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later distribute across several organs, including the skin, 
eyes, hair follicles, ears, heart and central nervous system 
(reviewed in [1, 2]) [3]. Although their role in photopro-
tection in external organs is well characterized, the role of 
melanocytes in internal organs remains largely unknown 
or elusive. However, there is growing evidence that mela-
nocytes also play a role in immunoregulation, hearing, 
vision, and tissue homeostasis (reviewed in [2, 4]).

The disruption of melanocyte functions can be caused 
by various pigmentary conditions, in which external 
organs are either hypopigmented, like in vitiligo, oculo-
cutaneous albinism and Waardenburg syndrome  (WS); 
or hyperpigmented, like in lentigo senilis or Café-au-lait 
macules (reviewed in [5–7]) [8, 9]. Some pigmentary dis-
orders can also result in hearing or vision impairments. 
Moreover, skin, ocular or mucosal melanomas originate 
from transformed melanocytes. Diseases associated 
with melanocyte depletion are not painful but result in a 
greater sensitivity to ultraviolet (UV) radiation, exposing 
them to higher risk of developing skin cancers (reviewed 
in [10]).

Introduction
Melanocytes are dendritic cells responsible for tissue pig-
mentation through melanogenesis, a biochemical process 
enabling melanin production within specialized organ-
elles called melanosomes. During vertebrate develop-
ment, melanocytes originate from the neural crest and 
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Abstract
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are 
characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair 
pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte 
dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. 
This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in 
regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem 
cell technologies, tissue engineering and extracellular vesicles.
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Currently, there are no curative therapies for most 
pigmentary disorders. However, significant progress in 
the field of regenerative medicine has opened exciting 
new avenues for the development of alternative disease 
models, drug testing systems and treatments. Several 
cutting-edge technologies and fields of study such as 
tissue-engineered substitutes, genome editing with 
CRISPR-Cas9, induced pluripotent stem cells (iPSCs), 
spheroids and extracellular vesicles (EVs) now prove to 
be indispensable for modeling pigmentary diseases and 
hold great promises for future therapies.

In this review, we focus on the use of melanocytes in 
regenerative medicine applications, such as for disease 
modeling, drug testing and therapy. To fully understand 

the potential of melanocytes in regenerative medicine, 
we first describe their origin, functions, and associated 
pathologies, and then explore the newest and future 
approaches to integrate these unique pigmented cells in 
regenerative medicine.

Melanocytes in homeostasis and disease
Origin of melanocytes
The neural crest, originating from the ectoderm during 
gastrulation, is a transient embryonic structure present 
in all vertebrates (reviewed in [11]). It comprises four 
regions: cranial, trunk, vagal and sacral neural crests 
(Fig.  1A) (reviewed in [12]). Cranial neural crest cells 
engender melanocytes found in eyes, ears, hair follicles 

Fig. 1 Embryonic development of melanocytes (A) Schematic and cross-sectional representation of the neural crest subpopulations in a mouse embryo 
(E10.5). Neural crest cells present in the MSA migrate primarily along the dorso-lateral pathway where they differentiate to become melanoblasts and 
ultimately mature melanocytes. (B) DCT labeling of melanoblasts and melanocytes in the murine embryo during development (E11.5 to E16.5; modified 
from [26]). Until E13.5, DCT positive cells (in blue: Dct-lacZ) are primarily localized dorsally, before colonizing to the ventral axis. The presence of melano-
blasts in hair follicles can be seen at E15.5-E16.5. Scale bars: 0.8 mm (E12.5), 1.6 mm (E14.5) and 3.2 mm (E16.5). (C) Progression of melanocyte lineage 
during murine embryonic development from stages E.8.5 to E14.5. Melanocytes are derived from the cranial and trunk neural crest populations. Neural 
crest cells present in the MSA migrate along the dorso-lateral pathway (E8.5-E9.5) where they differentiate into melanocytes (E14.5). In parallel, once the 
dorso-lateral pathway is fully developed (E12.5), SCPs will migrate along the ventro-lateral pathway where they differentiate into McSCs (E14.5) that will 
later become melanocytes
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and face skin, whereas other cutaneous melanocytes arise 
from the trunk neural crest (reviewed in [13]). Similarly, 
heart melanocytes are derived from the vagal neural crest 
(reviewed in [14]), meningeal melanocytes from the cra-
nial neural crest or from Schwann cell precursors (SCPs), 
and melanocytes found in mucous membranes come 
from both cranial and trunk neural crests [15, 16]. Dur-
ing neurulation, the neural folds converge to create the 
neural tube. This spatial reorganization allows the delam-
ination of neural crest cells derived from the neural folds 
[17]. These multipotent cells are precursors to a variety 
of cell types, including Schwann cells and melanoblasts, 
which are the precursors of melanocytes (reviewed in 
[18, 19]) [20, 21]. Neural crest cells start in the migra-
tion staging area (MSA), then undergo an epithelial-mes-
enchymal transition before migrating along either the 
dorso-lateral pathway (between the mesoderm and ecto-
derm) or the ventro-lateral pathway (between the dermo-
myotome and the ectoderm) (Fig.  1A and C) (reviewed 
in [19]) [17, 22]. This tightly regulated migration of neu-
ral crest cells ultimately defines the location of their cell 
progeny (reviewed in [23]).

In humans, the migration of melanoblasts is not thor-
oughly characterized, but studies in mice have provided 
significant insights. Neural crest cells differentiate into 
melanoblasts at mid-gestation in the MSA, beginning 
proliferation at embryonic day 8.5 (E8.5). By E9, melano-
blasts are primarily localized in the head and face, with 
fewer in cervical and trunk regions (Fig. 1B) [24–26]. At 
E10.5, they enter the dorso-lateral pathway and begin to 
differentiate into melanocytes, a process regulated by 
WNT signaling [27]. The microphthalmia-associated 
transcription factor (MITF), activated by WNT-1 and 
WNT-3a, regulates genes crucial for melanoblast-to-
melanocyte differentiation. These include tyrosinase 
(TYR), tyrosinase-related protein 1 (TYRP1), melanoma 
antigen recognized by T cells 1 (MART-1; also known as 
Melan-A), dopachrome tautomerase (DCT; also known 
as TYRP2) and premelanosome protein (PMEL; also 
known as PMEL17, SILV or GP100) (reviewed in [28]) 
[24, 27, 29]. Around E12.5, SCPs enter the ventro-lateral 
pathway [20]. They are the main source of skin melano-
cytes, as well as the non-cutaneous melanocytes in the 
heart, inner ear and meninges [17]. Interestingly, melano-
cytes share common molecular hallmarks with Schwann 
cells, such as SRY-box 10 (SOX10) and DCT [20]. The 
relationship between these types is evident as Schwann 
cells can transdifferentiate into melanocytes after los-
ing contact with an axon (reviewed in [12]). From E12/
E13, melanoblasts can be found in the mitral and tricus-
pid valves of the heart, and in various structures of the 
inner ear [3, 30]. In human embryos, melanoblasts sur-
round the otic vesicles and neural tube by week 5, indi-
cating migration toward the ear [30]. Melanocytes also 

