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Abstract 

Background Global myopia prevalence poses a substantial public health burden with vision-threatening complica-
tions, necessitating effective prevention and control strategies. Precise prediction of spherical equivalent (SE), myopia, 
and high myopia onset is vital for proactive clinical interventions.

Methods We reviewed electronic medical records of pediatric and adolescent patients who underwent cyclople-
gic refraction measurements at the Eye & Ear, Nose, and Throat Hospital of Fudan University between January 2005 
and December 2019. Patients aged 3–18 years who met the inclusion criteria were enrolled in this study. To predict 
the SE and onset of myopia and high myopia in a specific year, two distinct models, random forest (RF) and the gradi-
ent boosted tree algorithm (XGBoost), were trained and validated based on variables such as age at baseline, and SE 
at various intervals. Outputs included SE, the onset of myopia, and high myopia up to 15 years post-initial examina-
tion. Age-stratified analyses and feature importance assessments were conducted to augment the clinical significance 
of the models.

Results The study enrolled 88,250 individuals with 408,255 refraction records. The XGBoost-based SE prediction 
model consistently demonstrated robust and better performance than RF over 15 years, maintaining an R2 exceeding 
0.729, and a Mean Absolute Error ranging from 0.078 to 1.802 in the test set. Myopia onset prediction exhibited strong 
area under the curve (AUC) values between 0.845 and 0.953 over 15 years, and high myopia onset prediction showed 
robust AUC values (0.807–0.997 over 13 years, with the 14th year at 0.765), emphasizing the models’ effectiveness 
across age groups and temporal dimensions on the test set. Additionally, our classification models exhibited excellent 
calibration, as evidenced by consistently low brier score values, all falling below 0.25. Moreover, our findings under-
score the importance of commencing regular examinations at an early age to predict high myopia.

Conclusions The XGBoost predictive models exhibited high accuracy in predicting SE, onset of myopia, and high 
myopia among children and adolescents aged 3–18 years. Our findings emphasize the importance of early 
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Background
Myopia, also referred to as nearsightedness, is a growing 
global epidemic of great concern [1, 2]. Multiple popu-
lation-based studies have reported an unprecedented 
“myopia boom” worldwide, especially in East Asia [3]. 
This is particularly alarming since myopia, especially 
high myopia (refractive error ≤ − 6.00 diopters), has been 
associated with a range of vision-threatening complica-
tions, including glaucoma and maculopathy, which can 
lead to irreversible vision loss [4]. These complications 
can impose a substantial burden on both quality of life 
and economic productivity, particularly for the young 
working-age population [5].

The distribution of myopia differs among populations 
of various racial and environmental backgrounds [6]. The 
prevalence of childhood myopia in China and Singapore 
is significantly higher than in European countries, with 
a discernible trend towards younger onset within those 
populations [7]. While onset typically occurs at around 
5–15 years of age, recent reports highlighted an escalat-
ing prevalence of early onset in infants and preschool 
children [8, 9]. Notably, children with myopia onset dur-
ing early school ages are at a higher risk of developing 
high myopia [10, 11]. An avenue for addressing myopia 
and its complications involves early detection and treat-
ment, emphasizing the significance of timely risk strati-
fication and the implementation of effective prevention 
strategies.

In optometric and ophthalmic clinics, a gap remains 
in accurately predicting the onset of myopia and in esti-
mating the likelihood of its advancement to high myopia. 
Currently, ophthalmologists rely heavily on their clinical 
experience for tackling inquiries, due to the absence of 
precise predictive instruments. Consequently, they advo-
cate for periodic refractive examinations for children as 
a proactive measure to prevent myopia. During annual 
follow-ups, cycloplegic refraction is the main and routine 
tool used to evaluate the onset and severity of myopia 
[12]. Therefore, the ophthalmic and optometric clinics 
have provided a large-scale dataset of consecutive refrac-
tive results.

Despite the availability of long-term refractive devel-
opment records, extracting valuable insights into the 
progression of myopia has proven challenging because 
of potential “noise” and suboptimal regression methods. 
Therefore, pre-emptive action is necessary to overcome 
these challenges. Recently, digital healthcare technologies 

have leveraged the potential of artificial intelligence (AI) 
to develop adjunctive solutions that offer scalability, port-
ability, and reliability [13]. These techniques supplement 
traditional epidemiological methods, provide correla-
tion analyses, and leverage intricate interactions among 
predictors to gain novel insights [14]. In myopia predic-
tion, machine learning approaches have been introduced 
to predict progression in school-aged children [15], axial 
length growth in myopic children [16], myopia status in 
adolescents [17], pathologic myopia detection [18], the 
risk for developing high myopia [19], and identification 
of risk factors for disease progression [20]. However, the 
potential of AI-assisted utilization of cycloplegic refrac-
tive data for integrated, long-term predictions of age-spe-
cific refractive error status and the onset of myopia and 
high myopia remains uncertain.

