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Abstract 

Background  Peritoneal fibrosis is the prevailing complication induced by prolonged exposure to high glucose 
in patients undergoing peritoneal dialysis.

Methods  To elucidate the molecular mechanisms underlying this process, we conducted an integrated analysis 
of the transcriptome and chromatin accessibility profiles of human peritoneal mesothelial cells (HMrSV5) during high-
glucose treatment.

Results  Our study identified 2775 differentially expressed genes (DEGs) related to high glucose-triggered pathologi-
cal changes, including 1164 upregulated and 1611 downregulated genes. Genome-wide DEGs and network analysis 
revealed enrichment in the epithelial–mesenchymal transition (EMT), inflammatory response, hypoxia, and TGF-beta 
pathways. The enriched genes included VEGFA, HIF-1α, TGF-β1, EGF, TWIST2, and SNAI2. Using ATAC-seq, we identi-
fied 942 hyper (higher ATAC-seq signal in high glucose-treated HMrSV5 cells than in control cells) and 714 hypo 
(lower ATAC-seq signal in high glucose-treated HMrSV5 cells versus control cells) peaks with differential accessibility 
in high glucose-treated HMrSV5 cells versus controls. These differentially accessible regions were positively correlated 
(R = 0.934) with the nearest DEGs. These genes were associated with 566 up- and 398 downregulated genes, includ-
ing SNAI2, TGF-β1, HIF-1α, FGF2, VEGFA, and VEGFC, which are involved in critical pathways identified by transcriptome 
analysis. Integrated ATAC-seq and RNA-seq analysis also revealed key transcription factors (TFs), such as HIF-1α, ARNTL, 
ELF1, SMAD3 and XBP1. Importantly, we demonstrated that HIF-1α is involved in the regulation of several key genes 
associated with EMT and the TGF-beta pathway. Notably, we predicted and experimentally validated that HIF-1α can 
exacerbate the expression of TGF-β1 in a high glucose-dependent manner, revealing a novel role of HIF-1α in high 
glucose-induced pathological changes in human peritoneal mesothelial cells (HPMCs).

Conclusions  In summary, our study provides a comprehensive view of the role of transcriptome deregulation 
and chromosome accessibility alterations in high glucose-induced pathological fibrotic changes in HPMCs. This 
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Introduction
Peritoneal dialysis (PD) is an appealing treatment option 
for patients with end-stage kidney disease (ESKD) [1]. 
Presently, PD constitutes approximately 10% of the global 
modalities employed for renal replacement therapy [2]. 
However, long-term peritoneal dialysis can lead to func-
tional and structural changes in the peritoneal mem-
brane, resulting in peritoneal fibrosis. Currently, the 
specific mechanism underlying peritoneal fibrosis has 
not been determined. Consequently, peritoneal fibrosis 
represents a significant challenge for long-term perito-
neal dialysis patients [3].

Peritoneal fibrosis (PF) is believed to arise from various 
factors, including the use of bioincompatible dialysates 
(high glucose, acidic solutions, and glucose degradation 
products), uremia, peritonitis, and chronic inflammation 
[4]. Among these factors, high glucose is considered a 
major trigger for peritoneal fibrosis. Glucose is the pri-
mary osmotic agent utilized due to its high effectiveness, 
cost-effectiveness, and satisfactory safety profile. How-
ever, to establish an osmotic gradient for the removal of 
electrolytes and toxins through convection with water, 
glucose is employed at concentrations 10 to 50 times 
greater than that of serum. This represents the primary 
challenge associated with the bioincompatibility of peri-
toneal dialysis solutions. Elucidating the fundamental 
mechanisms that connect high glucose-induced perito-
neal fibrosis would constitute a significant breakthrough 
in the efficient management of ESKD.

Moreover, peritoneal mesothelial cells play a central 
role in peritoneal fibrosis associated with peritoneal dial-
ysis [5]. Although numerous studies have illuminated the 
intricate mechanisms involved in high glucose-induced 
peritoneal fibrosis, including the critical role of TGF-
β1 as a mediator and epithelial–mesenchymal transition 
(EMT) as a key process in initiating peritoneal fibrosis, 
a comprehensive and systematic characterization of gene 
expression changes in human peritoneal mesothelial 
cells (HPMCs) under high glucose conditions is lacking. 
Understanding the cellular and molecular mechanisms 
that contribute to peritoneal membrane fibrosis could 
be valuable in developing therapies designed to mitigate 
deterioration and restore homeostasis in the peritoneal 
membrane.