reach brain meninges in mice, rats and humans, and are 
present in human buccal mucosa from 20 weeks of ges-
tation (reviewed in [31]) [32–34]. At E15.5, melanoblasts 
reside in the hair follicle bulge, where some transition 
into melanocyte stem cells (McSCs) [25]. Other mela-
noblasts migrate towards the follicle bulb, maturing into 
melanocytes by transiently expressing c-KIT [35]. In the 
eye, melanoblasts are observed in the choroid mesen-
chyme at E15.5 in mice, while pigmented melanocytes 
are observed in the human choroid at week 27 [25, 36].

Functions of melanocytes
Melanocytes are crucial for skin and eye photoprotection 
through melanin production, distribution and accumula-
tion, and may have diverse functions in internal organs 
(e.g., inner ears, heart, meninges and mucosa). Mela-
nin acts as an antioxidant and a UV radiation absorber, 
preventing skin and eye aging and diseases such as age-
related macular degeneration (AMD; OMIM#603075) 
(reviewed in [37, 38]) [39]. Also, melanocyte loss-of-
function in the iris and retinal pigment epithelium (RPE) 
is linked to photoreceptor damage and vision defects 
(reviewed in [40]). Furthermore, melanin expression 
in the brain helps mitigate nitric oxide-induced neuro-
toxicity (reviewed in [41]). Mammals express two types 
of melanin pigments: the brownish black eumelanin 
and the reddish yellow pheomelanin (reviewed in [41]). 
While eumelanin is photoprotective, pheomelanin syn-
thesis generates reactive oxygen species (ROS), poten-
tially increasing the risk of skin cancers like melanoma 
(OMIM#155600). In fact, a high pheomelanin-to-mela-
nin ratio is associated with the development of skin can-
cers (reviewed in [41]) [42, 43].

Melanocytes contribute to immunity by expressing 
major histocompatibility complex class II molecules 
and presenting antigens (reviewed in [4]) [44]. They also 
secrete several cytokines like interleukin (IL)-1α, IL-1β, 
IL-8, and transforming growth factor  (TGF)-β1 in the 
skin, and attract immune cells through chemokines such 
as chemokine (C-X-C motif ) ligand (CXCL)-8 to -11, 
chemokine (C-C motif ) ligand (CCL)-2 and CCL-5 in 
the choroid (reviewed in [12]) [17, 45]. Human choroi-
dal melanocytes also express toll-like receptors (TLRs) 
which are involved in pathogen clearance and inflamma-
tion in the eye (reviewed in [46]) [47, 48].

In addition to their roles in photoprotection, attenu-
ation of ROS damage, and immunity, melanocytes are 
critical in the development, maintenance, and proper 
functioning of various tissues. Melanocytes are vital for 
cochlear development, contributing to the secretion of 
the endolymph and maintaining the endocochlear poten-
tial necessary for hearing [49]. Their absence can lead to 
deafness, congenital hearing loss or auditory-pigmentary 
syndrome (reviewed in [2]). In the heart, melanocytes 
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of the tricuspid valve leaflet participate in cardiac tissue 
stiffness, which ultimately affects the viscoelastic proper-
ties of the heart [50]. Although the functions of mucosal 
and meningeal melanocytes are not well established, a 
decrease of melanocytes in meninges of older mice sug-
gests a potential role of these cells in brain ageing [16].

Cell signaling within melanocytes
The MITF isoform M (MITF-M) is the master regulator 
of melanocyte proliferation, survival and development, as 
well as melanin synthesis (melanogenesis) (reviewed in 
[51]) [9, 52]. In healthy melanocytes, MITF induces the 
transcription of enzymes implicated in melanogenesis 
such as TYR, TYRP1 and DCT, but also of melanosome-
related proteins including PMEL and G-protein-coupled 
receptor 143 (GPR-143) [29, 53–56]. Pathological muta-
tions in the MITF gene are associated with familial and 
sporadic melanomas, but also with rare genetic disorders 
(OMIM#193510/#103500) including the Waardenburg 
syndrome type-2  A, characterized by hearing loss and 
pigmentation defects (reviewed in [51]) [9].

The expression of MITF is regulated by other transcrip-
tion factors such as cyclic adenosine monophosphate 
(cAMP) responsive element-binding protein (CREB), 
paired box gene 3 (PAX3) which is mutated in WS type-1 
and − 3 (OMIM#193500/#148820), SOX transcription 
factors 9 (SOX9) or 10 (SOX10), the latter being mutated 
in WS type-2E and − 4  C (OMIM#611584/#613266) 
(reviewed in [57, 58]) [59–61]. Many signaling pathways 
regulate the expression of these transcription factors (see 
Supplementary Table S1), some of which are detailed 
below.

The melanocortin 1 receptor (MC1R) signaling pathway
Proopiomelanocortin (POMC) is a neuropeptide secreted 
by the anterior pituitary gland [62]. Keratinocytes and 
melanocytes also secrete POMC, which is increased by 
UV radiation [62–64]. POMC cleavage results in the pro-
duction of α-melanocyte-stimulating hormone (α-MSH), 
which in turn binds to the MC1R, a GPCR expressed in 
melanocytes (reviewed in [65]). The binding of α-MSH 
to MC1R causes an increase of intracellular cAMP, that 
activates CREB to trigger MITF expression (reviewed in 
[66]). Non-pathological polymorphisms in the MC1R 
gene are frequent and cause skin and hair pigmentation 
variations across humans and animals (OMIM#266300) 
(reviewed in [66]).