This study endeavors to achieve accurate predictions 
employing a machine learning algorithm that utilizes lon-
gitudinal cycloplegic refractive data. The specific focus 
is on predicting spherical equivalent (SE) values and dis-
cerning the probability of developing myopia and high 
myopia at designated future time points.

Methods
Data collection and ethics statement
The refractive dataset for this study, collected from Jan-
uary 2005 to December 2019 at the Eye & Ear, Nose, 
and Throat  Hospital of Fudan University  (FDUEENT), 
underwent secure extraction with specific criteria and 
structured queries by collaborating with the Information 
Center. To prioritize privacy, all datasets were deidenti-
fied before transfer to the study investigators, ensur-
ing transparency and reproducibility through detailed 
documentation. The Institutional Review Board of the 
FDUEENT approved the study protocol (approval code 
2020-10-29), and all procedures adhered to the principles 
of the Declaration of Helsinki. The cohort characteristics 
are presented in Table  1. The data primarily comprised 
patient age and cycloplegic refraction measurements, 
which were obtained at various time intervals. The 
cycloplegic SE was calculated by the standard formula: 
SE = sphere + 1/2 × cylinder.

Study setting
This study consisted of two main parts. First, all available 
records (Study 1) were included and randomly divided 
into training and testing datasets at a 6:4 ratio. Regression 

and regular examinations at a young age for predicting high myopia, thereby providing valuable insights for clinical 
practice.
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models for predicting age-specific SE were trained using 
the training dataset and verified using the testing data-
set. Second, patients from Study 1 who remained non-
myopic (Study 2) and those who did not develop high 
myopia (Study 3) at the initial examination were assigned 
to two separate groups to evaluate the onset of myopia 
and high myopia prediction models. For both groups, the 
dataset was randomly divided into training and testing 
sets at a 6:4 ratio.

Dataset preprocessing
A total of 88,293 participants met the inclusion criteria, 
and the population included individuals aged 3–18 years, 
with an initial cycloplegic SE of −15.00–6.00 diopters 
(D), who had follow-up data from at least two visits with 
an interval of at least one year between consecutive vis-
its. After excluding 43 individuals with invalid or repeti-
tive data, data from 88,250 patients were analyzed. To 
determine the presence of heterogeneity across different 
years within our dataset, which spanned approximately 
15  years, we conducted 5  year period analyses (2005–
2009, 2010–2014, and 2015–2019). A flowchart of the 
data collection and preprocessing is presented in Fig. 1.

In addressing data quality concerns, several preproc-
essing steps were implemented. Outlier detection utiliz-
ing the Interquartile Range (IQR) method, where values 
exceeding 1.5 * IQR were re-evaluated, retaining genuine 
special cases and exclusion for data collection or record-
ing errors. For handling missing values, a direct exclusion 
approach was adopted due to the study’s focus on a small 
yet crucial set of variables, including age, baseline SE, 
subsequent follow-up SE, and measurement time. Fol-
lowing the cleaning process, feature normalization was 
performed before modeling. The Z-Score normalization 
method was applied, involving the calculation of mean 
and standard deviation for each variable and application 

of the Z-Score formula, standardizing the sample mean 
to zero (μ = 0) and variance to unit (σ = 1). This ensured 
consistent data scaling during the modeling process, 
thereby enhancing model stability and interpretability.

The development of myopia or high myopia is a grad-
ual process; therefore, the number of participants who 
developed myopia or high myopia in the early years after 
the first examination was lower than that in the normal 
group. This bias in the training dataset can influence our 
models to some degree, as some consider the full popula-
tion in its entirety. To address this issue, we employed a 
pipeline for oversampling and undersampling. Synthetic 
Minority Over-sampling Technique (SMOTE) and ran-
dom undersampling methods were used to synthesize 
new samples for the minority class and delete samples 
from the majority class, respectively [21]. Furthermore, 
grid-search method was applied to explore the best resa-
mpling rate.

