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Abstract 

Background A better diagnostic marker is in need to distinguish breast cancer from suspicious breast lesions. The 
abnormal glycosylation of haptoglobin has been documented to assist cancer diagnosis. This study aims to evaluate 
disease-specific haptoglobin (DSHp)-β N-glycosylation as a potential biomarker for breast cancer diagnosis.

Methods DSHp-β chains of 497 patients with suspicious breast lesions who underwent breast surgery were sepa-
rated from serum immunoinflammatory-related protein complexes. DSHp-β N-glycosylation was quantified by mass 
spectrometric analysis. After missing data imputation and propensity score matching, patients were randomly 
assigned to the training set (n = 269) and validation set (n = 113). Logistic regression analysis was employed in model 
and nomogram construction. The diagnostic performance was analyzed with receiver operating characteristic 
and calibration curves.

Results 95 N-glycopeptides at glycosylation sites N207/N211, N241, and N184 were identified in 235 patients 
with benign breast diseases and 262 patients with breast cancer. DSHp-β N-tetrafucosyl and hexafucosyl were signifi-
cantly increased in breast cancer compared with benign diseases (p < 0.001 and p = 0.001, respectively). The new diag-
nostic model and nomogram included GN2F2, G6N3F6, GN2FS at N184, G-N&G2S2, G2&G3NFS, G2N3F, GN3 at N207/
N211, CEA, CA153, and could reliably distinguish breast cancer from benign diseases. For the training set, validation 
set, and training and validation sets, the area under the curves (AUCs) were 0.80 (95% CI: 0.75–0.86, specificity: 87%, 
sensitivity: 62%), 0.77 (95% CI:0.69–0.86, specificity: 75%, sensitivity: 69%), and 0.80 (95% CI:0.76–0.84, specificity: 77%, 
sensitivity: 68%), respectively. CEA, CA153, and their combination yielded AUCs of 0.62 (95% CI: 0.56–0.67, specificity: 
29%, sensitivity: 90%), 0.65 (95% CI: 0.60–0.71, specificity: 74%, sensitivity: 51%), and 0.67 (95% CI: 0.62–0.73, specificity: 
60%, sensitivity: 68%), respectively.
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Conclusions The combination of DSHp-β N-glycopeptides, CEA, and CA153 might be a better serologic marker 
to differentiate between breast cancer and benign breast diseases. The dysregulated N-glycosylation of serum 
DSHp-β could provide insights into breast tumorigenesis.

Keywords Glycosylation, Breast cancer, Diagnosis, Model, Nomogram

Introduction
Breast cancer surpassed lung cancer as the most 
commonly diagnosed cancer since 2020. Over 2.2 
million new cases and 685,000 deaths from breast cancer 
occurred globally that year [1]. It was estimated that in 
2040, over 2.9 million new cases of breast cancer were to 
occur worldwide [2]. Besides, of all cancers, breast cancer 
was estimated to incur the third largest economic cost 
from 2020 to 2050, accounting for 7.7% of the global cost 
of cancers [3].

Early detection, diagnosis and treatment are promoted 
by the WHO’s Global Breast Cancer Initiative launched 
in Feb 2023. For now, mammography and ultrasound 
remain primary options for breast cancer early diagnosis, 
which is considered to reduce mortality and financial 
burden [4, 5]. Despite technological advancements, the 
radiographic evidence for breast cancer diagnosis was 
largely limited by a modest diagnostic performance and 
relative high cost. Our center, Peking Union Medical 
College Hospital (PUMCH, Beijing, China), recently 
reported that the ultrasound and mammography yielded 
area under the curves (AUCs) of 76.8% and 71.3%, 
respectively, to distinguish patients with breast cancer 
from those with suspicious breast lesions [6]. As for 
serum tumor markers, cancer antigen (CA) 153, CA27.29, 
and carcinoembryonic antigen (CEA) are widely used 
for monitoring of recurrence and treatment response 
[7], as approved by the Food and Drug Administration. 
However, their applications in the diagnostic settings 
were limited due to insufficient accuracy [8, 9].

Haptoglobin (Hp), as an acute phase glycoprotein, 
has been increasingly studied for tumorigenesis. Hp 
has four N-glycosylation sites on the β-chain, located 
at Asn 207, Asn 211, Asn 241, and Asn 184 [10]. 
Primarily produced in the liver, Hp exerts its functional 
role by binding with free hemoglobin in the process 
of intravascular or extravascular hemolysis, while the 
aberrant expression of Hp was frequently studied in 
infectious and non-infectious diseases, including cancer 
[11]. Interestingly, Hp-β was shown to be significantly 
upregulated in patients with breast cancer, compared to 
those with ovarian cancer and healthy controls [12, 13]. 
In breast cancer, the upregulation of Hp contributed to 
tumorigenesis through glycolytic activity modulation 
[12]. Meanwhile, the pre-diagnostic serum level of Hp 
was positively related to the risk of early death from 

breast cancer [14]. Notably, the abnormal glycosylation 
of Hp, as well as its potential application for cancer 
diagnosis and prognosis, has been well documented 
in prostate, colon, liver, lung, cervix, uterus, and ovary 
cancers [15–19]. However, the role of the glycosylation of 
Hp in breast cancer remains elusive [20].

