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Abstract 

Background Patients with spondyloarthritis (SpA)/HLA-B27-associated acute anterior uveitis (AAU) experience 
recurring acute flares, which pose significant visual and financial challenges. Despite established links between SpA 
and HLA-B27-associated AAU, the exact mechanism involved remains unclear, and further understanding is needed 
for effective prevention and treatment.

Methods To investigate the acute pathogenesis of SpA/HLA-B27-associated AAU, Mendelian randomization (MR) 
and single-cell transcriptomic analyses were employed. The MR incorporated publicly available protein quantitative 
trait locus data from previous studies, along with genome-wide association study data from public databases. Causal 
relationships between plasma proteins and anterior uveitis were assessed using two-sample MR. Additionally, colo-
calization analysis was performed using Bayesian colocalization. Single-cell transcriptome analysis utilized the anterior 
uveitis dataset from the Gene Expression Omnibus (GEO) database. Dimensionality reduction, clustering, transcrip-
tion factor analysis, pseudotime analysis, and cell communication analysis were subsequently conducted to explore 
the underlying mechanisms involved.

Results Mendelian randomization analysis revealed that circulating levels of AIF1 and VARS were significantly 
associated with a reduced risk of developing SpA/HLA-B27-associated AAU, with AIF1 showing a robust correlation 
with anterior uveitis onset. Colocalization analysis supported these findings. Single-cell transcriptome analysis showed 
predominant AIF1 expression in myeloid cells, which was notably lower in the HLA-B27-positive group. Pseudotime 
analysis revealed dendritic cell terminal positions in differentiation branches, accompanied by gradual decreases 
in AIF1 expression. Based on cell communication analysis,  CD141+CLEC9A+ classic dendritic cells (cDCs) and the APP 
pathway play crucial roles in cellular communication in the Spa/HLA-B27 group.
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Conclusions AIF1 is essential for the pathogenesis of SpA/HLA-B27-associated AAU. Myeloid cell differentiation 
into DCs and decreased AIF1 levels are also pivotal in this process.

Keywords Anterior uveitis, Genetics, Mendelian randomization, Single-cell transcriptome

Introduction
Spondyloarthritis (SpA)/HLA-B27-associated acute ante-
rior uveitis (AAU) is a subtype of anterior uveitis [1–3]. 
Its prevalence in young adults is characterized by easily 
repeatable acute monocular episodes, which can seri-
ously endanger the patient’s vision and impact their abil-
ity to work, resulting in a heavy economic burden [4]. 
Several studies have established strong links between 
SpA or HLA-B27 and AAU [1, 3, 5], but the exact patho-
genesis of these correlations has not been determined.

Various hypotheses have been proposed regarding the 
acute pathogenesis of SpA/HLA-B27-associated AAU. 
The ketogenic/arthritogenic peptide hypothesis sug-
gests that the pathogenesis of SpA or AAU is an autoim-
mune response mediated by cytotoxic T cells [6]. Since 
HLA-B27 molecules are MHC-I molecules that are natu-
ral antigen-presenting molecules, they can bind to cer-
tain specific peptides in joint or eye tissues and present 
them to other immune cells to activate an autoimmune 
response. These uveitogenic/arthritogenic peptides can 
be either exogenous or endogenous. The HLA-B27-de-
rived peptide hypothesis suggests that misfolding of the 
HLA-B27 molecule leads to its presentation as an anti-
gen by MHC-II-like molecules, which in turn activates 
 CD4+ T cells [7]. This interpretation partially explains 
the role of  CD4+ T cells in the pathogenesis of SpA/
HLA-B27-associated AAU. The intestinal microbiota 
hypothesis suggests that changes in intestinal permeabil-
ity caused by the intestinal microbiota lead to monitor-
ing of bacterial antigens via the immune system. Some of 
these bacterial antigens can cause abnormal activation of 
the immune system through molecular mimicry, result-
ing in an imbalance in the homeostasis of the immune 
microenvironment, such as a decrease in the number of 
certain regulatory T cells and abnormal DC cell presenta-
tion [8]. This ultimately leads to the migration of immune 
cells to the eye or other organs, causing disease. All of 
these hypotheses suggest that alterations in the immune 
microenvironment are important for causing SpA/HLA-
B27-associated AAU. Overall, identifying the underlying 
mechanisms is important for prevention and treatment 
of acute anterior uveitis. However, due to the complexity 
of the immune microenvironment, in which each altera-
tion in the microenvironment causes a dramatic change 
in the entire microenvironment, many confounding fac-
tors make it difficult to experimentally identify the key 
steps involved.

Many research methods based on big data and mul-
tiomics have emerged to provide scientific means 
to elucidate the pathogenesis of complex diseases. 
Genome-wide association studies (GWASs) iden-
tify locus‒phenotype associations by testing hun-
dreds of thousands to millions of genetic variants in 
the genomes of numerous individuals. This approach 
allows for simple biological interpretation of associa-
tion results and identification of novel biomarkers and 
drug targets [9, 10]. The phenotype can be a complex 
disease or a simple phenotype, such as expression of a 
gene or the level of a plasma protein. Since plasma pro-
teins play key roles in a variety of biological processes, 
such as signalling, growth, repair, and immune defence, 
they are reliable drug targets [11]. Therefore, many 
scholars have identified various genetic determinants of 
protein expression by performing GWASs at the level 
of plasma proteins, and these determinants are known 
as protein quantitative trait loci (pQTLs) [12], which 
can be utilized to study the correlation between plasma 
proteins and diseases [13]. GWASs as well as identifi-
cation of a considerable number of loci associated with 
complex traits or diseases have been performed; how-
ever, most do not directly affect protein-coding regions, 
which greatly hampers our understanding of the molec-
ular basis of human disease [14]. Therefore, GWASs 
often need to be complemented with evidence provided 
by basic experiments, which suffer from low through-
put and time-consuming problems.

The concept of Mendelian randomization (MR) was 
systematically described by Davey Smith G et  al. as 
early as 2003 [15]; it is a statistical method based on 
GWASs in which genetic variants are used as proxy 
variables to infer causal relationships. The basic idea of 
MR is to select genetic variants as instrumental vari-
ables to represent the exposure factor and to use the 
association statistics between the variant and the expo-
sure and with the outcome to estimate the causal effect 
between them. Since alleles are randomly segregated 
and passed on to offspring at the time of parental gam-
ete formation, this natural method of random assign-
ment is even superior to that of randomized controlled 
trials. In addition, the genetic material identified at 
birth is virtually immune to interference from acquired 
social and environmental confounders, and its chrono-
logical relationship to the outcome predates the study 
outcome, thus avoiding reverse causal inference.
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Although MR excels in inferring causality, it is unable 
to provide a clear explanation of the underlying mecha-
nisms involved. In recent years, single-cell sequencing 
technology has become increasingly sophisticated, with 
increased resolution to the individual cell level, provid-
ing unparalleled accuracy for studying disease mecha-
nisms [16, 17]. However, due to its high precision, any 
confounding factors during the sequencing process can 
dramatically affect the results. Moreover, the application 
of single-cell sequencing technology requires correct a 
priori knowledge to identify confounding factors and key 
disease-causing factors. Therefore, single-cell sequencing 
and MR analysis well complement each other to identify 
the initiating factors and key pathways involved in dis-
ease pathogenesis.