Predictors and outcomes
In this study, we aimed to develop algorithms to predict 
refraction values and the onset of myopia and high myo-
pia for 15  years following an initial examination, using 
age at baseline (AGE), original SE (OSE) at the first exam-
ination, and annual myopia progression rate (AMPR) as 
predictors. AMPR was calculated as follows:

where ∆age and ∆SE represent differences in age and SE 
between the first and second visits, respectively. In addi-
tion, we incorporated the SE in the year after the first 
examination (NSE) as a comparative analysis factor in the 
model inputs. We collected all data from the right eye, 
considering the high correlation between the eyes.

Model development and validation
To verify the performance of the different methods, 
we performed a methodological comparison analy-
sis of the results of the random forest (RF) and gradi-
ent boosted tree (XGBoost) algorithms in the context of 
the SE prediction models. A combination of grid-search 
and five-fold cross-validation, which randomly split all 
the samples into five groups, was performed during the 
hyperparameter selection process in our original train-
ing data. Four of the groups (80%) were used as actual 
training data and one group (20%) was used internal vali-
dation data. To further ensure model robustness, each 
cross-validation process was repeated five times; thus, 
each model was trained with different hyperparameters 
for a total of 25  times, based on a different training set 
each time and the average results of internal validation, 

AMPR =
|�SE|

|�age|

Table 1 Characteristics of the individuals included in the study

Characteristics Total Training set Testing set

Number of persons 88250 52950 35300

Number of records 408255 244953 163302

Male, number (%) 45184 (51.2) 27040 (51.1) 18144 (51.4)

Follow-up, mean ± SD, years 3.4 ± 2.7 3.6 ± 2.1 3.3 ± 1.7

Age at first visit, mean ± SD, 
years

7.7 ± 4.0 8.1 ± 3.5 7.6 ± 3.7

Age at last visit, mean ± SD, 
years

14.3 ± 4.6 13.5 ± 4.0 14.5 ± 4.8

SE at first visit, mean ± SD, 
diopters

0.4 ± 3.5 0.8 ± 2.8 (− 0.1) ± 2.3

SE at last visit, mean ± SD, 
diopters

(− 1.3) ± 3.6 (− 1.8) ± 3.2 (− 1.2) ± 2.9
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as the comparable model selection criteria. We tested the 
performance of the selected models in the testing group 
to determine the potential working mechanisms of the 
algorithm predicting refractive values and the onset of 
myopia and high myopia over 15 years.

Model evaluation
To assess the predictive ability of the regressive mod-
els for the targeted SE, we calculated the coefficients of 
determination ( R2 ), mean absolute error (MAE), and 
mean squared error (MSE). Additionally, for classifica-
tion performance, we used seven other evaluation met-
rics: area under the curve (AUC), precision, accuracy, 
F1_score, sensitivity (recall), specificity, and brier score. 
In addition, the Shapley-Additive-exPlanations (SHAP) 
algorithm was applied to quantify the importance of each 
feature in the models [22].

Statistical analysis
Continuous variables are presented as mean ± standard 
deviation (SD). To examine the predictive capabilities 
across different age groups, considering factors, such as 
the regularity of refractive development and academic 
pressure, we conducted age-specific subgroup analyses. 
Age groups were defined as follows: 3–6  years (pre-
school students), 7–14  years (primary and junior high 
school students), and 15–18  years (senior high school 
students). These subgroup analyses enabled us to evalu-
ate the model performance in the testing group for each 
age cohort. All data analyses, model constructions, 
and evaluations were performed using Python (version 
3.7.2). The RF and XGBoost models were developed 
using scikit-learn and XGBoost library, respectively.