In this study, we sought to delineate the glycosylation 
patterns of disease-specific Hp (DSHp) in an effort to 
assist differential diagnosis of breast cancer. MALDI-
FTICR MS (matrix-assisted laser desorption/ionization-
Fourier transform ion cyclotron resonance mass 
spectrometer) was used to gain quantitative data of 
DSHp-β N-glycosylation in 497 patients with suspicious 
breast lesions. For the first time, we constructed and 
validated a new model and nomogram to reliably and 
efficiently distinguish breast cancer from benign breast 
diseases based on 7 DSHp-β N-glycopeptides combined 
with 2 tumor markers.

Materials and methods
Sample collection
From Apr 2020 to Dec 2020, we enrolled 523 women 
who were hospitalized to PUMCH for surgery because 
of suspicious breast lesion. The inclusion criteria were: 
(1) female of any age; (2) had at least one breast lesion 
suspected of malignancy, either detected by physical 
examination or imaging; (3) signed informed consent. 
The exclusion criteria were: (1) underwent no surgery 
due to change of mind or pre-operative assessment; (2) 
metastatic or unresectable tumor. 1  mL of serum was 
collected together with routine blood tests from each 
patient before surgery, and was immediately frozen and 
stored at − 80  °C until mass spectrometric analysis. The 
patients were asked to fast for at least 8  h before the 
blood tests.

Results of the routine blood tests, including tumor 
markers (i.e., CEA, CA125, CA153), complete blood 
count, and blood biochemical markers (i.e., alanine 
transaminase, ALT; aspartate aminotransferase, AST; 
cholinesterase, ChE; total cholesterol, TC; triglyceride, 
TG; high-density lipoprotein cholesterol, HDLC; low-
density lipoprotein cholesterol, LDLC; apolipoprotein 
A1, ApoA1; apolipoprotein B, ApoB; lipoprotein a, Lpa; 
free fatty acids, FFA; high-sensitivity C-reactive protein, 
hsCRP; glucose, Glu), were retrieved from the hospital 
information system (HIS). Tumor markers, complete 
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blood count, and blood biochemical markers were 
measured at the Department of Clinical Laboratory 
of PUMCH using Roche Cobas E601 electrochemical 
luminescence analyzer (Hoffmann-La Roche AG., Basel, 
Switzerland), Sysmex XN2000 Automated Hematology 
analyzer (Sysmex, Kobe, Japan), and Beckman-Coulter 
AU 5800 (Beckman Coulter, Brea, USA), respectively. 
Other clinical characteristics of patients, including 
age at diagnosis and body mass index (BMI), were 
collected with the HIS. Pathological characteristics of 
each patient, including tumor classification, grade of 
differentiation, molecular subtype, and pathological 
stage were determined by referring to patients’ 
pathological reports of surgical specimens with the 
HIS in accordance with WHO Classification of Tumors 
of the breast and the National Comprehensive Cancer 
Network Guidelines [21, 22].

Sample preparation
Serum immunoinflammatory-related protein com-
plexes (IIRPCs) of each patient were isolated from 10 
μL of serum by native-polyacrylamide gel electro-
phoresis (PAGE), and classified into different IIRPC 
patterns based on gel bands, as previously defined 
[18, 23]. The gel bands for each sample were cut and 
washed with ultrapure water, then reacted with 200 μL 
of 0.2 M dithiothreitol (Sigma-Aldrich, St. Louis, MO, 
USA) for 45 min at 37 °C, followed by 200 μL of 0.5 M 
iodoacetamide (Sigma-Aldrich, St. Louis, MO, USA) 
for 45 min at 37 °C. After washed with ultrapure water, 
the DSHp-β chains were separated from the gel bands 
by sodium dodecyl-sulfate (SDS)-PAGE. Then, the gel 
bands were cut into pieces and put into 96-well plates, 
with each well containing gel for one patient. Destain-
ing and dehydration of the DSHp-β chains were con-
ducted using 50% acetonitrile (ACN, Fisher Scientific, 
Fair Lawn, USA) and 100% ACN, respectively. Each 
sample was incubated at 37  °C overnight with 10 μL 
of 12.5 ng/μL sequencing grade modified trypsin (Pro-
mega, Madison, USA).