Accordingly, we used an MR analysis approach to 
analyse publicly available GWAS data to identify key 
plasma proteins involved in the pathogenesis of SpA/
HLA-B27-associated AAU. We then performed single-
cell transcriptome sequencing to investigate the specific 
mechanisms involved. This study provides an important 
theoretical basis for monitoring the pathogenesis of SpA/
HLA-B27-associated AAU and for drug development.

Methods
Study design and ethics
The flowchart of the study is presented in Fig.  1. The 
study was divided into two parts: MR analysis and sin-
gle-cell transcriptome analysis. MR analyses were con-
ducted using GWAS summary statistics and large-scale 
pQTL statistics. We obtained pQTL data from published 
studies by Pietzner et al. [18] and Ferkingstad et al. [19] 
and collected GWAS statistics from UK Biobank, the 
FinnGen study, and GWAS Catalog. The present study 
utilized the single-cell transcriptome sequencing dataset 
GSE178833 obtained from the GEO database for analy-
sis of AAU in HLA-B27-positive patients. As previously 
collected and published data were reanalyzed, no further 
ethical approval was needed.

MR analysis
Plasma protein quantitative trait loci
The plasma pQTL data used in our preliminary analysis 
were obtained from a previous study by Pietzner et  al. 
[18]. Their study measured protein targets from 10,708 
participants of European ancestry using the SomaScan v4 
assay and identified a total of 3,323 cis-pQTLs and 7314 
trans-pQTLs. In our study, we included only proteins 
with cis-pQTLs that reached genome-wide significance 
(P < 5 ×  10–8) in the MR analysis. For validation pur-
poses, we used pQTL data from Ferkingstad et  al. [19]. 
Proteomic analyses utilizing the SomaScan v4 assay were 
conducted on 35,559 individuals of European descent.

GWAS summary statistics
In this study, ankylosing spondylitis (AS) was utilized as a 
surrogate phenotype for HLA-B27-positive spondyloar-
thritis, and iridocyclitis was employed as a surrogate phe-
notype for anterior uveitis. Preliminary analysis involved 
GWAS data sourced from UK Biobank for AS and from 
the FinnGen study (r10) for iridocyclitis. The AS data 
were procured from Cortes et  al.’s GWAS [20], encom-
passing 9069 AS cases of European ancestry diagnosed 
based on modified New York criteria and 13,578 Euro-
pean ancestry controls. Iridocyclitis summary statistics 
were derived from the FinnGen study, comprising 8016 
iridocyclitis cases and 390,647 controls, all involving 
European ancestry. Subtypes of iridocyclitis were deline-
ated as acute or subacute (6755 cases) and chronic (1551 
cases), with the same control group.

In the validation phase, GWAS data from FinnGen 
were employed for AS, encompassing 3162 cases and 
294,770 controls, all involving European ancestry. For 
iridocyclitis, GWAS Catalog data comprised 134 cases 
diagnosed based on modified New York criteria and 
456,214 controls, all involving European ancestry [21].

Subsequent experiments involved GWAS data from 
the FinnGen study (r10) for other HLA-B27 positive dis-
eases. Reactive arthropathies included 3058 cases and 
262,844 controls. Psoriatic arthropathies involved 3537 
cases and 262,844 controls. Enteropathic arthropathies 
included 707 cases and 262,844 controls. All participants 
were of European ancestry.

Mendelian randomization analysis
In this study, MR analysis was employed to establish 
causal relationships between plasma proteins and AS and 
between plasma proteins and iridocyclitis. We selected 
single-nucleotide polymorphisms (SNPs) that exhib-
ited strong correlations with the exposures and reached 
genome-wide significance (P < 5 ×  10−8) as instrumental 
variables, excluding SNPs from echo sequences. Initially, 
the instrumental strength of each SNP was determined 
using F statistics = (βexpose/Seexpose)2, and SNPs with F sta-
tistics > 10 were considered strong instrumental variables 
[22]. Then, we conducted tests for pleiotropy and hetero-
geneity on these SNPs and excluded those demonstrating 
pleiotropy or heterogeneity (P < 0.05) from subsequent 
analyses.

In the preliminary MR analysis, the choice of method 
depended on the availability of SNPs for each protein. 
The Wald ratio method was utilized when only one 
SNP was accessible for the protein; inverse variance 
weighting (IVW) was applied when two or more SNPs 
were accessible. To address multiple testing issues, we 
adjusted the results using the Bonferroni correction, with 
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a significance threshold set at 0.05/(number of proteins 
used for analysis), prioritizing these outcomes for further 
investigation. The odds ratios (ORs) for an increased risk 
of disease are expressed as the per standard deviation 
(SD) increase in the plasma protein level.

For external validation of the proteins identified 
in the preliminary study, we employed a significance 
threshold of 0.05. After MR analysis, the Steiger Direc-
tion Test and Steiger Filtering were used to detect 

whether there was a reverse causal effect from disease 
to protein [23]. In cases in which the directionality of 
the MR results was ambiguous despite the aforemen-
tioned methods, we conducted reverse MR to validate 
the causal relationship between the plasma proteins 
and disease.

All MR analyses were performed using the R package 
‘TwoSampleMR’ and visualized using the R packages 
‘ggplot2’ and ‘ggVolcano’.

Fig. 1 Study design. pQTLs, protein quantitative trait loci; AS ankylosing spondylitis; AU anterior uveitis, GWAS genome-wide association study, MR 
Mendelian randomization, PPI protein–protein interaction, scRNA-seq single-cell transcriptomics
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Bayesian colocalization analysis
Bayesian colocalization analysis was employed to assess 
whether two traits share a common variant within a spe-
cific chromosomal region. This approach considers all 
SNPs within the region and offers valuable insights into 
the genetic factors influencing two traits, aspects not 
addressed by MR analysis. The analysis evaluated support 
for five distinct hypotheses: (1) the selected regions were 
not associated with either trait; (2) the selected regions 
were associated with trait 1 only; (3) the selected regions 
were associated with trait 2 only; (4) the selected regions 
were associated with both traits, but distinct causal vari-
ants influenced each trait; and (5) the selected regions 
were associated with both traits and shared a single 
causal variant for both traits [24]. Posterior probabilities 
for each hypothesis (H0, H1, H2, H3, and H4) were calcu-
lated. The analyses were conducted using default param-
eters. Colocalization between two traits in a specific 
region was considered robust if the posterior probability 
of shared causal variation (PH4) was ≥ 0.8.