The opsin (OPN) signaling pathway
OPNs are light-sensitive GPCRs expressed by photo-
receptor cells in the eye but also by melanocytes and 
keratinocytes in the skin [67]. OPNs are activated by vis-
ible light (OPN1-SW (blue-violet), OPN2 (green), OPN3 
(violet-green)) or UV (OPN5) (reviewed in [68]). OPN3 

and OPN5 activation increases calcium fluxes in melano-
cytes, activating calmodulin-dependent protein kinase II 
(CAMKII), an inducer of CREB signaling [69, 70]. OPN3 
also activates the MAPK signaling pathway, leading to 
the gene transcription of TYR and DCT [70]. Finally, 
OPN5 activation triggers the PKC signaling pathway and 
leads to the gene transcription of TYR, TYRP1 and DCT 
[69, 70].

Melanosome biogenesis and function
Melanosome biogenesis and maturation is a multi-stage 
process (Fig.  2A), which can be observed by transmis-
sion electron microscopy (Fig. 2B). Stage I melanosomes 
are similar to early endosomes, and mostly express early 
endosomal markers, such as early endosome antigen 1 
(EEA1) [71]. The differentiation pathway from stage I to 
stage II melanosomes is not yet fully understood. Pos-
sible mechanisms include: (i) expression of melanocyte-
specific intracellular GPR143 [72], which is defective in 
patients with type-1 ocular albinism (OMIM#300500), ii) 
involvement of specific endosomal subsets, which have 
been shown to fulfil specific functions in other cells [73], 
or iii) fusion between lysosomes and early melanosomes, 
possibly via the activity of the lipid kinase PIKfyve [74].

Melanosome maturation relies on three major mem-
brane trafficking pathways that deliver melanogenic 
cargoes and ion transporters to stages III and IV melano-
somes (Fig. 2A). One essential enzyme for melanin syn-
thesis, TYR, is sorted into AP-3-dependent vesicles from 
early endosomes to maturing melanosomes [75]. Other 
cargoes such as MART-1 and DCT travel by vesicles 
from the trans-Golgi network to maturing melanosomes 
[76]. Most other melanogenic cargoes, such as copper 
transporter ATP7A, pink-eyed dilution protein homolog 
2 (OCA2) and TYRP1, are sorted into early endosomal 
tubules that are pulled along microtubules by molecular 
motors [77, 78]. Mutations in proteins that are necessary 
for the biosynthetic delivery of melanogenic cargoes or 
ion transporters to maturing melanosomes lead to oculo-
cutaneous albinism (OCA), and are observed in patients 
with Hermansky-Pudlak (HPS), Griscelli (GS) and Che-
diak-Higashi (CHS) syndromes (reviewed in [79, 80]).

Melanin synthesis (melanogenesis)
Both eumelanin and pheomelanin pigments are pro-
duced from dopaquinone, a reaction product resulting 
from the catalysis of tyrosine by TYR [81]. In the pres-
ence of cysteine, dopaquinone undergoes a succession 
of redox reactions leading to the synthesis of pheomela-
nin. By contrast, in the absence of cysteine, DCT and 
TYRP1 help convert dopaquinone into a series of inter-
mediates that give rise to eumelanin (reviewed in [82]). 
Loss-of-function mutations in TYR cause OCA1A or 
1B (OMIM#203100/#606952), the most severe forms of 
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Fig. 2 (See legend on next page.)
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OCA, due to the complete depletion of both pheomela-
nin and eumelanin (reviewed in [5]). Mutations in DCT 
trigger OCA8 (OMIM#619165), a milder form of OCA, 
in which patients synthesize eumelanin through DCT-
independent reactions, leading to more oxidative stress 
and melanocyte apoptosis [83, 84]. Unlike TYR and DCT, 
the function of TYRP1 is unclear. Mutations in TYRP1 
cause OCA3 (OMIM#203290), a mild form of OCA that 
is characterized by diluted pigmentation [85, 86]. How-
ever, whether TYRP1 has an enzymatic role, a chaperone 
activity or an antioxidant function in melanogenesis is 
still debated (reviewed in [18]).

Regulation of melanogenesis
Melanosomal pH plays a key role in melanogenesis. 
Early-stage melanosomes are highly acidic due to the 
activity of the proton-pumping vacuolar H+ ATPase 
(v-ATPase) [87], to promote PMEL assembly into amy-
loid-like fibril sheets that give melanosomes their ovoid 
shape (Fig.  2B) [71, 87–90]. However, in later stages of 
melanosome biogenesis, pH must reach 6.8 to allow opti-
mal TYR activity and melanin synthesis [91, 92].

At least three ion transporters regulate melanosomal 
pH: OCA2 and solute carrier family 45 member 2 
(SLC45A2), which neutralize melanosomal pH and pro-
mote TYR activity; and the two-pore channel 2 (TPC2), 
which acidifies melanosomes and reduces TYR activity 
(Fig. 2C) [93–95]. OCA2 and TPC2 are anion and cation 
extruder channels, respectively, that modulate v-ATPase 
activity through regulation of melanosomal membrane 
potential [94, 96]. SLC45A2 is a symporter channel 
that expels sugars and protons from the melanosomal 
lumen to the cytosol [97]. While OCA2 and SCL45A2 
mutations cause type-2 and type-4 OCA respectively 
(OMIM#203200/#606574), TPC2 polymorphisms are 
responsible for non-pathogenic pigment variations 
(OMIM#612267) [98–100].

Other determinants, including ion content and organ-
elle crosstalk, also regulate melanogenesis (Fig.  2A and 
C). Expression of the copper transporter ATP7A in 
maturing melanosomes is crucial for melanogenesis as 
copper is a known cofactor for TYR activity [101]. Loss-
of-function mutations of this transporter in patients 

with Menkes disease (MNK; OMIM#309400) results in 
hypopigmentation [102]. Two lysosomal or late endo-
somal proteins, the chloride-proton exchanger ClC-7 
and the major facilitator superfamily domain contain-
ing 12 (MFSD12), also appear to regulate pheomelanin 
production in melanocytes [103, 104]. Calcium trans-
porters expressed in non-melanosomal compartments 
could also influence melanogenesis, including transient 
receptor potential cation channel subfamily M member 1 
(TRPM1), SLC24A4 and SLC24A5 [105–107]; mutations 
of the latter are involved in OCA6 (OMIM#113750).