Analysis subjects:
88250 individuals

were included in

Study 1

Analysis subjects:
37416 individuals 

were included in 

Study 3

Exclude  43 invalid or 

repetitive individuals

Base inclusion criteria:
1. Age from 3 to 18 years old

2. -15.00 D ≤ OSE ≤ 6.00 D

3. ≥ 3 visits

4. Intervals of visits ≥ 1 year

5. No treatment

Exclude 30749 

individuals with 

OSE ≤ -0.75 D

Training data
Study 1: N=52950

Study 2: N=34500

Study 3: N=22450

Testing data
Study 1: N=35300

Study 2: N=23001

Study 3: N=14966

236341 individuals were 

selected in FDUEENT Hospital

from 2005 to 2019

Total subjects:
88293 individuals fulfill base

inclusion criteria

Analysis subjects:
57501 individuals 

were included in 

Study 2

Randomly split

Exclude 20085

individuals with 

OSE ≤ -6.00 D

Fig. 1 Flowchart of the quality control and preprocessing process for the data set. FDUEENT, Eye & ENT Hospital of Fudan University
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Results
Study population characteristics
The study included 88,250 participants with 408,255 
records (Study 1), of whom 51.2% were males and 48.8% 
were females. The mean age and SE at baseline of the 
full study cohort was 7.7 ± 4.0  years and 0.40 ± 3.50 D, 
respectively. The individuals were randomly divided into 
an original training and a testing dataset comprising 
60% (n = 52,950) and the remaining 40% (n = 35,300) of 
the data. Further details are listed in Table 1. Figure 2A 
depicts the age-specific SE distribution based on all the 
enrolled refraction records in our dataset. The results 
revealed a gradual decrease in SE with increasing age, 
which was consistent with the expected pattern of nor-
mal growth and development. Figure  2B illustrates the 
prevalence of myopia and high myopia in the dataset. The 
year-stratified analysis indicated that there was no sig-
nificant difference in the age-specific distribution of SE 

(Additional file 1: Fig. S1A) or the prevalence of myopia 
and high myopia (Additional file  1: Fig. S1B, C) among 
the three periods examined. This finding suggests a high 
level of internal homogeneity in the dataset.

SE prediction model construction and performance
A comprehensive illustration of the model-construction 
workflow is presented in Fig. 3. By searching the hyper-
parameters of the models in the original training group 
using the grid-search method, the best values of the 
hyperparameters, including maximum depth, learning 
rate, and number of weak learners (n_estimators), were 
verified as 2, 0.05, and 150, respectively. The inclusion 
of three features (AGE, OSE, and AMPR) in the regres-
sive models for predicting SE over a 15  year period 
resulted in XGBoost attaining higher R2 and lower MAE/
MSE values than RF at each prediction time point after 
the baseline assessment (Table  2). A comparison of the 

Fig. 2 Spherical equivalent distribution and myopia prevalence based on the refraction records enrolled. A Spherical equivalent distribution 
for children and adolescents aged 3 to over 18 years, from 2005 to 2019. B Myopia and high myopia prevalence for individuals included in the study 
aged 3 to over 18 years, from 2005 to 2019

Fig. 3 Overall design of model training and performance evaluation
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models developed using samples with NSE records to 
models developed without the NSE records showed that 
the former exhibited higher prediction performance in 
most years, especially in the 11–14  years. Notably, the 
MAE values ranged from 0.078 to 0.720 D for the first 

nine years following the baseline examination, which was 
below the clinically acceptable accuracy threshold of 0.75 
D, considering the refraction measurement variations 
[23]. These findings suggest that the XGBoost algorithm 
outperformed RF in predicting SE, and the requirement 