Epigenetic alterations play a crucial role in the regula-
tion of gene expression, while open accessible regions 
on chromosomes serve as binding sites for transcription 
factors and other regulatory elements. These dynamic 
changes in chromosome accessibility occur in vari-
ous biological processes, including cell differentiation, 
development, response to external stimuli, and patho-
logical changes. ATAC-seq is a newly developed method 
that allows the evaluation of chromosome accessibility. 
The process relies on effective enzymatic cleavage and 
transposition of Tn5 to identify open chromatin regions 
[6]. This technique has been widely used in diverse dis-
ease-associated studies to elucidate the landscape of 
chromatin accessibility, alterations, and transcriptional 
regulators that play vital roles in disease pathogenesis 
[7–10]. However, the dynamics of chromosome acces-
sibility and its role in the regulation of gene expression 
in high glucose-triggered PF have not been extensively 
investigated.

In this study, we utilized ATAC-seq in combination 
with RNA-seq to characterize the landscape and exam-
ine the relationship between chromatin accessibility and 
gene transcription in high glucose-treated HMrSV5. By 
analyzing DEGs, we systematically identified key genes 
and core molecule interaction networks involved in high 
glucose-triggered PF. Moreover, the analysis of differen-
tially accessible regions (DARs) enabled us to identify 
regulatory DNA sequences and core TFs that may be 
responsible for the observed changes during this process.

Methods
Cell culture
HMrSV5 and HEK293T cells were cultured in high-
glucose DMEM (Gibco/Thermo Fisher Scientific) sup-
plemented with 10% FBS (HyClone) and 1/100 (vol/vol) 
penicillin/streptomycin (Gibco/Thermo Fisher Scientific) 
at 37 °C in a humidified incubator with 5% CO2. For the 
extra high glucose treatment, cells were cultured in high 
glucose DMEM supplemented with an additional 60 mM 
glucose.

Western blot
Total protein was extracted from each group via RIPA 
lysis buffer (Beyotime, P0013B) containing 2 mM PMSF 

analysis identified hub genes, signaling pathways, and key transcription factors involved in peritoneal fibrosis 
and highlighted the novel glucose-dependent regulation of TGF-β1 by HIF-1α. This integrated approach has offered 
a deeper understanding of the pathogenesis of peritoneal fibrosis and has indicated potential therapeutic targets 
for intervention.
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(Beyotime, ST506). The resulting cell lysates were sub-
jected to centrifugation at 12,000 × g and 4 °C for 10 min. 
The total protein was then combined with 5 × SDS‒PAGE 
loading buffer and boiled at 100  °C for 10  min. Follow-
ing subsequent centrifugation at 12,000 rcf for 10  min, 
the supernatants were collected for SDS‒PAGE electro-
phoresis. Equal amounts of protein (40  μg/lane) from 
each sample were loaded onto a 10% SDS‒PAGE gel and 
transferred to a 0.45 μm polyvinylidene difluoride mem-
brane. The gel was blocked with 5% nonfat dry milk in 
Tris-buffered saline containing 0.1% Tween-20 (TBST) 
at room temperature for 2 h. Subsequently, primary anti-
bodies (Vimentin, ABclonal, A19607, 1:1000; E-cadherin, 
ABclonal, A20798, 1:1000; β-actin, Cell Signaling, 4970, 
1:2000) were incubated overnight at 4  °C. After wash-
ing three times with 1 × TBST solution (5 min each), the 
membranes were incubated with an HRP-conjugated 
goat anti-rabbit secondary antibody (ABclonal, AS041, 
1:5000) for 1 h at room temperature. After an additional 
three washes with 1 × TBST, the bands were visualized 
using BeyoECL reagents (Beyotime, P0018S).

Immunofluorescence staining
HMrSV5 cells were plated in a 24-well plate at a density 
of 8 × 104 cells per well. After incubation with either nor-
mal culture medium or culture medium supplemented 
with 60  mM glucose, the cells were washed with PBS 
three times. Subsequently, the cells were fixed with ice-
cold methanol for 10  min, followed by another three 
washes with PBS. The cells were then incubated in PBS 
containing 0.5% Triton X-100 at room temperature for 
30  min and blocked with 1% BSA at room temperature 
for 1 h. Next, the cells were incubated with primary anti-
bodies against Vimentin (ABclonal, A19607) overnight at 
4 °C (1:200). The cells were then rinsed three times with 
PBS and incubated with secondary antibodies in the dark 
at room temperature for 30  min [goat anti-rabbit IgG 
(Alexa Fluor® 488) (1:500)]. After an additional three 
washes with PBS, the cells were mounted with mounting 
medium containing Hoechst 33,342. Subsequently, the 
cellular morphology was observed, and images were cap-
tured under a fluorescence microscope.