Melanin transfer and tissue pigmentation
Unlike uveal melanocytes and RPE cells, which synthesize 
melanin almost entirely before birth and retain it in their 
cytoplasm throughout life, skin melanocytes constantly 
produce and transfer pigments to neighboring keratino-
cytes (Fig. 2D) (reviewed in [1]). In the skin, melanocytes 
reside in the basal layer of the epidermis and extend their 
dendrites to contact up to 36 keratinocytes and form the 
so-called epidermal-melanin unit [111]. Melanin transfer 
from skin melanocytes to keratinocytes is orchestrated 
by a complex series of events in both cell types. Mature 
melanosomes, expressing small Rab GTPase Rab27a 
[108], are transported to the ends of melanocyte dendrite 
tips by kinesin, a molecular motor protein (Fig. 2D, inset 
1) [109]. They are then captured into the actin cytoskel-
eton network by a tripartite complex composed of myo-
sin Va, melanophilin and Rab27a [110, 111]. Melanosome 
positioning on the actin cytoskeleton is critical for mela-
nin transfer since this process is impeded by cytochalasin 
B, an actin polymerization inhibitor [112]. Other compo-
nents of the Rab GTPase protein superfamily including 
Rab11a, Rab11b, and Rab17, as well as the exocyst teth-
ering complex and Cdc42, also appear to be involved in 
melanin transfer (Fig. 2D, inset 2) [113–117].

The precise mechanism involved in the transfer of 
melanosomes from melanocytes to keratinocytes is sub-
ject to controversy. In vitro co-culture systems using 
human or animal cells have shown that melanosomes 
could be transferred, either by filopodia nanotubes, cyto-
phagocytosis or shedding vesicles (Fig.  2D, insets 3–5) 
[116, 118, 119]. According to these models, transferred 

(See figure on previous page.)
Fig. 2 Melanosome biogenesis, structure, functions and fate. (A) Schematic of melanosome biogenesis and maturation pathways. Melanogenic cargoes 
such as OCA2, MART-1 or TYR are transferred to maturing melanosomes through diverse trafficking pathways during melanogenesis. Melanosome matu-
ration is influenced by pH and membrane contacts with other organelles including lysosomes. (B) Transmission electron micrograph of a melanocyte 
within the skin epidermis. The insets highlight examples of melanosomes at the different stages of maturation. PMEL fibrils are visible in stages II and III 
melanosomes before being buried under accumulating melanin pigments in stage IV melanosomes. (C) Schematic of the eumelanin and pheomelanin 
biosynthetic pathways in melanosomes. Several enzymes such as TYR, TYRP1 and DCT, and transporters including vATPase, TPC2 and ATP7A regulate 
melanogenesis through modulation of pH, membrane potential or ion content within melanosomes. (D) Schematic of the putative melanin transfer 
mechanisms occurring within the skin epidermis. Melanosomes are transported by kinesins across microtubules toward melanocyte dendrite tips (inset 
1). Stage IV melanosomes are then trapped within actin fibers by a tripartite complex composed of Myosin Va, Melanophilin and Rab27a (inset 2). Mela-
nin transfer could then result from filopodia nanotube formation (inset 3), cytophagosis of melanocyte dendrites (inset 4), vesicle transfer (inset 5) or 
exocytosis/endocytosis (inset 6). Within keratinocytes, melanin forms nuclear caps above cell nuclei to protect DNA from photodamage
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pigments should be wrapped in their original melano-
somal membrane, as well as within a melanocyte and/or 
keratinocyte-derived plasma membrane. However, these 
predicted double- or triple-membrane compartments 
are rarely observed by transmission electron microscopy 
[117, 120, 121]. Moreover, TYRP1, a transmembrane 
protein expressed at the melanosomal membrane in 
melanocytes, is not detected in keratinocytes that incor-
porate melanin [122]. These discrepancies indicate that 
the melanosomal membranes are either rapidly degraded 
once internalized by keratinocytes, or another transfer 
mechanism is at play.

Most recently, in situ transmission electron microscopy 
experiments have shown that melanin transfer could 
occur through an exocytosis/endocytosis mechanism 
(Fig. 2D, inset 6) [117, 121]. In this model, mature mela-
nosomes fuse with the plasma membrane of the mela-
nocyte and release melanin, referred to as melanocores, 
into the extracellular space. Melanocores could then be 
endocytosed within single membrane compartments by 
neighboring keratinocytes that are in contact with mela-
nocyte dendrites. To support this model, recent evidence 
has shown that melanocores are more easily internalized 
than melanosomes by keratinocytes, through the prote-
ase-activated receptor 2 (PAR2), whose specific expres-
sion in keratinocytes is increased upon UVB exposure 
[122, 123]. Moreover, keratinocyte-melanocyte adhesion 
sites, referred to as pigmentation synapses, could facili-
tate melanocore endocytosis and appear to be crucial for 
melanin transfer. Dark-skinned individuals with Darier 
disease (DAR; OMIM#124200), a genodermatosis caused 
by mutations in the ATP2A2 gene altering cell adhesion 
through defects in calcium signaling, can sometimes 
exhibit hypopigmented macules (reviewed in [124]). Cal-
cium-dependent E-cadherin-mediated adhesion within 
pigmentation synapses also plays an important role in 
melanin transfer [125].

Once melanin is transferred to keratinocytes, it forms 
parasol-like structures above cell nuclei, known as 
nuclear caps [126]. Although a causative link between 
photoprotection and nuclear cap positioning and con-
tent has yet to be established, early evidence suggests that 
the quantity of supranuclear melanin correlates with less 
DNA damage in normal human skin samples [127]. The 
mechanism of melanin positioning and nuclear cap for-
mation is not well understood. However, patients with 
type-1 Dowling-Degos disease (DDD1; OMIM#179850), 
a genodermatosis caused by mutations in the keratin 5 
(KRT5) gene, possess keratinocytes that incorporate mel-
anin pigments but lack nuclear caps, suggesting a role for 
KRT5 in melanin positioning [128].

Melanocytes in biomedical research
Treating pigmentary disorders presents a set of clinical 
challenges due to their multifaceted or unidentified eti-
ologies. Nevertheless, these disorders pose a significant 
burden for patients, who often suffer from hypopigmen-
tation of the skin, eyes and hair, may have increased sus-
ceptibility to UV-induced skin cancers, and sometimes 
also present various disabilities such as hearing and 
vision loss, or neurodegeneration (reviewed in [10]). In 
addition to lacking sufficient photoprotection, patients 
with pigmentary disorders also often experience psycho-
logical distress, low self-esteem, and social exclusion. A 
better understanding of pathophysiological mechanisms 
involved in the development of pigmentary disorders and 
melanomas is needed to improve patients’ treatments. 
Over the past few decades, several regenerative medi-
cine applications have emerged to help identify, target, or 
prevent the development of these pathologies (Fig. 3). In 
this section, we will provide an updated overview of these 
recent advances.