Table 2 Regressive performance of the Random Forest and XGBoost algorithms

Year NSE required Model R2 Total 3–6 years 7–14 years 15–18 years

MAE MSE MAE MSE MAE MSE MAE MSE

1 No RF 0.958 0.360 0.364 0.408 0.441 0.331 0.441 0.369 0.343

XGBoost 0.992 0.078 0.099 0.077 0.112 0.078 0.075 0.091 0.345

2 No RF 0.920 0.491 0.772 0.563 0.933 0.435 0.633 0.529 0.698

XGBoost 0.952 0.397 0.657 0.472 0.850 0.332 0.474 0.336 0.489

Yes 0.949 0.437 0.723 0.499 0.917 0.375 0.504 0.388 1.010

3 No RF 0.886 0.619 1.176 0.682 1.361 0.581 0.992 0.619 1.484

XGBoost 0.922 0.577 1.128 0.638 1.379 0.533 0.878 0.585 1.103

Yes 0.930 0.588 1.063 0.652 1.324 0.527 0.781 0.570 0.880

4 No RF 0.840 0.720 1.715 0.789 2.055 0.663 1.380 0.850 1.856

XGBoost 0.896 0.704 1.540 0.758 1.776 0.647 1.282 0.693 1.931

Yes 0.902 0.693 1.561 0.771 1.789 0.625 1.250 0.613 3.187

5 No RF 0.829 0.619 1.814 0.733 2.139 0.557 1.487 0.570 2.306

XGBoost 0.869 0.688 1.929 0.777 2.372 0.635 1.412 0.763 3.349

Yes 0.889 0.678 1.753 0.767 2.116 0.618 1.357 0.669 1.269

6 No RF 0.794 0.606 2.235 0.734 2.670 0.515 1.770 0.600 3.054

XGBoost 0.860 0.679 2.133 0.789 2.508 0.581 1.631 0.935 4.247

Yes 0.882 0.643 1.925 0.802 2.383 0.505 1.410 0.479 1.718

7 No RF 0.785 0.554 2.375 0.778 2.968 0.442 1.783 0.394 2.059

XGBoost 0.841 0.691 2.401 0.851 2.888 0.574 1.865 0.765 2.141

Yes 0.867 0.650 2.237 0.830 2.858 0.495 1.572 0.535 1.422

8 No RF 0.803 0.373 2.234 0.652 3.053 0.290 1.456 0.286 2.696

XGBoost 0.842 0.479 2.431 0.697 3.201 0.369 1.683 0.425 2.373

Yes 0.871 0.499 2.133 0.751 3.212 0.361 1.114 0.385 1.411

9 No RF 0.810 0.341 2.177 0.522 3.263 0.281 1.241 0.284 2.768

XGBoost 0.860 0.444 2.305 0.647 3.412 0.357 1.348 0.586 2.034

Yes 0.877 0.427 2.148 0.641 3.075 0.328 1.115 0.326 3.517

10 No RF 0.704 1.477 5.943 1.500 6.482 1.401 4.970 1.758 6.065

XGBoost 0.726 1.371 5.510 1.530 6.356 1.168 4.184 1.108 3.622

Yes 0.729 1.409 5.709 1.573 6.766 1.216 3.640 0.887 6.972

11 No RF 0.629 1.602 7.290 1.602 7.791 1.536 5.708 2.768 13.966

XGBoost 0.661 1.418 6.344 1.487 7.461 1.332 4.537 1.645 7.694

Yes 0.786 1.498 4.749 1.600 5.155 1.360 4.023 1.735 5.062

12 No RF 0.662 1.685 6.768 1.875 7.395 1.496 6.059 1.919 4.669

XGBoost 0.679 1.589 6.421 1.825 7.329 1.341 5.358 1.270 3.824

Yes 0.766 1.450 5.849 1.551 6.024 1.345 5.721 1.038 2.596

13 No RF 0.618 1.450 8.662 1.939 9.005 1.393 8.268 2.696 8.597

XGBoost 0.656 1.499 7.795 1.776 8.657 1.246 7.040 1.281 6.323

Yes 0.758 1.611 6.370 1.874 7.900 1.431 4.602 1.061 2.131

14 No RF 0.604 1.802 11.684 1.907 13.187 1.722 10.680 2.261 9.304

XGBoost 0.613 1.673 11.410 1.975 13.151 1.579 10.820 1.653 5.915

Yes 0.808 1.424 4.603 1.652 5.377 1.177 4.128 0.546 0.537
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of NSE further improved the predictability of SE. The 
detailed and age-specific performances of the regression 
models in the test group are presented in Table  2 and 
Additional file  1: Fig. S2. Additional file  1: Fig. S3 illus-
trates the distribution of predicted versus actual values of 
SE. In the initial prediction year, the prediction error fell 
within 0.15 D for all cases, resulting in a 100% accuracy 
within this range. In the second prediction year, the error 
was limited to within 1 D for 89% of the cases.

Development of myopia and high myopia onset prediction 
models
Given the promising performance of the XGBoost algo-
rithm in predicting SE, this method was applied to 
patients with NSE to develop classification models for 
the onset of myopia and high myopia. In Study 2, baseline 
characteristics included a mean age of 5.99 ± 2.45  years 
and SE of 1.72 ± 1.77 D. Similarly, in Study 3, the corre-
sponding values were 9. 24 ± 2.80 years and − 2.12 ± 1.24 
D. The likelihood of developing myopia (Study 2) and 
high myopia (Study 3) during follow-up is 52.71 and 
27.10%, respectively. We utilized the same hyperparam-
eter tuning technique used in the original training data-
sets (Studies 2 and 3) to select the optimal values for the 
maximum depth, learning rate, and n_estimators, which 
were determined to be 4, 0.05, and 50, respectively. How-
ever, the included data for predicting the onset of myopia 
showed a moderately imbalanced distribution (1–20%) 
from the minority class to the majority class in the first 
and second years (Study 2, Additional file  2: Table  S1). 
Similarly, research on high myopia prediction revealed 
a moderately imbalanced distribution in the 1–8  years 
(Study 3, Additional file 2: Table S2). Moreover, to predict 
myopia onset in the first two years and high myopia onset 
in 1–8  years, we selected the optimal resampling rates 
from the lists (0.3, 0.4, 0.5) and (0.7, 0.6, 0.5) for oversam-
pling and undersampling, respectively.