Bayesian colocalization analysis was performed using 
the R package ’coloc’.

Drug target identification
To assess the efficacy of the identified proteins, we 
searched the DrugBank database for identified target 
proteins associated with ankylosing spondylitis and iri-
docyclitis [25]. We then searched the identified proteins 
in the STRING database and filtered out the top 10 pro-
teins that were most closely associated with them [26]. 
We subsequently included all the proteins obtained in the 
previous steps within the analysis utilized to construct 
the protein–protein interaction (PPI) network (minimum 
required interaction score = 0.4). The results of the PPI 
analysis were visualized utilizing Cytoscape (v3.9.1).

Single‑cell transcriptome analysis
Data download and quality control
The dataset used, GSE178833, was obtained from the 
Illumina NextSeq 500 platform on GPL18573, compris-
ing of four aqueous humor samples of HLA-B27-positive 
anterior uveitis, two aqueous humour samples of HLA-
B27-negative anterior uveitis, and one aqueous humour 
sample of infectious endophthalmitis [27]. All the 
patients in the dataset who were in the HLA-B27-posi-
tive group had spondyloarthritis.

Our analysis included samples from patients with 
HLA-B27-positive uveitis and HLA-B27-negative uvei-
tis from the GSE178833 dataset. Cells meeting the fol-
lowing criteria were chosen for future analysis: (1) 
unique molecular identifier (UMI) > 500; (2) 200 < genes 
detected per cell < 2500; (3) percentage of mitochondrial 

genes < 20%; and (4) percentage of ribosomal genes > 5%; 
complexity  [logUMI (genes detected per cell)] > 0.8. Sam-
ples with poor data quality (‘b27po4’) were removed. In 
total, 10,081 cells were ultimately retained.

Dimensionality and clustering
The R package ‘Seurat’ was used for dimensionality and 
clustering analysis. Initially, the Log-Normalize and 
ScaleData algorithms were applied to the filtered data. 
The FindVariableFeature function was utilized to filter the 
identified genes for further analysis via principal compo-
nent analysis (PCA); the percentage change between each 
principal component (PC) and the subsequent compo-
nent was calculated. If the percentage was less than 5%, 
the current number of PCs (13) was selected for the next 
FindNeighbors function. The R package "Harmony" was 
used to remove batch effects between samples. The uni-
form manifold approximation and projection (UMAP) 
method was employed to conduct the analysis. The Find-
Clusters function was used for cluster analysis. Using the 
ScType database, we identified specific cell type markers 
for immune cells, thereby determining the putative cell 
type for each cell population [28]. To ensure the reli-
ability of the cell type annotations, we used an immune 
cell-specific marker to validate the results of automated 
annotations. The immune cell markers used were as fol-
lows: myeloid cells (CSF1R), monocytes (OLR1), mac-
rophages (MARCO, F13A1), myeloid dendritic cells 
(FLT3, ZBTB46), T cells (IL7R, TRAC),  CD8+ T cells 
(TRBC2, CD8A),  CD4+ T cells (CD4), natural killer cells 
(NCR1, KLRF1, NCAM1), and B cells (CD19, MS4A1).

Afterwards, we investigated expression of target pro-
tein-encoding genes across different cell types and ana-
lysed differences between the HLA-B27-positive and 
HLA-B27-negative groups within each cell type. The 
results for dimensionality were visualized using the R 
package ‘plot1 cell’ [29]; other results were visualized 
using the R packages ‘Seurat’ and ‘ggplot2’.

Transcription factor analysis
We used the R package ‘SCENIC’ to construct gene regu-
latory networks for different cell types within the HLA-
B27-positive group [30]. We started by filtering genes, 
excluding those expressed in less than 1% of cells and 
those with low expression levels (those with less than 3 
UMIs in 1% of cells). For subsequent analysis, we iden-
tified genes in the RcisTarget database and conducted 
GENIE3 analysis [31] to determine potential targets of 
each transcription factor based on coexpression data. We 
identified potential direct targets by conducting DNA-
motif analysis using the R package ‘RcisTarget’. Finally, 
we analysed the network activity in individual cells and 
scored them using AUCell to determine their cellular 



Page 6 of 18Chen et al. Journal of Translational Medicine          (2024) 22:271 

status. The results of the analysis were analysed via the R 
packages ‘SCENIC’ and ‘ComplexHeatmap’.

Pseudotime analysis
Pseudotime analysis was performed on myeloid cells 
using the R package ‘monocle2’ [32]. Initially, myeloid 
cell data were extracted from the Seurat object obtained 
in the preceding step, followed by redimensionality and 
clustering. Subsequently, these cell types were rean-
notated using the ‘Immune_All_High’ database within 
the R package ‘celltypist’ [33]. We also used markers for 
immune cells to ensure the accuracy of the automated 
annotation: monocytes (OLR1), macrophages (MARCO, 
F13A1),  CD141+CLEC9A+ classic dendritic cells (cDCs) 
(IDO2, CLEC9A, THBD), monocyte-derived dendritic 
cells (moDCs) (CD1E, CD1C), and migratory dendritic 
cells (FSCN1, LAMP3, CCR7). The DCs were then 
categorized according to AFI1 expression status into 
high-AIF1 DCs (cDCs and moDCs) and low-AIF1 DCs 
(migratory dendritic cells).

We then transformed the Seurat object annotated into 
a monocle2 object. To present the hypothetical trajec-
tory location of the cells, the orderCells function was 
employed to arrange them along a developmental axis. 
Finally, BEAM analysis was used to examine expression 
of genes responsible for determining cell fate at specific 
time points. Visualization of the aforementioned analysis 
was facilitated through utilization of R packages such as 
“monocle2”, “plot1cell”, “ggplot2”, and “ComplexHeatmap”.

Cellular communication analysis
Intercellular communication analysis was conducted 
using the R package ‘CellChat’ [34]. The Seurat objects 
annotated were converted into CellChat objects and 
divided into groups based on HLA-B27 positivity or neg-
ativity. The function identifyOverExpressedGenes was 
used to determine which ligands or receptors are upregu-
lated in each cell type; the function identifyOverExpres-
sedInteractions was used to identify highly expressed 
pathways in each cell type. The projectData function 
was utilized to project gene expression data onto the 
PPI network. Finally, the netAnalysis_computeCentral-
ity function was used to calculate the significance of the 
interaction. The above results were compared between 
groups and visualized using the R packages ‘CellChat’ 
and ‘ggplot2’.