Melanocytes in disease modeling
Stem cell technologies
Melanocytes generated from patient-derived induced 
pluripotent stem cells (iPSCs) and embryonic stem 
cells (ESCs) have been valuable tools to model diseases. 
Through the application of these techniques, fully dif-
ferentiated human iPSC-derived melanocytes (hiMels) 
have been generated using several growth factors, such as 
WNT3A, stem cell factor and bone morphogenetic pro-
tein 4 (BMP4) [129, 130]. In another model, mesenchy-
mal stromal cells capable of differentiating in neural crest 
lineage cells, specifically melanocyte precursors, were 
obtained from ESCs treated with small molecule com-
pounds such as glycogen synthase kinase 3 beta (GSK3β) 
and TGF-β inhibitors in a defined basal medium [131]. 
These models allowed to study skin disorders where 
HPS and CHS patient-derived hiMels have been shown 
to produce melanosomes with altered structural charac-
teristics, impacting both melanin production and trans-
fer, and have thus helped understand the pathogenesis of 
these genetic disorders [21]. HiMels derived from café-
au-lait macules have also been used to explore the role 
of neurofibromin 1 (NF1) in melanocyte differentiation 
[132]. The loss of NF1 was shown to induce senescence 
during differentiation into melanocytes, demonstrat-
ing the importance of this protein in melanocyte lineage 
commitment and pigmentation [132].

Native human McSCs found in hair follicles are also 
highly valuable for disease modeling, potentially being 
implicated in the development of melanomas. Indeed, a 
subset of melanoma cells expressing CD20 was able to 
differentiate across multiple cell lineages, self-renew and 
induce tumors when grafted into mice. These findings 
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suggest a potential role for stem cells in the develop-
ment of this type of cancer [133]. In agreement with this 
hypothesis, it has recently been shown that melanoma-
prone McSCs can be activated through long exposure 
to UVB or through natural stem cell cycling induced by 
depilation, leading to the formation of cutaneous mela-
noma (CM) and gives rise to invasive epidermal mela-
nomas in mice [134, 135]. Although the mechanisms 

underlying the transformation of McSCs into cancer cells 
are not yet fully understood, several studies indicate vari-
ous gene susceptibilities [136, 137].

Genome editing
Numerous studies are exploring innovative uses of 
CRISPR/Cas9 technology in the field of melano-
cyte research. These technologies allow the study of 

Fig. 3 Sources, research models and potential applications of melanocytes in regenerative medicine. Melanocytes are distributed not only in the skin and 
eye, but also in other organs/tissues such as the inner ear, heart, meninges of the brain and spinal cord, and mucosal tissues. The research models used 
to study their potential in regenerative medicine include tissue-engineered substitutes, spheroids, extracellular vesicles and patient-derived iPSCs. These 
models have promising clinical applications such as disease modeling, drug testing and therapy development which will enhance our understanding 
and treatment of pigmentation disorders and melanomas
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melanocyte biology and its role in unique organs and 
tissues which may provide insights into novel therapeu-
tic strategies. Some studies using CRISPR have gener-
ated TYR knockout (KO) melanocytes, demonstrating a 
significant association between melanin and lipofuscin 
production [138]. Notably, post-UV radiation, the preva-
lence of lipofuscin granules was markedly pronounced in 
TYR-KO cells compared to their wildtype counterparts 
[138]. In zebrafish, one study demonstrated the aug-
mented efficiency of synthetic, chemically modified guide 
RNAs when combined with recombinant Cas9 protein 
for genome editing [139]. This enhanced technique suc-
cessfully knocked in a diverse set of markers, including 
bacterial nitroreductase. A promising development in 
zebrafish genome editing was identified with zLOST, uti-
lizing long single-stranded DNA templates for improved 
homology-directed repair (HDR), even restoring pigmen-
tation in specific albino embryos [140].

In research on pigmentation and albinism, an iPSC line 
was developed, incorporating two key TYR gene variants, 
providing a robust in vitro model to explore albinism 
mechanisms [141]. New insights into oculocutaneous 
albinism type 1 were gleaned by identifying two novel 
TYR gene variants in a Chinese hypopigmented patient, 
offering potential therapeutic avenues through CRISPR 
technology [142].

Cancer research has also benefited from CRISPR tech-
nology advancements. In CM, the knockout of cyclin-
dependent kinase 2 (CDK2) resulted in G0/G1 phase 
arrest, instigating early apoptosis of melanoma cells 
[143]. Melanoma-specific enhancers in the MET gene, 
driven by the MITF transcription factor, have been iden-
tified, opening avenues to address drug resistance in can-
cer treatments [144]. In a parallel study, the targeting of 
acid ceramidase (AC) in melanoma cells demonstrated its 
significant involvement in tumor progression, suggesting 
a potential therapeutic intervention for advanced mela-
noma [145]. Another revelation in melanoma research 
highlighted the potential of bromodomain inhibitors 
(BETi), emphasizing the critical role of the amphoterin-
induced gene and open reading frame 2-protein tyrosine 
kinase 7 (AMIGO2-PTK7) pathway in their therapeutic 
impact [146].

Diverse studies further revealed adenosine deaminase 
acting on RNA 1 (ADAR1)’s significant role in neural 
crest development and its impact on melanocytes and 
Schwann cells [147]. Moreover, insights into the KIT 
gene’s role in Yorkshire pigs’ pigmentation and erythro-
poiesis were uncovered, offering novel perspectives on 
gene mutations [148].

