The main result from the study was a PCC-related 
transcriptional upregulation in interferon signalling 
related genes. These genes were not upregulated in 
uninfected controls with fatigue symptoms or in recov-
ered SARS-CoV-2 infected participants. SARS-CoV-2 is 
an RNA virus, which upon entry into the host cell, trig-
gers a cellular host defence mechanism mediated by pat-
tern recognition receptors (PRRs) that induce interferon 
production. Interferons initiate the transcription of 

Fig. 4 Differential gene expression analysis for participants divided into four experimental groups depending on prior SARS‑CoV‑2 infection 
and fatigue symptoms. A Volcano plot of differentially expressed genes for participants with prior SARS‑CoV‑2 infection and fatigue symptoms 
(SARS + /F +) relatively to fully recovered participants with SARS‑CoV‑2 infection (SARS + /F‑). Genes with significantly increased expression are 
represented with red dots. The threshold for the adjusted p‑value was set to 0.05. The grey dots indicate absolute value of log2 (fold‑change) 
smaller than 0.50. FC, fold change; NS, non‑significant. B Heat map of differentially expressed genes in participants with prior SARS‑CoV‑2 infection 
and fatigue symptoms (SARS + /F +) relative to participants in the other three groups, with raw expression values being scaled



Page 8 of 13Sommen et al. Journal of Translational Medicine          (2024) 22:312 

response to interferon gamma

regulation of nuclease activity

response to interferon alpha

type I interferon production

response to interferon beta

viral life cycle

regulation of multi organism process

response to type I interferon

response to virus

defense response to other organism

0 50 100
Enrichment ratio

0.05
0.04
0.03
0.02
0.01
0.00

Adjusted
p value

GO biological pathways

Fig. 5 Bar chart of enrichment ratios of significantly enriched Gene ontology (GO) biological pathways. The pathways are ranked by increasing 
adjusted p‑value. The enrichment ratio shows the number of observed divided by the number of expected genes in the gene list of the GO 
category

Interferon gamma signaling

DDX58/IFIH1 mediated induction of interferon alpha/beta

OAS antiviral response

ISG15 antiviral mechanism

Immune System

Antiviral mechanism by IFN stimulated genes

Cytokine Signaling in Immune system

Interferon alpha/beta signaling

Interferon Signaling

0 50 100 150 200
Enrichment ratio

0.05
0.04
0.03
0.02
0.01
0.00

Adjusted
p value

Pathway reactome

Fig. 6 Bar chart of enrichment ratios of significantly enriched KEGG pathways. The pathways are ranked by increasing adjusted p‑value. The 
enrichment ratio shows the number of observed divided by the number of expected genes in the gene list of the KEGG category

interferon gamma response

interferon alpha response

0 10 20 30

Enrichment ratio

0.05
0.04
0.03
0.02
0.01
0.00

Adjusted
p value

Hallmarks

Fig. 7 Bar chart of enrichment ratios of significantly enriched Reactome pathways. The pathways are ranked by increasing adjusted p‑value. The 
enrichment ratio shows the number of observed divided by the number of expected genes in the gene list of the Reactome category
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interferon-stimulated genes (ISGs), a group of anti-viral 
effector proteins. Several members of ISGs were identi-
fied as differentially expressed in our RNA sequencing 
analysis. These DEGs play a critical role in the initial 
resistance to the SARS-CoV-2 viral infection. However, 
upregulation of these transcripts at six months after the 
initial SARS-CoV-2 infection points to aberrant activa-
tion of antiviral innate immunity and interferon induc-
tion possibly due to a chronic SARS-CoV-2 infection or 
a sustained inflammatory response after clearance of the 
virus. In fact, low-grade inflammation in SARS-CoV-2 
infected participants was previously reported in our 
study cohort, although no link with PCC could be estab-
lished [20]. Evidence for viral persistence or insufficient 
clearance of viral remnants after SARS-CoV-2 infection 
has been hypothesized in studies showing ongoing evo-
lution of specific immunity [12, 13, 55], elevated anti-
viral immunity [11] and persistent viral antigen presence 
[14, 56–58]. The observed immune perturbation could 
also be the downstream consequence of reactivation of 
latent viruses following acute SARS-CoV-2 infection 
(e.g. Epstein Barr virus) [15, 59]. Transcripts like OAS3 
and MX1 specifically act to inhibit viral replication, 
while other transcripts also have non-immune related 
roles in other cellular processes and diseases, such as 
ISG15 in DNA repair [60]. Thus, despite a functional 
enrichment analysis restricted to anti-viral responses, 
non-immune mechanisms might also be at play. It is 
possible that interferon is at the centre of the disease 
process, even if the PCC affected do not have a detect-
able serum IFN level. In systemic lupus erythematosus 
(SLE), for instance, transcriptome analysis also shows the 
absence of interferon I/II/III gene transcripts, but inter-
feron still plays an important role in the pathogenesis of 
the disease as evidenced by an abundance of upregulated 

interferon-inducible genes [61]. Potentially, the cells pro-
ducing interferon have migrated to distant sites of injury 
and are not captured by the blood sample used for gene 
expression analysis.