Role of the funding source
The funders did not have any role in the analysis or inter-
pretation of the data, the writing of the manuscript, or 
the decision to submit the paper for publication.

Results
Screening for plasma risk proteins
MR analysis
Data for a total of 3233 SNPs of 1561 proteins were 
included in our preliminary analysis. First, we excluded 
194 SNPs at levels that did not have genome-wide sig-
nificance (P < 5 ×  10−8). Prior to MR analysis, we excluded 
SNPs with pleiotropy and heterogeneity. Pleiotropy anal-
ysis did not reveal any instrumental variables associated 
with significant pleiotropy (P < 0.05). In heterogeneity 
analysis, we excluded 37 proteins for which the instru-
mental variables were heterogeneous (P < 0.05) (data not 
shown).

In preliminary MR analysis, we analysed the causal 
effects of plasma proteins on AS, iridocyclitis, acute 
and subacute iridocyclitis, and chronic iridocyclitis 
separately. Manhattan plots of the GWASs for the pre-
liminary MR analysis are shown in Fig.  2A. We first 
used GWAS data for AS from UK Biobank and iden-
tified 11 proteins causally associated with AS by MR 
analysis (Fig.  2B, C), with increased plasma levels of 
three proteins, Allograft inflammatory factor 1(AIF-1) 
(OR = 0.59; 95% CI 0.57–0.60; P = 8.79 ×  10–287), Valyl-
tRNA synthetase (VARS) (OR = 0.60; 95% CI 0.57–0.65; 
P = 1.59 ×  10–51), and Intelectin-1 (ITLN1) (OR = 0.89; 
95% CI 0.84–0.95; P = 9.67 ×  10–5), decreasing the risk of 
AS. The other eight proteins, Apolipoprotein M (APOM) 
(OR = 1.12; 95% CI 1.09–1.15; P = 6.06 ×  10–16), Buty-
rophilin subfamily 3 member A3 (BTN3A3) (OR = 1.04; 
95% CI 1.03–1.05; P = 5.23 ×  10–14), Complement C4A 
(Rodgers blood group)|Complement C4B (Chido 
blood group)(C4A|C4B) (OR = 1.54; 95% CI 1.47–1.61; 
P = 2.47 ×  10–74), Caspase recruitment domain fam-
ily member 9 (CARD9) (OR = 1.13; 95% CI 1.08–1.19; 
P = 5.65 ×  10–7), Endoplasmic reticulum aminopeptidase 
1 (ERAP1) (OR = 1.05; 95% CI 1.04–1.06; P = 6.73 ×  10–34), 
Fc gamma receptor Ila (FCGR2A) (OR = 1.02; 95% CI 
1.01–1.03; P = 1.35 ×  10–9), Haptoglobin (HP) (OR = 1.02; 
95% CI 1.01–1.02; P = 1.15 ×  10–4), and Surfactant protein 
B (SFTPB) (OR = 1.11; 95% CI 1.06–1.08; P = 4.10 ×  10–5), 
increased the risk of AS.

We next explored the relationship between plasma 
proteins and iridocyclitis. We identified 7 proteins caus-
ally associated with iridocyclitis: AIF1 (OR = 0.62; 95% 
CI 0.55–0.69; P = 2.92 ×  10–16), VARS (OR = 0.37; 95% 
CI 0.26–0.51; P = 1.70 ×  10–9), AGER (OR = 0.73; 95% 
CI 0.67–0.80; P = 2.31 ×  10–11), CFB(OR = 0.81; 95% CI 
0.74–0.89; P = 5.75 ×  10–6), COL11A2 (OR = 1.65; 95% 
CI 1.44–1.90; P = 1.56 ×  10–12), MICB (OR = 1.23; 95% CI 
1.16–1.30; P = 1.13 ×  10–12) and TAPBP(OR = 0.86; 95% 
CI 0.80–0.92; P = 6.34 ×  10–6) (Fig.  2B,D). In analysis of 
subtypes of iridocyclitis, we identified 7 proteins causally 
associated with acute and subacute iridocyclitis, including 
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AIF-1 (OR = 0.56; 95% CI 0.49–0.63; P = 7.86 ×  10–20), 
VARS (OR = 0.32; 95% CI 0.22–0.45; P = 3.09 ×  10–10), 
AGER (OR = 0.72; 95% CI 0.65–0.80; P = 1.90 ×  10–10), 
CFB (OR = 0.78; 95% CI 0.71–0.87; P = 1.72 ×  10–6), 
COL11A2 (OR = 1.77; 95% CI 1.52–2.06; P = 1.32 ×  10–13), 
MICB (OR = 1.26; 95% CI 1.18–1.34; P = 3.78 ×  10–13), 
and TAPBP (OR = 0.86; 95% CI,0.80–0.92; P = 2.45 ×  10–5) 

(Fig.  2B, E). Two proteins, AIF1 (OR = 0.52; 95% CI 
0.40–0.67; P = 5.35 ×  10–7) and ENTPD5 (OR = 0.79; 95% 
CI 0.71–0.89; P = 2.56 ×  10–5), were causally associated 
with chronic iridocyclitis (Fig. 2B, F). Two proteins that 
are causally associated with AS and iridocyclitis are AIF1 
and VARS, and AIF1 is causally associated with only 
acute and subacute iridocyclitis. The above instrumental 

Fig. 2 Preliminary MR analysis and colocalization analysis of pCAM proteins with AS, iridocyclitis and its subtypes. A Manhattan plot for AS, 
iridocyclitis and its subtypes. B Study of causal relationships between circulating proteins and AS, iridocyclitis and their subtypes using MR analysis. 
C–F Volcano plots of MR results for plasma proteins on the risk of AS (C), iridocyclitis (D), acute and subacute iridocyclitis (E) and chronic iridocyclitis 
(F). The horizontal black dotted line corresponds to the Bonferroni-corrected P value. G Bayesian colocalization results support the results of MR 
analysis. OR, increased risk of disease was expressed as a percentage of the SD increase in plasma protein levels; p value, proportion of variance 
explained. PPs H1-H4, posterior probabilities supporting the colocalization hypothesis
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variable information for plasma proteins is displayed in 
Additional file 1: Table S1.

We then verified that the causal relationship between 
plasma proteins and AS and iridocyclitis was correct 
by the Steiger test and Steiger filtering (Table 1). When 
using UKB data as the outcome data, the results showed 

that AS had reverse causality for VARS, AIF1 and C4A/
C4B. The causal relationship between the remain-
ing plasma proteins and disease was unidirectional. 
Reverse MR validation revealed that AS significantly 
reduced plasma VARS and AIF1 levels (Additional 
file 1: Table S2).