Tissue-engineering and spheroid modeling
Although 2D culture systems have helped explore mela-
nocyte function and melanoma treatment response, they 

do not mimic the 3D environment of native tissues which 
is known to play important physiological and pathophysi-
ological roles [149]. For example, a study has shown that 
melanin synthesis is widely repressed in 2D culture sys-
tems, while it is favored in 3D spheroid models [150]. 
Skin tissue engineering also represents a good model for 
understanding the mechanisms implicated in pigmenta-
tion in both homeostasis and disease states. For example, 
UV irradiation of pigmented bilayered tissue-engineered 
skin substitutes (P-TESSs) can help understand the 
mechanisms underlying tanning and skin disease pro-
gression, such as how UV exposure damages DNA in 
cutaneous cells, and the associated repercussions at the 
cellular and tissue levels [151]. Tissue engineering can 
also be used to study ocular conditions, such as AMD, 
a leading cause of blindness in industrialized countries 
that affects the posterior segment of the eye (reviewed in 
[152, 153]). A 3D model of the RPE/choroid segment was 
established using choroidal melanocytes, fibroblasts, and 
endothelial cells as well as RPE cells isolated from human 
donor eyeballs [154]. Such a model could provide a bet-
ter understanding of the intercellular communication 
between choroidal melanocytes, endothelial cells and 
RPE to develop new therapies for AMD.

CM is a highly metastatic cancer that arises from skin 
melanocytes. In The Cancer Genome Atlas (TCGA), 
CM is categorized into four subtypes based on activat-
ing gene mutations: BRAF mutant, NRAS/KRAS/HRAS 
mutant, NF1 mutant and triple-wildtype cases [155]. 
Spheroids have been used as models to understand the 
treatment resistance of CM. The 3D culture of CM cells 
in poly-hydroxyethylmethacrylate-coated plates changes 
the expression of a large variety of transcripts when com-
pared to gene expression profiles of cells cultured in 2D 
in presence or absence of collagen [156]. These include 
the CXCL family, IL8, CCL20, ANGPT4 or CD49, as 
well as the response to heat stress, TGF-β and IL-3/IL-4 
signaling [156]. The 3D state and cell population hetero-
geneity in spheroids induce a change in drug response 
to BRAF and MEK inhibitors in CM (reviewed in [157, 
158]) [159]. Spheroid models allowed the comparison of 
the genetic profile of BRAFV600-inhibitor resistant cells to 
sensitive cell counterparts; some of the most upregulated 
genes were SPC25, CCL2, CCNE2 and PLK1, all known 
to be involved in the metastatic process [159].

Another way of studying the development and pro-
gression of CM is through the use of reconstructed 3D 
environments mimicking skin properties and cell types of 
normal human skin, also referred to as tissue-engineered 
skin subsitutes (TESSs). Melanoma cells have also been 
integrated in tissue-engineered constructs to study inva-
sion and metastasis [160–164]. TESSs have been used 
to show that melanoma cells expressing the fibroblast 
growth factor-2 (FGF-2) proliferate at a higher rate and 
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are more invasive than those not expressing FGF-2 [164]. 
CM has also been studied with more complex TESS 
models that incorporate blood and lymphatic capillaries 
[160]. Adding these components to TESSs more accu-
rately mimics the melanoma biology, providing an oppor-
tunity to study complex processes such as angiogenesis 
and to test new drugs [160, 161]. In their study, Vörs-
mann and colleagues used both reconstructed skin and 
spheroids made with melanoma cell lines with different 
genetic backgrounds to recreate the melanoma microen-
vironment [165]. Such a model could represent a useful 
tool to test drugs in vitro, as they incorporate not only 
cancerous cells but the associated microenvironment 
components found in melanoma tumors as well.

Uveal melanoma (UM), developing from melanocytes 
of the choroid, the iris or the ciliary body, is a rare but 
deadly cancer with 50% of patients affected by metasta-
sis in various sites, but primarily the liver (reviewed in 
[166]). UM is classified in four molecularly distinct sub-
types based on chromosomal abnormalities and gene 
mutations according to TCGA [167]. In the case of UM, 
spheroids were mostly generated to study the capacity of 
cells to form such structures [168, 169]. Spheroids have 
also been used as tool to analyze the different responses 
to doxorubicin (chemotherapeutic agent) and selu-
metinib (MEK inhibitor) treatments using various estab-
lished cell lines such as OMM2.5, MM66, MP41 or 92.1, 
thus linking different genetic profiles to different resis-
tance properties [165, 170]. As an alternative to estab-
lished cell lines, primary tumor cells obtained following 
an enucleation, the second most common procedure to 
treat UM, can be used to realize such tests [165, 170]. The 
reconstructed choroidal niche described earlier can also 
be used to study in vitro the modifications in the tumor 
microenvironment during the growth of choroidal mela-
noma (reviewed in [171]) [154].

Extracellular vesicles (EVs)
The Minimal Information for Studies of Extracellular 
Vesicles (MISEV) guidelines describe EVs as secreted 
cell particles that are delimited by a lipid bilayer with no 
functional nucleus and no replicative abilities (reviewed 
in [172]). They are found in all biological fluids such as 
blood or urine, and also in vitro in the culture medium 
conditioned by cells (reviewed in [173]). EVs are rich 
biological cargoes, consisting of proteins, nucleic acids, 
microRNAs, metabolites and lipids (reviewed in [172, 
173]). Because they are important for cell communication 
and signaling, EVs are central actors in the development 
of diverse pathologies, including pigmentary disorders 
and melanomas. Interestingly, proteins associated with 
melanosome biogenesis such as Rab GTPases (RABs), 
tetraspanin CD63, SNAP receptors (SNAREs), and 
Biogenesis of Lysosome-related Organelle Complexes 

(BLOCs) are also involved in the biosynthesis, transport 
and release of EVs (reviewed in [174, 175]).

UVB-irradiated melanocytes have been shown to 
release more fibronectin-loaded EVs, an EV subset 
known to reduce apoptotic bodies and cell death, there-
fore playing an important role in cell survival during 
UV-exposure [176]. The transcriptome analysis of kera-
tinocytes exposed to EVs derived from UVA-irradiated 
melanocytes reveals the activation of TGF-β and IL-6/
STAT3 signaling pathways and an upregulation of miR-
21, which induce keratinocyte proliferation and migra-
tion [177].

In CM, the biological cargo of EVs differed between 
healthy and pathological melanocytes. Proteomic analy-
ses of CM-EVs demonstrated an enrichment of pro-
teins including p120-catenin, radixin, annexins A1/A2, 
syntenin, hyaluronan and proteoglycan link protein 1 
(HAPLN1) involved in angiogenesis, cell invasion, migra-
tion and metastasis in melanoma (reviewed in [178]) 
[179–182]. EVs are known to be involved in pre-met-
astatic niche formation (reviewed in [183]) [184, 185]. 
CM-derived EVs participate in the cell phenotype transi-
tion in the tumor microenvironment by targeting fibro-
blasts that switch to cancer-associated fibroblasts (CAFs) 
[186, 187]. They have been shown to contain miR-211, 
miR-155 and miR-210 that target the MAPK pathway and 
aerobic glycolysis, and decrease oxidative phosphoryla-
tion in fibroblasts [186, 187]. A pro-inflammatory role of 
EVs derived from CM cells has been observed compared 
to normal melanocytes (reviewed in [188]).