After that, the supernatant was aspirated and vacuum-
freeze-dried. The DSHp-β N-glycopeptides were then 
enriched as previously described [18, 23]. Enrichment 
solution was prepared by dispersing 20  mg of Fe3O4@
PANI in 10 mL of 80% ACN. 100 μL enrichment solution 
was added to each well of the 96-well plate. After shaken 
at 80 r/min for one hour, the supernatant was removed 
with magnetic separation. 80% ACN was used to wash 
out possible residual peptides. Next, we incubated the 
samples with 0.025% ammonia solution for 40  min at 
37 °C to elute glycopeptides. Finally, the supernatant was 
collected and lyophilized for mass spectrometric analysis.

Mass spectrometric analysis
Each prepared samples were dissolved in 5 μL of 
ultrapure water, from which 0.5 uL was spotted onto 
a MTP 384 AnchorChip target plate with transponder 
technology (Bruker Daltonics, Billerica, MA), and mixed 
with 0.5 uL of matrix solution containing 10  mg/ml 
α-cyano-4-hydroxycinnamic acid in 50% ACN with 0.1% 
trifluoroacetic acid (Fisher Scientific, Fair Lawn, USA). 
The detection of DSHp-β N-glycopeptides was conducted 
with 7.0  T Solarix XR MALDI-FTICR MS (Bruker 
Daltonics, Billerica, MA). Calibration was performed 
across m/z ranged 2000–7000, yielding a resolution 
of 490,000 at m/z 400 in the positive ion mode. We 
used polypeptide mix for calibration, which contained 
somatostatin_28, ky_37, dy_40, gp_52, ADRM and sl_61 
at m/z 3147.4710, 3901.8705, 4328.1557, 5206.5147, 
5969.9330, and 6814.5702, respectively. The mass spectra 
were acquired by 30 Avg Scan, with smart beam-II laser 
at 355 nm and 1,000 Hz frequency. An 1000-μm random 
walk width was used with 200 shots per scan. GlycoMod 
(https:// web. expasy. org/ glyco mod/) was used for glycan 
structure prediction. The research team was unaware 
of the patients’ pathology when collecting samples and 
conducting experiments.

Statistical analysis
The m/z values of the detected glycopeptides with 
a signal to noise threshold of > 1.0 were saved 
with Microsoft Excel version 16.75.2 (Microsoft 
Corporation, Redmond, WA, USA), together with the 
clinicopathological characteristics of the patients. The 
missing m/z values were imputed with the half-minimal 
value of each sample. To fill in the missing values of 
clinical characteristics, we utilized multiple imputation 
with classification and regression trees as the conditional 
models (Additional file 1: Figs. S1, S2). After the outliers 
were manually adjusted, propensity score matching 
(PSM) was employed to balance potential confounding 
clinical variables, including age, BMI, complete blood 
count, and blood biochemical markers, between benign 
breast diseases and breast cancer.

The potential correlations of the DSHp-β 
glycopeptides and tumor markers were analyzed 
with Spearman’s correlation analysis. Sequential 
modified Bonferroni correction was applied to control 
the false discovery rate. A two-sided p-value < 0.05 
was considered statistically significant. Continuous 
variables were compared using Mann–Whitney 
U (Wilcoxon) tests, while categorical variables 
were compared using Pearson’s chi-squared tests. 
Differential analysis was performed on DSHp-β 
glycopeptides between benign breast diseases and 

https://web.expasy.org/glycomod/
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breast cancer. The statistically significant changes of 
DSHp-β glycopeptides were selected using the criteria 
of a Bonferroni correction p-value of < 0.05 and 
absolute log2 Fold-change of > 0.195.

For construction and validation of the breast can-
cer diagnostic model, the PSM cohort was randomly 
divided into a training set and a validation set in a 7:3 
ratio. Binary logistic regression was conducted on the 
training cohort to select variables from clinical charac-
teristics and laboratory results for model construction. 
Forward stepwise regression was applied in the proce-
dure to reduce multicollinearity, and variance inflation 
factor (VIF) was calculated for each variable in the final 
model. In order to evaluate diagnostic performance of 
the model, the receiver operating characteristic (ROC) 
curves and calibration curves were drawn for each 
cohort. The AUC, specificity, and sensitivity (adopted 

by the largest Youden’s J statistic) of the model were 
calculated, with a nomogram constructed based on the 
model.

Data was processed using RStudio (R version 4.3.1). 
Imputation, PSM, differential analysis, and logistic 
regression were carried out using the mice, MatchIt, 
DESeq2, and rms packages, respectively. R packages 
VIM, ggplot2, corrplot, pheatmap, ggpubr, regplot, and 
pROC were used for visualization. A diagram of the study 
was created with BioRender.com.