Table 1 Steiger test and Steiger filtering estimates for the causal direction between plasma proteins to AS and iridocyclitis

Protein Outcome name outcome 
reference

Steiger test 
correct causal 
direction

Steiger test pval SNP Steiger filtering 
correct causal 
direction

Steiger_pval

Plasma.AGER Ankylosing spon-
dylitis

FinnGen TRUE 1.0997E−94 rs2070600 TRUE 1.3867E−90

Plasma.AIF1 Ankylosing spon-
dylitis

FinnGen TRUE 7.48619E−85 rs2261033 TRUE 1.84802E−78

Plasma.CFB Ankylosing spon-
dylitis

FinnGen TRUE 1.8097E−183 rs641153 TRUE 8.8334E−210

Plasma.COL11A2 Ankylosing spon-
dylitis

FinnGen TRUE 1.03009E−54 rs3129205 TRUE 7.15834E−52

Plasma.TNXB Ankylosing spon-
dylitis

FinnGen TRUE 6.8159E−182 rs45451301 TRUE 0

Plasma.VARS Ankylosing spon-
dylitis

FinnGen TRUE 1.51682E−15 rs453821 TRUE 8.31624E−15

Plasma.AIF1 Ankylosing spon-
dylitis

UK Biobank FALSE 5.8074E−25 rs2261033 FALSE 5.21377E−24

Plasma.APOM Ankylosing spon-
dylitis

UK Biobank TRUE 7.42183E−18 rs2255741 TRUE 1.96695E−17

Plasma.BTN3A3 Ankylosing spon-
dylitis

UK Biobank TRUE 1.20084E−58 rs9393711 TRUE 0

Plasma.C4A|C4B Ankylosing spon-
dylitis

UK Biobank FALSE 0.002663452 rs3117580 FALSE 0.00444648

Plasma.CARD9 Ankylosing spon-
dylitis

UK Biobank TRUE 1.60674E−07 rs4077515 TRUE 3.84782E−08

Plasma.ERAP1 Ankylosing spon-
dylitis

UK Biobank TRUE 1.8175E−115 rs27895 TRUE 2.00675E−08

rs467735 TRUE 0

rs62364719 TRUE 5.50478E−85

Plasma.FCGR2A Ankylosing spon-
dylitis

UK Biobank TRUE 3.41195E−66 rs4657041 TRUE 0

Plasma.HP Ankylosing spon-
dylitis

UK Biobank TRUE 1.9314E−181 rs77303550 TRUE 5.8206E−282

Plasma.ITLN1 Ankylosing spon-
dylitis

UK Biobank TRUE 3.6041E−07 rs7532133 TRUE 1.03467E−06

Plasma.SFTPB Ankylosing spon-
dylitis

UK Biobank TRUE 2.16399E−07 rs11126996 TRUE 7.75119E−07

Plasma.VARS Ankylosing spon-
dylitis

UK Biobank FALSE 0.000107735 rs453821 FALSE 7.23814E−05

Plasma.AGER Acute or subacute 
iridocyclitis

FinnGen TRUE 3.183E−101 rs2070600 TRUE 5.84831E−97

Plasma.AIF1 Acute or subacute 
iridocyclitis

FinnGen TRUE 1.95201E−92 rs2261033 TRUE 1.01221E−85

Plasma.COL11A2 Acute or subacute 
iridocyclitis

FinnGen TRUE 1.05049E−52 rs3129205 TRUE 6.62665E−50

Plasma.VARS Acute or subacute 
iridocyclitis

FinnGen TRUE 8.05775E−18 rs453821 TRUE 5.08133E−17

Plasma.AIF1 Chronic iridocyclitis FinnGen TRUE 8.1108E−98 rs2261033 TRUE 6.64628E−91
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Bayesian colocalization analysis
In our investigation, we applied Bayesian colocalization 
analysis to examine whether plasma proteins and AS and 
iridocyclitis share a common genetic variant within a 
specific chromosomal region (Fig. 2G).

The results of Bayesian colocalization analysis strongly 
support the hypothesis that 12 plasma proteins are 
linked to AS through the same genetic variant. These 
proteins include AGER (coloc.abf-PPH4 = 1.000), 
AIF1 (coloc.abf-PPH4 = 1.000), VARS (coloc.abf-
PPH4 = 1.000), MICB (coloc.abf-PPH4 = 1.000), TNXB 
(coloc.abf-PPH4 = 1.000), CFB (coloc.abf-PPH4 = 1.000), 
COL11A2 (coloc.abf-PPH4 = 0.990), LILRB3 (coloc.abf-
PPH4 = 0.979), ERAP1 (coloc.abf-PPH4 = 0.955), NFKB1 
(coloc.abf-PPH4 = 0.943), IL6R (coloc.abf-PPH4 = 0.932), 
and MAPRE2 (coloc.abf-PPH4 = 0.8021).

Another 9 plasma proteins were identified to share 
the same genetic variant with iridocyclitis. These pro-
teins include AIF1 (coloc.abf-PPH4 = 1.000), MICB 
(coloc.abf-PPH4 = 1.000), COL11A2 (coloc.abf-
PPH4 = 1.000), AGER (coloc.abf-PPH4 = 1.000), VARS 
(coloc.abf-PPH4 = 1.000), CFB (coloc.abf-PPH4 = 0.997), 
TAPBP (coloc.abf-PPH4 = 0.995), TNXB (coloc.abf-
PPH4 = 0.889), and SRA1 (coloc.abf-PPH4 = 0.880).

Furthermore, 9 plasma proteins were found to share 
the same genetic variant with acute and subacute irido-
cyclitis, which include AIF1 (coloc.abf-PPH4 = 1.000), 
COL11A2 (coloc.abf-PPH4 = 1.000), MICB (coloc.

abf-PPH4 = 1.000), AGER (coloc.abf-PPH4 = 1.000), 
VARS (coloc.abf-PPH4 = 1.000), CFB (coloc.abf-
PPH4 = 0.999), TAPBP (coloc.abf-PPH4 = 0.983), 
TNXB (coloc.abf-PPH4 = 0.924), and SRA1 (coloc.
abf-PPH4 = 0.844).

Lastly, 3 plasma proteins share the same genetic variant 
with chronic iridocyclitis: AIF1 (coloc.abf-PPH4 = 1.000), 
AGER (coloc.abf-PPH4 = 0.887), and COL11A2 (coloc.
abf-PPH4 = 0.872).