Myopia onset prediction model performance
Throughout all the prediction years, the performance 
metrics consistently presented favorable results. For the 
15 years of prediction, the AUC, accuracy, precision, sen-
sitivity, specificity, and brier scores were 0.845–0.953, 
0.854–0.971, 0.745–0.925, 0.852–0.967, 0.530–0.986, and 
0.065–0.181, respectively (Fig.  4A and Additional file  2: 
Table S1). However, further validation of this model using 
more extensive data is required to determine the general-
izability of this finding. The AUC value was 0.833–0.923, 
0.810–1.0, and 0.714–1.0 for the 3–6-, 7–14-, and 15–18-
year age cohorts, respectively (Fig.  4B and Additional 
file 1: Fig. S4A). In the analysis of the 15–18-year group, 
inspection records were unavailable for the 11–14-year 
period, hence the AUC was computed for only 10 years. 

Notably, the predictive performance of myopia tended 
to be more consistent across different follow-up years in 
the 3–6- and 7–14-year groups. Conversely, the predic-
tive performance of myopia onset tended to exhibit more 
fluctuations across different years for 15–18-year group. 
The detailed predictive performance of the myopia onset 
model is presented in Additional file  2: Table  S1. Addi-
tional file  1: Fig. S5 presented calibration curves for 
predicting myopia onset during the prediction years, 
revealing consistently excellent classification perfor-
mance. However, a decline in accuracy is observed in the 
10–14 years.

High myopia onset prediction model performance
The detailed predictive performance of the high myopia 
onset model is presented in Additional file  2: Table  S2. 
In the testing group, the predictive ability of high myopia 
onset was comparable to that of the myopia onset pre-
diction algorithm in most prediction years (Fig.  4C). In 
the first 13 years, sensitivity was consistently higher than 
precision and F1_scores, with values exceeding 0.8. In 
particular, in the first four years after baseline, the predic-
tion model for high myopia onset showed high sensitiv-
ity, with values exceeding 0.9. Model performance varied 
significantly within the 3–6-year group, with the AUC 
ranging from 0.782 to 0.824 at 7–13  years after the ini-
tial measurement (Fig. 4D and Additional file 1: Fig. S4B). 
However, before the sixth year, the AUC consistently 
exceeded 0.850. In the 7–14-year group, model perfor-
mance notably dropped in the 10–13-year period, with 
an AUC of less than 0.8. Nonetheless, in earlier years, the 
AUC ranged from 0.820 to 0.996. Regarding the 15–18-
year group, the AUC values had a limited reference value 
in the last five years, due to the small amount of available 
data (n < 20). However, before the ninth year, the AUC 
remained consistently above 0.868.

Feature importance in the prediction models
To enhance the interpretability of our predictive mod-
els and offer valuable insights for clinical decision-mak-
ing, we employed the SHAP algorithm to assess the 
importance of each feature, namely, AGE, OSE, NSE, 
and AMPR. The results depicted in Fig.  5A, B indicate 
that the most influential features for the SE and myopia 
onset prediction models were NSE, AMPR, and OSE. 
This implies that the initial SE measurement and regular 
yearly follow-up visits are crucial for accurately predict-
ing the developmental trend of myopia. However, for pre-
dicting the onset of high myopia, NSE, AMPR, and AGE 
were deemed more important than OSE (Fig.  5C). This 
inspection highlighted the clinical significance of initiat-
ing regular visits from an early age, with less emphasis 
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on the initial refractive state, compared to the other two 
models.

Discussion
This study investigated the capacity of AI-assisted assess-
ments to advance our understanding of predicting myo-
pia progression, including the onset of myopia and high 
myopia. We leveraged a dataset comprising numerous 
participants and a substantial repository of refractory 
records, which were extracted from electronic medi-
cal records and conducted a data- and algorithm-driven 
investigation. The outcomes facilitated the develop-
ment of a machine learning model capable of predict-
ing myopia status in Chinese children and adolescents. 
Our findings provide compelling evidence supporting 
the adoption of age-specific myopia control strategies in 

the Chinese population, thereby offering a crucial tool to 
guide clinical decisions.