Results
Patient characteristics
A total of 523 patients were enrolled in the study 
(Fig.  1). All patients were female, with a median age 
at surgery of 48.0 (26.0–75.0) years. IIRPC patterns 
of a, b, c, d, e, f, and g were observed in 54.5%, 36.1%, 

Fig. 1 Diagram of the study design

Table 1 Patterns of serum IIRPCs in patients with benign breast diseases and breast cancer

a b c d e f g

Benign breast disease n 142 86 16 4 0 3 1

Breast cancer n 143 103 10 9 2 4 0

Total N 285 189 26 13 2 7 1

Percentage % 54.5 36.1 5.0 2.5 0.4 1.3 0.2
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5.0%, 2.5%, 0.4%, 1.3%, and 0.2% of the patients, respec-
tively (Table  1). No statistical difference was observed 
of the IIRPC distribution patterns between patients 
with benign breast diseases and those with breast 
cancer (p = 0.294). 26 patients were pattern c with no 
IIRPC, thereby exempted from further mass spectro-
metric analysis. Of the remaining 497 patients, 235 
patients were diagnosed with benign breast diseases 
and 262 with breast cancer, as confirmed by surgery 
and pathology. As for pathology, 10 (3.8%), 88 (33.6%), 
132 (50.4%), and 32 (12.2%) of the 262 patients with 
breast cancer were stage 0, I, II, and III, respectively. In 
addition, 98 (37.4%), 148 (56.5%), and 16 (6.1%) of the 
malignant cases were low grade (favorable), intermedi-
ate grade (moderately favorable), and high grade (unfa-
vorable), respectively. Invasive breast carcinoma of no 
special type (IBC-NST) represented the most common 
histologic type, accounting for 72.9% of the malignant 
cases, while 49.8% and 43.4% of the benign cases were 
fibroadenoma and adenosis, respectively. As for molec-
ular subtype, 33 (12.6%) of malignant cases were triple-
negative, 41 (15.6%) were human epidermal growth 
factor receptor 2 positive, 89 (34.0%) were of luminal A 
subtype, and 99 (37.8%) were of luminal B subtype.

After PSM, 191 patients with benign breast diseases 
and 191 with breast cancer were selected, with the 
baseline clinical characteristics balanced between 
groups, which included age, BMI, complete blood count, 
and blood biochemical markers (Additional file 1: Fig. S3; 
Table 2). The serum levels of CEA and CA153 were found 
to be significantly higher in patients with breast cancer 
compared with those with benign breast diseases, both 
before and after PSM (p < 0.001), while no significant 
difference was observed for CA125 (p = 0.070 and 0.633, 
respectively, before and after PSM).

Correlations between DSHp‑β N‑glycopeptides and tumor 
markers
In total, 95 site-specific N-glycopeptides were identified 
by mass spectrometric analysis. Among them, 55 glyco-
forms were identified at N207/N211, 19 at N241, and 21 
at N184 (Additional file 1: Table S1). The correlations of 
the DSHp-β glycopeptides and tumor markers were illus-
trated in Additional file 1: Fig. S4. For all cases, numerous 
significant correlations between DSHp-β glycopeptides 
were observed. For example, GF2 at N207/N211 posi-
tively correlated with G2S2 at N207/N211, as well as 
G0-N, G-N, G1, G-NS, G2, G2S, GN2F2, G3NS at N241 
(R > 0.95). G2S2 at N207/N211 also positively correlated 
with G0-N, G-N, G1, G-NS, G2, G2S, GN2F2, G2S2, and 
G3NS at N241 (R > 0.95). What’s more, G4NS showed a 

positive correlation with GS-N &G-NS at N207/N211 
(R = 0.97).

Differences of DSHp‑β N‑glycosylation between breast 
cancer and benign breast diseases
Numerous significant differences in DSHp-β N-glyco-
sylation between benign breast diseases and breast can-
cer were observed (Additional file  1: Table  S1, Fig.  2). 
Specifically, significant increases were observed in 8 gly-
coforms (G2N3F, GN2F5, G2N4F3S at N207/N211, G2, 
G3NS, G2NF3S2 at N241, and G2S2, G4N3F4S2 at N184) 
in patients with breast cancer compared with those with 
benign breast diseases, while significant decreases were 
observed in 2 glycoforms (G2N2 and GN3 at N207/
N211, Fig. 3). The degrees of DSHp-β N-fucosylation and 
sialylation were measured from the log2-transformed 
intensities of N-glycopeptides. As a result, the relative 
intensities of N-tetrafucosyl and hexafucosyl DSHp-β 
were significantly higher in the malignant group than 
the benign group (p < 0.001, p = 0.001, respectively, for 
tetrafucosyl and hexafucosyl). However, no significant 
difference in other degrees of fucosylation or sialylation 
of DSHp-β was found between the two groups (Fig. 4).