UM cells secrete EVs that reach the liver and induce 
the release of cytokines and growth factors in hepatic 
cells, such as macrophage inhibitory factor (MIF), which 
in turn promotes the recruitment of melanoma cells to 
the liver in a murine model [189]. In comparison, EVs 
derived from epidermal melanocytes (non-cancerous 
control) contain a low level of MIF and do not activate 
cell signaling in hepatocytes in vitro [189]. EVs from 
normal choroidal melanocytes (NCMs) were recently 
isolated from conditioned culture medium and char-
acterized as normal controls for UM studies [190, 191]. 
Although NCM-EVs were internalized by hepatic stel-
late cells, they did not increase their activation or con-
tractile function in collagen gels, in contrast to cancer 
cells, which increased both properties [190]. In addi-
tion, EVs derived from NCMs contained a different cargo 
than UM-EVs, and were unable to induce the prolifera-
tion and malignant transformation of BRCA1-deficient 
fibroblasts after their internalization [191]. Tumoral EVs 
are thus facilitating melanoma progression by modeling 
the microenvironment and metastatic spreading, and 
the study of EVs from healthy melanocytes will help to 
understand how malignant cells profit from physiological 
cell-cell communication mechanisms.
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Melanocytes in therapy
Stem cell technologies
Therapeutic approaches using McSCs or iPSCs can pro-
vide alternative treatments for pigmentary disorders. For 
example, the development of pigmentation in hair fol-
licles of immunodeficient unpigmented mice was made 
possible up to seven weeks after the transplantation of 
hiMels, which were shown to localize to the basal layer of 
the hair bulb epithelium in vitro [192]. Similarly, pigment 
cells expressing MART-1 could be detected as early as 3 
days after hiMels injection into immunodeficient unpig-
mented mice [193]. Overall, these studies suggest that 
iPSC-derived melanocytes could be a potential source for 
autologous transplantation to treat skin disorders such as 
vitiligo. The use of iPSCs could also potentially overcome 
the limitations of current melanocyte transplantation 
techniques, such as the limited availability of donor cells 
and the risk of immune rejection.

Native McSCs also have a therapeutic potential for 
long-lasting repigmentation of ageing tissues. Following 
genotoxic stresses (e.g., chemicals, drugs, or radiations), 
hair graying is thought to be due to the loss of McSCs 
resulting in the depletion of differentiated melanocytic 
progeny in the hair bulge (reviewed in [194, 195]). B-cell 
lymphoma 2 (BCL-2) protein and MITF deficiencies have 
also been shown to accelerate this process [196, 197]. A 
modulation of the McSC niche might thus prevent or 
reverse the loss of pigmentation in ageing skin and hair 
(reviewed in [194]).

Stem cells also serve as a reservoir for autologous mela-
nocytes sources for cell-based therapies. It has been dem-
onstrated that multipotent dermal stem cells obtained 
from human neonatal foreskins have the potential to dif-
ferentiate into various cell types, including pigmented 
melanocytes [198].

Cell inoculation and tissue-engineered substitute grafting
Cultured melanocytes have been used in several case 
report studies to improve skin pigmentation in patients 
suffering from vitiligo or piebaldism. In these studies, 
cultured autologous melanocytes extracted from healthy 
donor sites were used to treat unpigmented skin defects 
using suction or liquid-nitrogen blisters [199, 200]. In 
other case report studies, autologous suspensions of cul-
tured melanocytes or co-cultures of keratinocytes and 
melanocytes were applied into the wound bed directly 
after the surgical removal of unpigmented skin areas in 
patients receiving skin grafts [8, 199, 200]. Using these 
techniques, skin pigmentation was generally shown to 
be well restored, but some areas, such as the hairline or 
fingers, proved more difficult to treat than others [200]. 
A refinement of this treatment could be achieved using 
3D spheroids, as they improve the survival of melano-
cytes compared to cell suspensions [201]. It has already 

been shown in a preclinical study that transplanting chi-
tosan-based melanocyte spheroid patch after preparing 
the recipient sites with psoralen and UVA-induced sun-
burn can facilitate melanocyte transplantation [202]. It 
would be interesting to see if difficult-to-repigment areas 
(such as hairlines and fingers) can be pigmented with this 
method.

Cultured epithelial autografts (CEAs), initially used for 
the treatment of severe burns, have also been tested to 
correct hypopigmentation defects in patients suffering 
from vitiligo and piebaldism [8, 203–205]. Pigmented 
CEAs have been generated from isolated autologous 
keratinocytes and melanocytes and grafted after the sur-
gical removal of the hypopigmented skin areas [203, 204]. 
A 2-year follow-up study in six patients indicated that 
this treatment restored pigmentation in 88–100% of the 
grafted areas [204].

Although P-TESSs have not yet been used to treat 
patients with pigmentary disorders, this approach could 
be an interesting therapeutic avenue. Preclinical studies 
in athymic mice have indeed shown that P-TESSs can 
maintain a homogeneous pigmentation over time after 
grafting [151, 206]. Further analyses have also revealed 
that melanin produced in these P-TESSs can be effi-
ciently transferred from melanocytes to keratinocytes, 
form nuclear caps above cell nuclei, and protect the skin 
substitutes from DNA damage [151, 207, 208].

Extracellular vesicles (EVs)
EVs have been closely related to several pigmentation 
disorders such as vitiligo. In the skin, melanocytes inter-
act with keratinocytes by direct contact or via secreted 
EVs. Keratinocyte-derived EVs that are internalized by 
melanocytes can regulate melanogenesis. For example, 
keratinocyte-derived EVs containing miR-330-5p have 
been shown to reduce melanin production and decrease 
TYR expression in melanocytes that incorporate these 
EVs [209].

EVs have been shown to mediate drug resistance to 
chemotherapeutic medications through different mech-
anisms (reviewed in [210]). Melanoma cells release EVs 
that are internalized in hepatic stellate cells, which leads 
to their activation and an increase of their pro-fibrogenic 
properties [190]. In addition, melanoma cells subjected to 
therapeutic agents have been shown to secrete more EVs 
that can modify macrophage phenotype favoring mela-
noma growth [211].