In recent years, multiple myopia control treatments 
with favorable effects have been introduced into clini-
cal practice, such as specially designed spectacle lenses 
[24], multifocal soft contact lenses [25], orthokeratology 
lenses [26, 27], and low-dose atropine eye drops [28, 29]. 
Despite these interventions, not all children effectively 
manage myopia progression and the onset of high myo-
pia. To enhance clinical outcomes, it is imperative to 
identify children at the highest myopia risk and admin-
ister targeted therapies. Specifically, accurate prediction 
of onset and progression of myopia based on accessi-
ble objective measurements becomes paramount. Our 
study achieved clinically acceptable predictabilities for 
SE, myopia onset, and high myopia onset in 3–18 years 
old children and adolescents, up to 15  years post-initial 

Fig. 4 Performance of myopia and high myopia prediction models in testing datasets. ROC curves of the predictive performance for myopia 
(A) and high myopia (C) onset from the first to the fourteenth year after baseline. AUC values of the myopia (B) and high myopia (D) prediction 
algorithm performance in different time points across different age groups, respectively
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measurements. Notably, our models demonstrated accu-
rate predictabilities for 7–14-year-old children, a pivotal 
stage in ocular development and the most susceptible 
to myopia [30]. Moreover, our study prioritized clinical 
interpretability by utilizing SHAP algorithm to trans-
parently evaluate feature importance. Specifically, the 

research underscores the significance of consecutive 
refractive development records for effective future con-
trol measures. Meanwhile, instituting routine early-age 
follow-ups for children with high myopia risk factors, 
along with timely follow-ups during the initial stages 
of myopia in other children, enhances the precision of 

Fig. 5 Variable importance analysis across three models. A–C The scatter plots depict the variable importance for the prediction of SE and onset 
of myopia and high myopia, respectively. The significance of the feature values varies depending on the variables being analyzed. In the “AMPR” 
variable, a high value indicates rapid progression of myopia between the first follow-up and baseline, and it is equivalent to NSE in the models. In 
“OSE” and “NSE”, a high value represents a low diopter, emmetropia, or even hyperopia, while a low value indicates severe myopia. For the “AGE” 
variable, high and low values correspond to older and younger ages at baseline, respectively
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prediction. This approach enables the identification of 
high-risk individuals and supports proactive measures for 
early detection and preventive intervention of myopia.

Methodologically, we selected modeling methods and 
predictor variables that performed better in the SE pre-
diction models for the prediction of myopia and high 
myopia onset. For SE predictions using RF algorithm, R2 
consistently exceeded 0.86 for the first nine years after 
baseline but experienced a significant decline from 10 
to 15 years, which partially resulted from the increasing 
nonlinearity in the dataset [31]. Therefore, we attempted 
to investigate the added value of a more complex model, 
the inclusion of an additional predictor, NSE, and an 
alternative method, XGBoost. The updated model exhib-
ited improved performance, particularly in the last five 
prediction years. XGBoost, a gradient boosting method, 
is esteemed for refining machine learning predictions 
by creating weak models predicting residual errors 
from prior models during training [32]. In contrast, RF 
method involves a simple combination of weak trees, 
each of which provides a prediction and a mode, median, 
or mean predictive output [33]. RF may exhibit inferior 
performance compared to XGBoost in certain tasks due 
to its algorithmic limitation in not explicitly consider-
ing inter-factor dependencies, potentially leading to a 
less effective capture of complex relationships within the 
data [33]. The enhanced predicted value of the XGBoost 
signified an increasing non-linear trajectory in myopia 
development, particularly beyond 9  years. This advan-
tage can be particularly pertinent when integrating com-
plex potential predictors into future analyses for myopia 
prediction.

For the myopia and high myopia onset prediction, our 
models presented excellent performance and benefited 
from resampling and the large-scale sample base. For the 
prediction of onset of myopia, despite the presence of 
moderately imbalanced datasets in the first two years, the 
models’ performances remained excellent in the first nine 
years, with an AUC ≥ 0.879. For the high myopia onset 
risk prediction, the algorithm exhibited a small drop in 
classification accuracy compared with the myopia predic-
tion model because of the more severe imbalance ratio of 
the high myopia class to the non-high myopia class in the 
real-world population. Similarly, AUC values were > 0.9 
for the first four years, and the AUC values ranged from 
0.848 to 0.891 for the last nine years. However, in the 
last five years, the small sample size and more complex 
non-linearity led to a decrease in the algorithm perfor-
mance (AUC values ranged from 0.845 to 0.875 and 0.765 
to 0.848 in the myopia and high myopia onset prediction 
model, respectively).