Construction and validation of a new model 
and nomogram for breast cancer diagnosis
In order to construct the breast cancer diagnostic model, 
the PSM cohort of 382 patients were randomly divided 
into the training set (n = 269) and the validation set 
(n = 113). First, multivariate logistic regression analyses 
were performed on the training set to study associations 
between malignancy and clinical characteristics, which 
included age, BMI, IIRPC patterns,  tumor markers, 
intensities of DSHp-β N-glycosylation, complete blood 
count, and blood biochemical markers. As a result, 9 
variables with no signs of multicollinearity (VIF < 5 for 
each variable [24]) were selected for model construction 
(Table  3). In detail, the serum levels of 4 glycoforms 
(GN2F2 at N184, G-N&G2S2, G2&G3NFS and G2N3F 
at N207/N211), and tumor markers CEA and CA153 
were increased in breast cancer, while the serum levels of 
3 glycoforms (G6N3F6, GN2FS at N184, GN3 at N207/
N211) were decreased in breast cancer, when compared 
to benign breast diseases. For the training set, the AUC 
of the new model to distinguish breast cancer from 
benign breast diseases was 0.80 (95% confidence interval, 
CI: 0.75–0.86), with a specificity of 87% and a sensitivity 
of 62%.

The diagnostic performance of the new model was 
subsequently evaluated (Fig.  5A1). For the validation 
set, the AUC of the new model was 0.77 (95% CI:0.69–
0.86, specificity: 75%, sensitivity: 69%). And for training 
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Table 2 Baseline clinical characteristics of patients

Characteristic Unmatched Propensity score matched

Benign Malignant P‑value Benign Malignant P‑value

(N = 235) (N = 262) (n = 191) (n = 191)

Age (years)

Mean (SD) 44.6 (11.1) 53.0 (11.8)  < 0.001 47.2 (10.4) 49.7 (11.3) 0.055

Median [Min, Max] 43.0 [26.0, 74.0] 52.5 [29.0, 75.0] 46.0 [26.0, 74.0] 48.0 [29.0, 75.0]

BMI (kg/m2)

 <  = 24 159 (67.7%) 157 (59.9%) 0.090 120 (62.8%) 123 (64.4%) 0.832

 > 24 76 (32.3%) 105 (40.1%) 71 (37.2%) 68 (35.6%)

CEA (ng/mL)

Mean (SD) 1.4 (0.7) 2.3 (1.8)  < 0.001 1.5 (0.7) 2.1 (1.6)  < 0.001

Median [Min, Max] 1.3 [0, 3.9] 1.7 [0, 17.2] 1.3 [0.4, 3.9] 1.6 [0, 9.1.0]

CA125 (U/mL)

Mean (SD) 16.6 (13.1) 18.7 (49.3) 0.070 16.0 (13.4) 20.4 (55.8) 0.633

Median [Min, Max] 13.1 [4.7, 113.0] 11.7 [2.3, 762.0] 12.4 [4.7, 113.0] 12.2 [2.3, 762.0]

CA153 (U/mL)

Mean (SD) 9.4 (5.0) 13.3 (20.0)  < 0.001 9.4 (4.8) 13.6 (23.0)  < 0.001

Median [Min, Max] 7.8 [0, 30.4] 10.3 [3.1, 320.0] 7.8 [2.8, 30.4] 10.7 [3.10, 320.0]

ALT (U/L)

Mean (SD) 17.9 (16.1) 17.6 (14.8) 0.430 19.0 (17.2) 17.0 (14.8) 0.349

Median [Min, Max] 13.0 [0, 153.0] 14.0 [0, 131.0] 14.0 [6.0, 153.0] 13.0 [0, 131.0]

AST (U/L)

Mean (SD) 18.6 (7.6) 19.1 (9.0) 0.625 18.9 (7.9) 18.7 (8.1) 0.464

Median [Min, Max] 17.0 [9.0, 65.0] 17.0 [9.0, 93.0] 17.0 [9.0, 65.0] 17.0 [9.0, 73.0]

ChE (kU/L)

Mean (SD) 8.8 (1.6) 8.9 (1.6) 0.203 8.9 (1.5) 8.7 (1.5) 0.325

Median [Min, Max] 8.6 [4.8, 13.6] 8.9 [4.3, 13.1] 8.7 [5.8, 13.6] 8.6 [4.9, 13.1]

TC (mmol/L)

Mean (SD) 4.9 (0.8) 5.1 (1.0) 0.023 5.0 (0.8) 5.1 (1.0) 0.633

Median [Min, Max] 4.9 [1.7, 8.4] 5.0 [2.7, 8.8] 4.9 [1.7, 8.4] 5.0 [2.7, 8.8]

TG (mmol/L)

Mean (SD) 1.1 (0.8) 1.4 (1.0)  < 0.001 1.2 (0.8) 1.3 (0.9) 0.884

Median [Min, Max] 0.9 [0.3, 7.4] 1.1 [0.3, 7.4] 1.0 [0.3, 7.4] 1.0 [0.3, 6.0]

HDLC (mmol/L)

Mean (SD) 1.5 (0.3) 1.4 (0.3) 0.228 1.4 (0.3) 1.4 (0.3) 0.857

Median [Min, Max] 1.4 [0.5, 2.5] 1.4 [0.8, 2.3] 1.4 [0.5, 2.5] 1.4 [0.8, 2.2]