Validation of target proteins in the plasma proteome
To validate our findings externally, we utilized pQTL data 
from Ferkingstad. Our MR analysis revealed significant 
associations between plasma AIF1 and VARS levels and 
the risk of developing AS. Specifically, both AIF1 and 
VARS levels were negatively associated with the risk of 
acute and subacute iridocyclitis development, and AIF1 
levels were also negatively associated with the risk of 
developing chronic iridocyclitis (Fig. 3 (dark blue)). These 
associations were statistically significant (P < 0.05). 

Furthermore, we conducted external validation using 
GWAS data on AS from the FinnGen study and GWAS 
data on iridocyclitis from GWAS Catalog. MR analy-
sis confirmed the negative associations between plasma 
AIF1 and VARS levels and the risk of developing AS, as 
well as the negative association between AIF1 levels and 
the risk of developing iridocyclitis  (Fig.  3 (pale blue)). 
These associations were statistically significant (P < 0.05).

Fig. 3 Causal relationships between two potential causal proteins and disease were externally validated. The pQTL data from Ferkingstad et al. 
were initially externally validated against disease GWAS data from a preliminary study (depicted in deep blue), followed by external validation 
against the pQTL data from a preliminary study using ankylosing spondylitis GWAS data from FinnGen and iridocyclitis GWAS data from GWAS 
Catalog (depicted in pale blue). OR, increased risk of disease was expressed as a per-SD increase in plasma protein levels
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Exploring the causal relationship between target proteins 
and HLA‑B27( +) disease
We employed Mendelian randomization (MR) analysis 
to investigate potential causal relationships between the 
risk proteins and other HLA-B27( +) diseases, as out-
lined in Table 2. Our analysis revealed a significant causal 
relationship between AIF1 and reactive arthropathies 
(OR = 0.66; 95% CI 0.55–0.80; P = 1.20 ×  10−5).

Additionally, we observed causal relationships between 
plasma VARS levels and several conditions, includ-
ing reactive arthropathy (OR = 0.33; 95% CI 0.19–0.56; 
P = 4.00 ×  10−5) and psoriatic arthropathy (OR = 0.52; 95% 
CI 0.32–0.84; P = 0.007).

To assess the directionality of these causal relation-
ships, we conducted Steiger tests and Steiger filtering, 
which confirmed that these causal relationships are 
unidirectional.

Exploring the drug target potential of recognized proteins
We conducted a comprehensive search of the DrugBank 
database, focusing on drugs and drug targets associated 
with AS and iridocyclitis. The search yielded a total of 32 
drugs utilized for AS and 9 drugs employed for iridocy-
clitis. Notably, 8 of these drugs were found to be shared 
between the two conditions (Fig. 4A). Our investigation 
of drug targets revealed 50 targets for AS and 8 targets 
for iridocyclitis, with 7 common targets for both dis-
eases (Fig. 4B). Analysis of the PPI network included the 
mentioned protein targets, screened proteins, and the 10 
proteins most closely related to the screened proteins. 
Consequently, the PPI network comprised 113 nodes and 
351 PPI pairs (Fig.  4C). Among these proteins, tumour 
necrosis factor (TNF) exhibited close associations with 
both the screened proteins and the target proteins, sug-
gesting its potential role as a hub protein.

Identifying key cell types involved in the acute 
pathogenesis of HLA‑B27‑positive spondyloarthritis 
complicated with anterior uveitis
Following stringent filtering, we retained a total of 10,081 
cells from five samples for subsequent analysis (Addi-
tional file 1: Fig. S1). By referencing marker genes specific 
to each cluster, we assigned these clusters to 7 types of 
immune cells (Fig.  5A, Additional file  1: Fig. S1). Based 
on the clustering results, these cell types were broadly 
grouped into three main categories: Cluster 1 included 
monocytes, macrophages, and myeloid dendritic cells; 
Cluster 2 included  CD4+ T cells,  CD8+ T cells and natu-
ral killer cells; and Cluster 3 included naive B cells. Nota-
bly, VARS exhibited low expression across all cell types, 
and AIF1 demonstrated predominant expression within 
Cluster 1 (Fig. 5B and C). Interestingly, AIF1 expression 
in each of the Cluster 1 cells was significantly lower in 

the HLA-B27-positive group than in the HLA-B27-neg-
ative group (Fig. 5B). Furthermore, we observed a greater 
overall proportion of Cluster 1 cells in the HLA-B27-pos-
itive subgroup (Fig. 5D), with macrophages and myeloid 
dendritic cells being significantly more prevalent in the 
HLA-B27-positive subgroup than in the HLA-B27-nega-
tive subgroup (Fig. 5E).

Subsequently, we applied the SCENIC AUCell algo-
rithm to cells in the HLA-B27-positive group. This 
analysis revealed a total of 23 regulons active in the HLA-
B27-positive group. Notably, activation of transcription 
factors in Cluster 1 and other cell clusters exhibited sig-
nificant disparities (Fig. 5F).

Exploring the differentiation trajectory of high 
AIF‑expressing cell types
To elucidate the precise mechanism underlying the acute 
onset of SpA/HLA-B27-associated AAU, we focused on 
cells with high AIF expression and conducted detailed 
analysis. Specifically, we isolated Cluster 1 cells and sub-
jected them to repeated dimensionality reduction and 
clustering analysis. As a result, we successfully identified 
and annotated 5 distinct cell subtypes (Fig. 6A). Expres-
sion of marker genes in these cells is shown in a bubble 
plot in Fig. 6B.

Additionally, our examination of AIF1 expression 
yielded intriguing findings. Notably, AIF1 expression was 
lower in monocytes and in cDCs in the HLA-B27-posi-
tive group than in those in the HLA-B27-negative group 
(Fig. 6C).

Furthermore, trajectory analysis revealed interesting 
insights into cell type transitions. DCs were positioned 
at the ends of the branches (Fig.  6D, E). Notably, AIF1 
expression decreased progressively during cell differen-
tiation (Fig.  6F). Further analysis revealed enrichment 
of the initial 10 DC marker genes, indicating significant 
enrichment of MHC-II-related pathways in both the 
cDC and moDC subtypes and significant enrichment of 
migration-related pathways in the low-AIF1 DC popula-
tion (Fig. 6G).

Finally, to further explore the underlying genetic fac-
tors, we conducted BEAM analysis focusing on pre-DC 
cell differentiation nodes. This analysis highlighted the 
top 20 genes displaying the most significant differences 
before and after the cell differentiation node (Fig. 6H, I).

Inferencing intercellular interactions
In the final phase of our analysis, we utilized Cell-
Chat to deduce intercellular communication patterns 
among various cell types within the two cell groups. In 
the HLA-B27-positive group, we identified a total of 
180 cellular communication pathways; 146 pathways 
in the HLA-B27-negative group were revealed. The 
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HLA-B27-positive group had fewer and generally weaker 
cellular connections (Fig.  7A). Specifically, compared to 
their counterparts in the HLA-B27-negative group, cDCs 
and low-AIF1 DCs in Cluster 1 of the HLA-B27-positive 
group exhibited more robust and frequent communica-
tion with other cells (Fig. 7B).