This study has notable strengths, including an exten-
sive sample size and long-term retention of cycloplegic 

refraction records spanning 15  years. By focusing on 
three key variables (AGE, OSE, and NSE/AMPR), we suc-
cessfully achieved effective prediction of the degree of SE 
and onset of myopia and high myopia for a period of up 
to 15 years. In comparison to the existing myopia predic-
tion models proposed by Lin [15] (prediction of SE and 
the onset of high myopia at 18  years of age, as early as 
eight years in advance, with cycloplegic refraction and 
annual progression rates) and Li [20] (prediction of myo-
pia progression in primary school children using SE, axial 
length, and other features), our model achieved compara-
ble predictability in children and adolescents using only 
three indicators. Therefore, by incorporating two consec-
utive years of cycloplegic refraction and age, our models 
could effectively predict SE and the onset of myopia and 
high myopia. In addition, we developed our models using 
a diverse age range of 3–18  years, to cater to the clini-
cal demands for myopic consultation and management, 
which strengthens potential applicability of our AI mod-
els in diverse clinical scenarios. Furthermore, through 
stratified analyses, we discovered that the prediction 
performance was particularly higher in children aged 
3–14 years children than that in 15–18-year-old adoles-
cents, which emphasizes the importance of considering 
the patient’s age when applying the models.

Nevertheless, a recent fundus imaging-based predic-
tion algorithm conducted by Foo [14], concentrating on 
the 5-year risk of high myopia, attained an average accu-
racy exceeding 0.9 (AUC value), slightly surpassing our 
model’s performance (AUC: 0.863, prediction accuracy 
in the fifth year). This outcome underscores the valuable 
role of fundus examination in predicting myopia progres-
sion and high myopia. While our model may not exhibit 
the same predictive power at a single time point, its rela-
tive advantage lies in predicting across multiple time 
points over an extended duration. Beyond cycloplegic 
refraction data and fundus imaging, several predictors 
have been identified to be associated with myopia pro-
gression, such as axial length, parental myopia, near work 
time, and lack of outdoor activity [34, 35]. To achieve a 
more in-depth understanding of myopia prediction, the 
exploration of an AI-assisted multimodal model incor-
porating both “intrinsic” and “extrinsic” factors based on 
continuous follow-up data presents a promising avenue 
for future research.

Logically, our models provide a cost-effective means 
of prediction for accurately predicting and managing 
childhood myopia. In future clinical practice, the AI 
model from this study can be seamlessly integrated into 
mobile terminal apps or clinic medical record systems 
[36, 37]. By utilizing two consecutive years of cyclople-
gic refractive measurements, we can dynamically com-
pute the progression of myopia in children, along with 
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the yearly likelihood of myopia or high myopia. This 
information allows for tailored and timely interventions 
at key time points, ultimately enhancing overall clinical 
outcomes.

This study had some limitations. First, there was an 
evident drop in the algorithm performance for the pre-
diction of SE values after 9  years, and we attempted 
to update the models from the aspects of potential 
new input and its combination with another boosting 
algorithm. However, the reconstructed model’s perfor-
mance did not exhibit significant improvement due to 
the reduced sample size of individuals followed up for 
more than nine years. Second, the prognostic power of 
myopia prediction models for adolescents over 15 years 
of age may be limited because of insufficient refrac-
tive data and the stable nature of myopia progression 
at this age [38]. Third, data-driven methods necessi-
tate external validation in diverse populations to refine 
and calibrate the algorithm, enhancing generalizability. 
Finally, despite achieving balanced and robust perfor-
mance, concerns about the quality of real-world clinical 
data and the potential for overfitting issues should be 
approached with caution.

Conclusions
This study employed a boosting-based approach called 
XGBoost to predict the status of myopia among Chi-
nese children and adolescents at specific future time 
points. Moreover, our findings emphasize the impor-
tance of early and regular examinations at a young age 
for predicting myopia, especially high myopia, Over-
all, the algorithm presents clinically acceptable accu-
racy and is straightforward to implement. Our study 
provides a promising strategy for screening and moni-
toring myopia status in children and adolescents, and 
providing myopia interventions in a precise manner.
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