Our findings show similarities with earlier human and 
animal PCC studies. Persistently elevated expression of 
IFN was reported in different human post COVID-19 
cohort studies [11, 55]. Woodruff et al. show evidence for 
persistent viral triggering of de novo B cell response and 
IFN-γ signalling in PCC [62], while others have found 
prolonged CD8 + T cell-mediated IFN-γ release in PCC 
[63]. Additionally, SARS-CoV-2 infected hamsters had 
persistent inflammation with upregulation of IFN in the 
olfactory tissue, which was accompanied by behavioural 
change [64]. However, Berentschot et al. show a reduction 
of IFN I/II and a non-activation of ISGs in monocytes in 
PCC patients, suggesting an impairment of the innate 
anti-viral response [65]. Similarly, decreased expression 
of multiple IFN-I-inducible genes including MX1, OAS3 
and OASL has been associated with persistent symptoms 
after COVID-19 [66]. Yin et al. report a lack of major per-
turbations in their transcriptomics study, but present ele-
vated frequencies of T cell subpopulations and increased 
exhaustion markers in individuals with PCC, indicating 
an ongoing stimulation with viral antigens at 8  months 
post-infection [67]. A longitudinal study of COVID-19 
sequelae, however, found no evidence of persistent viral 
infection, autoimmunity, or abnormal immune activation 
in PCC [68]. These large discrepancies between studies 
could be attributed to differences in cohorts and assays or 
to complex immune disturbances in PCC. Our findings 
can serve as a starting point to further explore immuno-
logical aberrations in PCC.

How immune perturbations contribute to PCC-
related symptoms remains largely unanswered. 
Reduced circulating serotonin was recently proposed 
as an explanation for neurocognitive symptoms in 
PCC, where serotonin depletion was caused by type I 
IFN induction by viral RNA [69]. Increased frequen-
cies of IFN-γ-producing SARS-CoV-2-specific T cells 
were also suggested as drivers of prolonged dyspnoea 
in PCC [70], and a recent gene expression study shows 
increased regulation of IFN production and T cell acti-
vation in PCC affected with brain fog [71]. Although 
causal conclusions cannot be made from our cross-
sectional design, the present data suggests a positive 
association between differential gene expression and 
clinical symptoms, especially post-exertional malaise. 
This observation warrants further studies as the small 
to moderate fold changes in the SARS + /F + group are 
unlikely to explain the severe symptom burden. Earlier 
findings from our cohort show that PCC symptoms are 
associated to psychosocial factors (eg. loneliness) rather 

Fig. 8 Bee swarm plot to visualize the top 5 enriched transcription 
factors after transcription factor enrichment analysis using UniBind. 
Each dot represents a transcription factor; N.S. non‑significant
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than the SARS-CoV-2 infection itself [19]. Interest-
ingly, this aligns with the “Conserved Transcriptional 
Response to Adversity (CTRA)”, a concept describ-
ing stress-induced changes in immune related gene 
expression (72). The biological factors in PCC, such 
as immune activation, might be the result of a condi-
tioning mechanism by chronic stress in addition to the 
SARS-COV-2 infection. Our findings share similarities 
with   observations made in PIFS: Higher IFN gamma 
production was observed in Q fever fatigue syndrome 
patients after ex  vivo stimulation of whole blood with 

Coxiella burnetti, but there was no correlation between 
these findings and the level of fatigue or symptom dura-
tion [73]. The clinical overlap between PCC and PIFS 
could mean that gene expression correlates are shared 
independent of the infectious trigger. Indeed, some 
studies report evidence for immune dysregulation 
with increased IFN signaling and viral innate immune 
enhancement in chronic fatigue patients [74–78], while 
others do not find overlapping biomarkers between 
PIFS from different pathogens [79]. We suggest that 
PCC, like PIFS, is not a primary inflammatory disorder 

Fig. 9 Chord diagram of associations between seven clinical symptoms and 13 DEG expression levels for all samples. Clinical symptoms are 
represented on the top part of the circle, while DEGs are represented on the bottom part of the circle. The arcs are colour‑coded with red 
for positive effect and blue for negative effect. The width of the arc represents the gene effect on its corresponding clinical symptom. Fatigue 
score, from the Chalder Fatigue Questionnaire; Post‑exertional malaise, from the DePaul Symptom Questionnaire; cognitive symptoms, the sum 
score across the 3 items memory problems, concentration problems, and decision‑making problems; respiratory symptoms, the sum of scores 
across dyspnea and coughing; symptoms of anxiety, from the Hospital Anxiety and Depression Scale anxiety subscale; symptoms of depression, 
from the Hospital Anxiety and Depression Scale depression subscale; quality of life, from the Pediatric Quality of Life Inventory
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and a simple change in gene expression level is unlikely 
to explain PCC pathophysiology.

Caution is warranted since our study has several limi-
tations. The results require validation in independent 
cohorts and currently are of limited applicability to the 
general population. We focused on female, non-hospi-
talized adolescents and young adults infected with the 
B 1.1.7 variant, while the majority of PCC patients were 
infected with other variants of concern, are older and 
were hospitalized for severe acute COVID-19. Addi-
tionally, our study is based on a small sample size of 
80 participants and the participants differed slightly 
on potential confounding variables. For instance, the 
SARS-/F + group were less severely fatigued than the 
SARS + /F + group (median fatigue score 17 versus 
25). If immune alterations were due to fatigue causing 
inflammatory responses rather than the infection itself, 
this could be an important confounder. Furthermore, 
we have not found changes in cell population abun-
dance related to the SARS + /F + group, possibly due to 
the poor quality of CIBERSORTx deconvolution based 
on our bulk mRNA sequencing data and Dirichlet 
regression that does not characterize the impact of out-
liers. Ideally, one would use single cell RNA sequenc-
ing to capture gene expression in individual immune 
cells and more advanced statistical methods for differ-
ential discovery, e.g. scCODA and sccomp [80] Nev-
ertheless, however exploratory, our study contributes 
to the understanding of PCC pathophysiology and can 
help the future development of studies, prevention, and 
treatment strategies.

Conclusion
To conclude, our results suggest that subtle differences 
in the expression levels of innate immunity related 
genes, including higher expression of genes involved in 
interferon signalling, may point to sustained, low-grade 
inflammation in PCC affected adolescents and young 
adults.
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