Further analysis involved comparing the relative 
strength of cellular communication across various cell 
types between the HLA-B27-positive and -negative 
groups. Notably, the outgoing interaction strength of 
cDCs was comparatively enhanced. Conversely, moDCs 
and low-AIF1 DCs exhibited a reduction in incoming 
interaction strength, with no significant change in outgo-
ing interaction strength (Fig. 7C).

Subsequently, we identified group-specific cellular 
communication pathways, singling out the APP, SELPLG 
and CADM pathways as unique communication path-
ways within the HLA-B27-positive group (Fig.  7D). 
Remarkably, cDCs displayed the most significant differ-
ence in cellular communication strength between the 
HLA-positive and -negative groups (Fig. 7 E, F). The APP 
pathway receptor CD74 was found in all cell types, with 
its ligand (APP) expressed in B cells (Fig. 7G). Ligands for 
the SELPLG pathway (cDCs) were primarily expressed 

in cDCs, with their receptor (SELL) found in moDCs, 
cDCs, natural killer cells and B cells (Fig.  7H). Ligands 
(CADM1) and receptors (CADM1) for the CADM path-
way were primarily expressed in cDCs (Fig. 7I).

Finally, we examined the correlation between AIF1 
and these three key pathway receptors. Notably, AIF1 
in the HLA-B27-positive group exhibited a correlation 
with the APP pathway receptor (CD74), which was more 
pronounced than that in the HLA-B27-negative group 
(Fig. 7J).

Discussion
In this study, we employed a combination of Mendelian 
randomization (MR) and single-cell transcriptome analy-
sis to comprehensively examine the acute pathogenesis 
of SpA/HLA-B27-associated anterior uveitis. Circulating 
AIF1 levels were shown to reduce the risk of SpA/HLA-
B27-associated AAU. AIF1 is predominantly expressed 
by myeloid cells. The decrease in plasma AIF1 levels in 
SpA/HLA-B27-associated AAU patients is attributed to 
two factors: reduced AIF1 expression in myeloid cells and 
differentiation of monocyte-macrophages into DCs.

AIF1, initially discovered and cloned from rat 
heart grafts with chronic cardiac rejection, is a 

Fig. 4 Interactions between current AS and iridocyclitis drug targets and recognized proteins. A Upset chart showing common drugs used to treat 
AS and iridocyclitis, with 8 drugs common to both diseases. B UpSet chart showing common drug targets between AS and iridocyclitis, with 7 
drug targets common to both diseases. C PPI networks between drug targets and recognized proteins. Dark blue circle: recognized proteins; pale 
blue circle: the 10 proteins most closely related to recognized proteins according to the STRING database search; rhombic circle: drug targets of AS; 
hexagon: drug targets of iridocyclitis; red rhombus: hub protein. PPI protein‒protein interaction
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cytokine-responsive molecule in macrophages [35]. 
AIF1 expression is modulated by various inflammatory 
stimuli, including IFN-γ, TNF-α, interleukin-1β (IL-
1β), and T-cell conditioned media [36]. The AIF1 gene 
is encoded within the major histocompatibility com-
plex (MHC) class III region of chromosome 6p21.33 
[37]. AIF1 expression is modulated by various inflam-
matory stimuli, including IFN-γ, TNF-α, interleukin-1β 
(IL-1β), and T-cell conditioned media [38]. Previous 
studies have linked AIF1 to various autoimmune dis-
eases, including anti-GBM nephritis [39], rheumatoid 
arthritis [40], autoimmune rat nervous system lesions 
[41], and cardiac allograft rejection [42]. Under these 
conditions, AIF1 exacerbates inflammatory responses. 
However, prior to our study, no association had been 
established between AIF1 and SpA/HLA-B27-as-
sociated AAU. Thus, for the first time, our research 

unveiled a connection between AIF1 and SpA/HLA-
B27-associated AAU.

Our investigation categorized DCs into three sub-
groups:  CD141+  CLEC9A+ classic dendritic cells 
(cDCs), monocyte-derived dendritic cells (moDCs), 
and migratory dendritic cells. Furthermore, based on 
expression of AIF1, we delineated these cells into AIF1-
high-expressing DCs (cDCs and moDCs) and AIF1-
low-expressing DCs (migratory dendritic cells). The 
findings also highlighted the critical roles of AIF1 and 
dendritic cells (DCs) in the pathogenesis of SpA/HLA-
B27-associated AAU. According to our pseudotime 
analysis, expression of AIF1 decreased with increasing 
pseudotime. Simultaneously, DCs are distributed at the 
terminal branches of the myeloid cell differentiation 
pathway. AIF1 may be associated with differentiation 
of myeloid cells, facilitating a greater propensity for 

Fig. 5 Identifying key cell types in the acute pathogenesis of HLA-B27 positive spondyloarthritis complicating anterior uveitis. A Clustering 
projection according to Seurat’s clustering system using UMAP as the dimension reduction method. B Box plots of expression levels of AIF1 
across different cell types in both the HLA-B27-negative and HLA-B27-positive groups. *P < 0.05; ****P < 0.0001. C Dimensional reduction plot 
displaying the expression patterns of AIF1 in both the HLA-B27-negative and HLA-B27-positive groups. D Stacked chart of the proportions 
of different cell types within the HLA-B27-negative and HLA-B27-positive groups. E Box plots of the difference in the proportions of high 
AIF-expressing cell types between the HLA-B27-negative and HLA-B27-positive groups. F Heatmap of the activation of transcription factors 
across various cell types in the HLA-B27-positive group



Page 14 of 18Chen et al. Journal of Translational Medicine          (2024) 22:271 

differentiation towards dendritic cells within the mye-
loid lineage. This can simultaneously account for the 
decrease in the proportion of monocytes/macrophages 
and the increase in the proportion of dendritic cells. 
Cell communication analysis revealed cDCs play a piv-
otal role in cellular communication processes within 
the Spa/HLA-B27 group. Among them, the APP path-
way, SELPLG pathway, and CADM pathway are distinc-
tive pathways specific to the Spa/HLA-B27 group and 
are associated with cDCs. Additionally, expression of 
the receptor CD74 in the APP pathway correlated with 
that of AIF1 in cDCs.

Similarly, other researchers have shown that expres-
sion of AIF1 in DCs may correlate with Spa/HLA-
B27-associated AAU. Silencing AIF1 in DCs has been 

shown to impede differentiation of  CD4+ T cells into 
T helper cells that produce IL-17 and IFN-γ, two 
cytokines linked to AAU pathogenesis [43]. These two 
cytokines have been shown to be associated with AAU 
pathogenesis [44].