LDLC (mmol/L)

Mean (SD) 3.0 (0.7) 3.2 (0.9) 0.053 3.1 (0.7) 3.1 (0.9) 0.986

Median [Min, Max] 3.0 [0.7, 6.6] 3.1 [1.1, 6.9] 3.1 [0.7, 6.6] 3.0 [1.1, 6.9]

ApoA1 (g/L)

Mean (SD) 1.6 (0.3) 1.6 (0.2) 0.515 1.6 (0.3) 1.6 (0.2) 0.621

Median [Min, Max] 1.5 [0.8, 3.2] 1.5 [1.1, 2.5] 1.5 [0.8, 3.2] 1.5 [1.1, 2.5]

ApoB (g/L)

Mean (SD) 0.9 (0.2) 1.0 (0.2) 0.002 0.9 (0.2) 0.9 (0.3) 0.805

Median [Min, Max] 0.9 [0.4, 1.7] 0.9 [0.4, 2.6] 0.9 [0.4, 1.7] 0.9 [0.4, 2.6]

Lpa (mg/L)

Mean (SD) 138.0 (170.0) 163.0 (176.0) 0.004 143.0 (171.0) 146.0 (151.0) 0.281

Median [Min, Max] 74.0 [21.0, 890.0] 97.5 [19.0, 968.0] 82.0 [21.0, 890.0] 87.0 [19.0, 968.0]

FFA (μmol/L)

Mean (SD) 604.0 (230.0) 638.0 (252.0) 0.132 613.0 (225.0) 627.0 (246.0) 0.663
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and validation sets, the AUC of the new model was 0.80 
(95% CI:0.76–0.84, specificity: 77%, sensitivity: 68%). In 
general, the calibration curves fitted well with the ideal 
model for the training set, the validation set, and train-
ing and validation sets (Fig. 5B1–3).

To compare the diagnostic performance of the new 
model and tumor markers CEA and CA153, we draw 
ROC curves for  the new model, CEA and CA153 
(Fig. 5A2). With a cutoff value of 2.4 ng/mL, the AUC 
of CEA was 0.62 (95% CI: 0.56–0.67, specificity: 29%, 
sensitivity: 90%). With a cutoff value of 7.9 U/mL, the 
AUC of CA153 was 0.65 (95% CI: 0.60–0.71, specificity: 
74%, sensitivity: 51%). For the combination of CEA 
and CA153, the AUC yielded 0.67 (95% CI: 0.62–0.73, 
specificity: 60%, sensitivity: 68%). The predicted values 
of the four models were significantly higher in patients 
with breast cancer than those with benign diseases 
(p < 0.001, Fig. 5C).

Finally, in order to assess the probability of malig-
nancy, a nomogram was constructed based on the new 
model. 7 DSHp-β N-glycopeptides (GN2F2, G6N3F6, 
GN2FS at N184, G-N&G2S2, G2&G3NFS, G2N3F, and 

GN3 at N207/N211), CEA, and CA153 were used as 
parameters (Fig. 5D).

Discussion
To distinguish breast cancer from benign breast diseases 
at the early stage is of paramount importance for patients 
with suspicious breast lesions. For those with breast 
cancer, diagnosis at an earlier stage resulted in reduced 
mortality and cost from the disease. According to data 
from the SEER 22 registries, the relative 5-year survival 
rates for patients with localized and metastatic breast 
cancer at diagnosis from 2000 to 2019 were 98.9% and 
29.2%, respectively [25]. Claim data of 8360 women 
with breast cancer showed that advanced- versus early-
stage breast cancer at diagnosis was associated with 
significantly increased costs [5]. For patients with benign 
breast diseases, difficulties in ruling out the cancer 
diagnosis often result in invasive approaches, including 
biopsy and surgery. Though defined as the gold standard 
for diagnosis, such approaches could cause infectious, 
bleeding and thromboembolic complications at varying 
incidence [26, 27]. Despite improvements in surgical 
techniques, according to a study on 226,899 patients 

Table 2 (continued)

Characteristic Unmatched Propensity score matched

Benign Malignant P‑value Benign Malignant P‑value

(N = 235) (N = 262) (n = 191) (n = 191)

Median [Min, Max] 597.0 [103.0, 1370.0] 620.0 [103.0, 1490.0] 604.0 [103.0, 1290.0] 604.0 [103.0, 1310.0]

hsCRP (mg/L)

Mean (SD) 1.1 (1.5) 1.24 (1.63) 0.166 1.1 (1.6) 1.1 (1.4) 0.856

Median [Min, Max] 0.6 [0, 12.5] 0.7 [0, 13.8] 0.6 [0, 12.5] 0.6 [0, 8.4]

Glu (mmol/L)

Mean (SD) 5.3 (0.8) 5.5 (1.0) 0.006 5.4 (0.8) 5.5 (1.0) 0.344

Median [Min, Max] 5.2 [4.0, 9.5] 5.3 [4.0, 12.6] 5.2 [4.0, 9.5] 5.3 [4.0, 12.6]