EVs may also play a role in the development of patholo-
gies in skin. Human skin is directly in contact with exter-
nal stimuli such as UV radiation. In response to these 
stimulations, melanocytes must counteract the cytotoxic 
effects that can generate pathologies such as melasma 
or CM via melanogenesis, so their survival is impor-
tant to maintain skin pigmentation. To understand the 
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pathogenesis, some studies focus on the response to UV 
radiation through EVs. UV radiation has also been found 
to have a direct impact on the crosstalk between mela-
nocytes and keratinocytes [177, 212]. Studies have shown 
that UVA irradiation of melanocytes increased their 
release of EVs and the miRNA transport by EVs to kera-
tinocytes [177, 212]. This release of miRNAs was associ-
ated with EV internalization by keratinocytes [212].

Melanocytes in drug testing
The use of hiMels provides a more physiologically rel-
evant system for drug screening than traditional cell 
culture models, and may improve the likelihood of iden-
tifying drugs that are effective in vivo. Using hiMels, 
screening assays have thus been developed for identify-
ing drugs that promote or inhibit melanin production, 
in order to improve treatments of pigmentary disorders 
[213].

P-TESSs and spheroids have been used to test com-
pounds intended for cosmetic purposes to investigate 
their mechanisms of action. For example, the treatment 
of P-TESSs with kynurenine, a metabolite associated 
with immune tolerance, was shown to inhibit melano-
genesis [214]. The inhibitory effect of fucoxanthin on 
melanin production was confirmed using spheroids pro-
duced with skin melanocytes [215]. Recently, P-TESSs 
produced with hiMels provide a better model for in vitro 
experiments and could reduce animal testing (reviewed 
in [216]).

Spheroids produced from melanoma cells have been 
used to test several BRAF mutant inhibitors, to help iden-
tify genes implicated in metastatic outgrowth (reviewed 
in [158]). Models of melanoma progression have been 
developed combining P-TESSs and spheroids produced 
from melanoma cell lines with varying genetic back-
grounds to investigate the effects of different drugs [165]. 
Complex models of P-TESSs encompassing a lymphatic 
system and/or a microvasculature may also prove use-
ful to study drug diffusion through these structures and 
evaluate their effects on cancer cells [160, 161]. Lastly, 
UM has also been studied using spheroids with various 
established cell lines to screen the effect of various drugs 
on cell resistance and invasion patterns [170, 217].

Discussion
Despite many decades of research in pigment cell biology, 
the roles and functions of melanocytes in health and dis-
ease are still not fully understood. While the molecular 
mechanisms driving melanogenesis in melanocytes have 
been well studied in various cell lines and animal models, 
the processes regulating their communication with other 
cell types and response to diverse environmental cues 
are only beginning to be uncovered. Therefore, novel 
study approaches involving tissue engineering, stem cell 

technologies, or extracellular vesicles will likely be instru-
mental to expand knowledge on melanocyte biology and 
pigmentary disorder pathogenesis.

This review describes the origin and functions of mela-
nocytes and provides perspective on their potential in 
regenerative medicine from a basic, translational, or 
clinical research standpoint. In addition, this review also 
identifies some limitations. For example, in hyperpig-
mentation or hypopigmentation disorders, only certain 
parts of the body are affected, therefore, tools to restore 
pigment must target affected areas rather than act sys-
temically. Caution must also be taken with procedures 
promoting melanocyte proliferation to make sure it does 
not induce melanoma. Conversely, the use of inhibi-
tors against melanogenesis in cancer must spare healthy 
melanocytes.

To have a better understanding of melanocytes’ 
involvement in diseases, more research needs to be done 
to better characterize their physiology. For example, it 
is known that melanocytes transfer melanin to kerati-
nocytes in the skin to protect against free radicals and 
oxidative stress, but this function is not demonstrated in 
melanocytes of other tissues. In addition, since melano-
cytes work closely with other cell types such as keratino-
cytes in the skin or RPE cells in the posterior segment of 
the eye, inhibition or induction of melanocyte prolifera-
tion can lead to adverse effects in the targeted tissue or 
surrounding tissues (reviewed in [218]) [121, 219, 220]).

Therapeutic approaches will also require more knowl-
edge in melanocyte development and human models. 
Mutations can alter the expression of proteins in some 
ocular pathologies, and it can be difficult to recover the 
mutated cells in vitro. Advances in CRISPR technology 
could thus be used to correct diseased cells or incorpo-
rate mutations in melanocytes to produce models of 
frequent mutations found in pigmentary disorders or 
melanomas; more research is warranted in this area to 
identify therapeutic targets.

Over the past several years, EVs have garnered signifi-
cant interest for eventual treatment of diseases, includ-
ing cancers (reviewed in [221]). EVs are often associated 
with modifications of the microenvironment in distal tis-
sues which become favorable to tumor development or 
metastasis. EVs could also be developed as drug or gene 
delivery tools. Nevertheless, questions remain. In vitro 
experiments lack a functional immune system. To inject 
EVs carrying drugs, it will be necessary to ensure that 
they are not destroyed by immune cells. For this, it will be 
preferable to isolate EVs directly from the patient, bring-
ing new uncertainties such as the best EV source (blood 
or lymphatic fluid sampling), and the concentration to be 
recovered and injected. As EVs are vehicles secreted by 
all cell types, any potential treatment using “smart EVs” 
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will have to target cells of interest with specific surface 
proteins.

The extensive use of animal models raises ethical con-
cerns [222]. Fortunately, alternative in vitro models such 
as tissue-engineered substitutes and spheroids have been 
developed to better mimic the complexity of in vivo cell 
interactions in order to properly test drugs. Accordingly, 
intricate 3D architectures can be reproduced in vitro 
allowing the study of complex phenomena. These include: 
melanocyte dysfunction in pigmentary disorders, cell 
invasion and metastasis in the context of cutaneous and 
ocular melanomas, tissue grafting, and the development 
of relevant tools for drug evaluation (reviewed in [171, 
223]) [154, 224, 225].

In summary, there is a growing interest in the use of 
melanocytes in regenerative medicine, and researchers 
of the field are currently developing different innovative 
tools or models (e.g., spheroids, tissue-engineered sub-
stitutes, extracellular vesicles, stem cell technologies) for 
improving pigmentary disease modeling and targeted 
therapies.
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