Other studies have proposed AIF1 as a significant 
player in the pathogenesis of SpA/HLA-B27-associated 
AAU. (1) AIF1 and microglia: AIF1 is widely expressed 
in microglia [45, 46]. Early studies identified AIF1 as 
a marker of microglial activation [47], but later, it was 
found that AIF1 could not be used to distinguish func-
tional microglial phenotypes [48]. Keren-Shaul et  al. 
identified a new subtype of microglia, rodent disease-
associated microglia (DAMs), by transcriptional single-
cell sorting; these cells have downregulated expression 

Fig. 6 Exploring the differentiation trajectory of high-AIF-expressing cell types. A UMAP was utilized as a dimensionality reduction technique 
to project a reclustered Seurat clustering system of high-AIF-expressing cell types. B Bubble plot of myeloid cell subset marker genes. C 
Box plot of expression patterns of AIF1 in the HLA-B27-negative and HLA-B27-positive groups. D, E Pseudotime trajectory analysis showing 
high AIF-expressing cell types. The cells are coloured according to cell type (D) and pseudotime value (E). F The trend of AIF1 expression 
along pseudotime variation. G Heatmap of expression of the top 5 marker genes for three distinct subsets of dendritic cells, along with enrichment 
analysis. H BEAM analysis of predifferentiated nodes associated with DC fate 1. I BEAM analysis of predifferentiated nodes according to DC fate 2. 
BEAM, branched expression analysis modelling
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of AIF1 and several homeostatic genes [49]. This may 
suggest that AIF1 plays a role in maintaining homeosta-
sis in the immune environment. (2) AIF1 and  FOXP3+ 
macrophages: recent studies have shown that AIF1 
and FOXP3 colocalize in macrophages and that  AIF+/
FOXP3+ cells can inhibit neural inflammation [50]. 
FOXP3 is an immunosuppressive transcription factor 
for regulatory T cells (Tregs) that suppresses sterile and 
pathogen-induced inflammation [51]. Whether AIF1 and 
FOXP3 play synergistic roles is worth exploring.

However, these cells primarily function within tis-
sues, raising the question of how to account for the 
decrease in AIF1 levels in plasma. Indeed, the reason 
for the decrease in plasma AIF1 levels remains unclear. 

Plasma proteins originate from either active cellular 
secretion or passive release following cell death. To 
date, no study has conclusively identified the source of 
AIF1 in plasma. Nevertheless, many studies have shown 
that AIF1 can be actively secreted by myeloid immune 
cells [52–54]. Two hypotheses can be proposed based 
on the source of AIF1 in plasma. Hypothesis 1: Plasma 
AIF1 originates from the passive release of monocyte 
macrophages into the bloodstream upon cell death. 
Consequently, reduced plasma AIF1 levels may indi-
cate the migration of monocyte macrophages into tis-
sues and their subsequent differentiation into dendritic 
cells (DCs). Due to the convenience of detecting plasma 
proteins, plasma AIF1 levels might serve as a reliable 

Fig. 7 Analysis of intercellular communication among various cell types in the HLA-B27-negative and -positive groups. A Bar graph illustrating 
the quantity and strength of cell communication between the HLA-B27-negative and HLA-B27-positive groups. B Chord plot of the quantity 
and strength of cell communication among different cell types in the HLA-B27-negative and HLA-B27-positive groups. C Scatter plot representing 
the relative strength of cell communication for each cell type within the respective groups. D Specific cell communication pathways unique 
to the HLA-B27-negative and -positive groups. E The incoming strength of intergroup-specific pathways within various cell types. F The outcoming 
strength of intergroup-specific pathways within various cell types. G–I Presentation of specific pathways (the APP pathway, the SELPLG pathway 
and the CADM pathway) exclusive to the HLA-B27-positive group, depicting the direction of cell communication indicated by arrows. J The 
correlation between expression of AIF1 and that of the receptor for the APP pathway (CD74)
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predictor of SpA/HLA-B27-associated AAU devel-
opment. Hypothesis 2: AIF1 in plasma results from 
active secretion by myeloid cells in the bloodstream. 
This scenario suggests the existence of an undiscovered 
regulatory network downstream of plasma AIF1 in the 
pathogenesis of SpA/HLA-B27-associated AAU. AIF1 
may be a potential predictive marker and a promising 
drug target.

Another key plasma protein identified in our study, 
VARS, is an aminoacyl-tRNA synthase categorized as 
an anti-aminoacyl-tRNA synthetase (anti-ARS) [55]. 
Limited research has explored this molecule, with only 
one study identifying VARS as playing a pivotal role in 
nervous system development. Although the direct link 
between VARS and this disease has not been determined, 
anti-aminoacyl-tRNA synthetase (anti-ARS) antibodies 
have been unequivocally implicated as causative agents 
of anti-ARS synthetase syndrome [56], which is char-
acterized by clinical manifestations such as interstitial 
lung disease, arthritis, and myositis [57, 58]. In this syn-
drome, eight anti-ARS antibodies have been identified, 
potentially correlating with clinical features [57]. Nota-
bly, autoantibodies targeting the remaining four ARSs 
(CysARS, ValARS, SerARS, and TrpARS) have not been 
identified. Notably, anti-VARS antibodies were found in a 
2022 study in a patient with anti-ARS synthetase who had 
neither ILD nor myositis [59]. Our study identified low 
VARS levels in plasma as a risk factor for HLA-B27-as-
sociated AAU. Whether this low VARS level is due to an 
anti-ARS synthetase is a question worth investigating.

Further research is needed to understand the patho-
genesis of Spa/HLA-B27-associated AAU. The gut 
microbiota may play a role in the development of acute 
conditions by affecting immune cells, but there is no 
direct evidence linking gut microbiota to AIF1 expression 
in DCs. The study is based on publicly available GWAS 
summary data, which lacks detailed information such as 
gender for stratified analysis. However, previous research 
suggests a higher prevalence of males and bilateral 
involvement [60]. Currently, there are no cellular or ani-
mal models available to study Spa/HLA-B27-associated 
AAU. Therefore, research based on extensive data and 
multiomics approaches is required. This study employed 
cross-validation with data from diverse sources to ensure 
the stability and accuracy of research findings.

In summary, our study revealed that differentiation 
of myeloid cells into DCs and downregulation of AIF1 
within cDCs play pivotal roles in the acute pathogenesis 
of SpA/HLA-B27-associated anterior uveitis. Further-
more, we established that plasma AIF1 levels can serve 
as a reliable predictor of SpA/HLA-B27-associated AAU 
and suggest the potential of plasma AIF1 as a promising 
drug target in this context.
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