WBC (109/L)

Mean (SD) 5.8 (1.6) 5.7 (1.4) 0.971 5.8 (1.5) 5.6 (1.4) 0.197

Median [Min, Max] 5.5 [3.0, 11.5] 5.5 [2.7, 11.5] 5.6 [3.0, 11.1] 5.5 [2.7, 11.1]

LY (109/L)

Mean (SD) 1.6 (0.4) 1.6 (0.5) 0.480 1.6 (0.5) 1.6 (0.5) 0.145

Median [Min, Max] 1.5 [0.6, 3.0] 1.5 [0.7, 4.9] 1.5 [0.6, 3.0] 1.5 [0.7, 4.9]

MONO (109/L)

Mean (SD) 0.3 (0.1) 0.3 (0.1) 0.060 0.3 (0.1) 0.3 (0.1) 0.910

Median [Min, Max] 0.3 [0.1, 0.8] 0.3 [0.1, 1.0] 0.3 [0.1, 0.8] 0.3 [0.1, 1.0]

NEUT (109/L)

Mean (SD) 3.8 (1.3) 3.7 (1.3) 0.896 3.8 (1.3) 3.7 (1.3) 0.220

Median [Min, Max] 3.6 [1.5, 9.2] 3.5 [1.2, 8.9] 3.6 [1.5, 8.9] 3.5 [1.2, 8.9]

PLT (109/L)

Mean (SD) 253.0 (57.6) 242.0 (51.7) 0.023 249.0 (57.6) 243.0 (52.5) 0.360

Median [Min, Max] 247.0 [128.0, 441.0] 239.0 [126.0, 434.0] 243.0 [128.0, 441.0] 241.0 [126.0, 434.0]
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from the American College of Surgeons NSQIP database 
who underwent breast surgery from 2005 to 2017, the 
overall rates of acute complication were 2.25–3.2% 
for breast conserving therapy, and 5.68–13.04% for 

mastectomy, respectively [27]. In addition, literature 
reported a 10–50% cumulative incidence of lymphedema 
2 years after breast cancer surgery [28, 29].

Fig. 2 Heatmap of the DSHp-β N-glycopeptides with hierarchical clustering of the rows. Distributions of malignancy, IIRPC patterns, and histologic 
classifications are demonstrated for each column. Glycosylation sites, fucosylation and sialylation degrees are demonstrated for each row
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In this scenario, it is pivotal to explore efficient 
approaches for differential diagnosis of breast cancer. 
In this study, we demonstrate for the first time that 
quantitative analysis of serum DSHp-β N-glycosylation 
can aid current tumor markers in differentiating breast 
cancer from benign breast diseases. With the addi-
tion of preoperative serum levels of 7 glycopeptides to 
CEA and CA153, our new model yielded an AUC of 
0.80. In comparison, the calculated AUCs of the same 
cohort were 0.62, 0.65, and 0.67, respectively, for CEA, 

CA153, as well as their combination. We distinguished 
stage 0-III breast cancer from suspicious breast lesions, 
instead of normal controls, which could better address 
the clinical need. The performance of the new model 
for disease monitoring in patients with breast cancer 
remains to be explored.

IIRPC is a group of immunoinflammatory-related 
and non-covalently linked proteins, reported to be 
associated with the development and progression 
of cancer [23, 30]. Major components of IIRPCs are 
complements, immunoglobulins, and haptoglobin. 
In consistent with previous studies, there were 7 
patterns of the IIRPCs observed [23, 31]. No significant 
difference in the IIRPC patterns between benign and 
malignant cases was found. We didn’t quantify IIRPCs, 
though they were potentially related with treatment 
response in breast cancer [31]. It’s well established that 
protein glycosylation, as one of the post-translational 
modifications, is highly sensitive and closely related to 
tumorigenesis and disease evolution [32]. In particular, 
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Fig. 3 Volcano plot that shows statistical significance (Bonferroni 
correction p-value) versus magnitude of change (fold change) 
of DSHp-β N-glycopeptides between benign breast diseases 
and breast cancer (malignant vs. benign). Statistically significant 
changes are colored

Fig. 4 Comparisons of fucosylation and sialylation degrees of DSHp-β N-glycopeptides between benign breast diseases and breast cancer

Table 3 Selected variables from logistic regression analysis for 
model construction

Variable Coef. OR (95% CI) P‑value VIF

C11 1.56 4.77 (2.26–10.04)  < 0.001 4.66

A29 1.41 4.11 (2.03–8.34)  < 0.001 4.73

A44 0.61 1.84 (1.24–2.74) 0.003 2.73

A8 0.40 1.50 (1.18–1.90) 0.001 1.10

CEA 0.34 1.40 (1.08–1.82) 0.011 1.04

CA153 0.08 1.09 (1.03–1.14) 0.001 1.06

C16 − 0.86 0.42 (0.24–0.76) 0.004 4.60

C3 − 0.90 0.41 (0.21–0.80) 0.009 3.50

A4 − 2.20 0.11 (0.05–0.25)  < 0.001 4.12
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Fig. 5 Construction and validation of a new model and nomogram for breast cancer diagnosis. A1 ROC curves of the new model for predicting 
breast cancer in the training set, validation set, training and validation sets. A2 ROC curves of the new model, CA153, CEA, CEA and CA153 
for predicting breast cancer in training and validation sets. B1–3 Calibration curves of the new model for the training set, validation set, training 
and validation sets. C Violin plots that show distributions of predicted values for the new model, CA153, CEA, CEA and CA153. D1 The nomogram 
and D2 its example of the model. The overall probability is calculated by taking the sum of the risk points. For each parameter, its risk point can 
be determined by drawing a vertical line straight up from the parameter’s value to the “Points” axis. In order to determine the probability of breast 
cancer, a vertical line is drawn intersecting the “Total points” with the “Pr()” line
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abnormal fucosylation and sialylation of Hp could 
contribute to tumorigenesis, cancer progression, 
and metastasis [15–19]. In our study, DSHp-β 
N-glycopeptides were found to be closely correlated, 
which is understandable in view of critical enzymes 
responsible for their modification [33]. Specifically, the 
upregulation of N-tetrafucosyl and hexafucosyl DSHp-β 
indicates an activation of fucosyltransferase 8 (FUT8) 
in tumorigenesis [34]. This was in accordance with the 
report that FUT8 expression was elevated in breast 
cancer through transcription factor activator protein 
2γ regulation [35]. The dysregulated N-glycosylation 
profiles of DSHp-β suggest an underlying inflammatory 
response in breast cancer that awaits further 
investigation. Because of relative large number of the 
glycopeptides and their multicollinearity, we used 
logistic regression instead of other machine learning 
methods for model construction. And probably due 
to the multicollinearity of DSHp-β N-glycopeptides, 
not all differentially expressed genes were selected for 
model construction.

Our study found significant differences in serum levels 
of CEA and CA153 between breast cancer and benign 
breast diseases. However, CA125 was not significantly 
increased in breast cancer compared to benign breast 
diseases, neither before nor after PSM. CA125 is 
a biomarker for ovarian cancer, usually associated 
with breast cancer in the metastatic settings [36, 37]. 
Furthermore, we evaluated the diagnostic performance 
of CEA and CA153 in breast cancer. CA153 provided a 
higher specificity (74%) than sensitivity (51%), while CEA 
provided a high sensitivity (90%) but a low specificity 
(29%). CA153 can be elevated in benign breast diseases, 
therefore is not sensitive enough for early detection of 
breast cancer [38]. On the contrary, CEA is very sensitive 
but can be elevated in many other malignancies (e.g., 
colon cancer, lung cancer, pancreatic cancer, thyroid 
cancer, etc.). Hence, CEA and CA153 could complement 
each other for breast cancer diagnosis. When combined, 
their sensitivity and specificity yielded 68% and 60%, 
respectively. In our study, the selected cutoff value of 
CA153 (7.9 U/mL) was lower than the normal limit 
(25 U/mL). This is probably because we didn’t include 
patients with metastasis. CA153 levels were observed 
to increase with the tumor stage [39]. In fact, CA153 
levels in patients with localized breast cancer largely 
overlapped those in healthy women or patients with 
benign breast diseases [39–41].

The study has some strengths and limitations. First, 
the study obtained detailed clinical information of 
the participants, and used PSM and randomization 
to effectively control for confounding. The enrolled 
participants largely resembled those of the clinical reality, 

therefore the results of the study could be of practical 
use. Second, the ultra-resolution MS applied in our 
study required only a small volume of blood, used an 
economical and environmental-friendly enrichment 
method, and proved to be quantitatively reproducible 
[18, 19], indicating high potential clinical applications. Of 
note, the single-center retrospective design of the study 
was prone to selection bias. Although the model and 
nomogram performed well through internal validation, 
prospective and external validation on an expanded 
population is expected to provide more convincing 
evidence in future. Furthermore, the role of aberrant 
glycosylation in relation to drug response and prognosis 
of breast cancer is expected to be investigated with 
follow-ups of the patients.

Conclusions
The N-glycosylation profile of serum DSHp-β was largely 
altered in patients with breast cancer. Based on the 
preoperative serum levels of 7 DSHp-β N-glycopeptides, 
CEA, and CA153, we developed a promising model and 
nomogram to differentiate between breast cancer and 
benign breast diseases. The diagnostic performance of 
the new model and nomogram was better than traditional 
tumor markers. Overall, advances in the understanding 
of DSHp-β N-glycosylation could offer insights into 
breast tumorigenesis and guide clinical practice.
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