Construction of the HIF‑1α overexpression plasmid
RNA was extracted from HMrSV5 cells using TRIzol 
(Thermo Fisher Scientific, 15596026), and the result-
ing RNA was subsequently used as an input to pro-
duce cDNA via the PrimeScript 1st Strand cDNA 
Synthesis Kit (Takara, 6110A). The coding sequence 
of HIF-1α was amplified with Q5 DNA polymerase 
(NEB, M0491S) using cDNA as a template. Subse-
quently, the amplified HIF-1α fragment was subcloned 
and inserted into the PLVX-IRES-puro vector using 

the ClonExpress Ultra One Step Cloning Kit (Vazyme, 
C115) to generate the expression plasmid. The prim-
ers used for HIF-1α amplification were as follows: sense: 
5ʹ-ggatctatttccggtgaattcATT​CAC​CAT​GGA​GGG​CGC​-3ʹ, 
antisense: 5ʹ-ggagggagaggggcgggatccTCA​GTT​AAC​TTG​
ATC​CAA​AG-CTCTG-3ʹ.

Lentivirus production and transduction
The HIF-1α-overexpressing and empty viruses were gen-
erated by transfecting the constructs with pMD2.G and 
psPAX2 into HEK293T cells using Lipo6000 (Beyotime, 
C0526). After 12  h of transfection, the medium was 
replaced with fresh medium. The virus was harvested 
48  h later, and the supernatant was collected by cen-
trifugation at 4000 rcf for 10  min and filtered through 
a 0.45  μm filter unit (Millipore). The cells were trans-
duced with the recombinant lentivirus for 24 h and then 
selected with puromycin for 1  week, starting 48  h after 
transduction.

Luciferase activity assay
A 2000-bp promoter fragment surrounding the TGF-
β1 transcription start site was amplified from genomic 
DNA and subsequently cloned and inserted into the 
pGL3-Basic vector. The sequences of primers used 
were as follows: Sense: 5ʹ-atctgcgatctaagtaagcttCGC​
AGG​GTG​TTG​AGT​GAC​AGGAG-3ʹ, Anti-sense: 
5ʹ-cagtaccggaatgccaagcttGGT​GAC​CTC​CTT​GGC​GTA​
GTA​GTC​G-3ʹ. Following construction, these plasmids 
were transfected into HMrSV5 cells using TransIntro 
PL Transfection Reagent (TransGen). Concurrently, 
the phRL plasmid containing Renilla luciferase (Pro-
mega) was introduced as an internal control. The cul-
ture medium was changed to either normal or 60  mM 
glucose-containing medium 24 h posttransfection. After 
a 3  day incubation, luciferase activity, with the Renilla 
luciferase vector phRL serving as the internal reference 
for luciferase signals, was assessed using the Dual-Lucif-
erase Reporter Assay System (Beyotime, RG042M).

ELISA
The HMrSV5-OE control and HMrSV5-OE HIF-1α cells 
were plated in a 24-well plate at a density of 8 × 104 cells/
well, cultured overnight, and subsequently exposed to 
either normal culture medium or culture medium sup-
plemented with 60 mM glucose. After a 3 day incubation, 
the culture medium was collected, followed by centrifu-
gation for 10  min at 1000 rcf. The resulting superna-
tant was utilized for TGF-β1 concentration assessment 
using the Transforming Growth Factor Beta 1 ELISA 
Kit (ABclonal, RK00055) following the kit protocol. In 
brief, the samples were activated by adding 10 μL of 1 N 
HCl to 40 μL of supernatant, mixing for 10 min at room 
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temperature, and then neutralizing with 10  μL of 1.2  N 
NaOH/0.5 M HEPES. The activated samples were diluted 
20-fold. Subsequently, 100  μL of standard TGF-β1 or 
sample dilutions was added to ELISA strips precoated 
with anti-TGF-β1 antibody and incubated at 37  °C for 
2 h. The strips were washed three times with wash buffer. 
Next, 100  μL of biotin-conjugated antibody was added, 
followed by a 1 h incubation at 37 °C. After another three 
washes with wash buffer, 100 μL of working streptavidin-
HRP was added, and the mixture was incubated at 37 °C 
for 30  min. Following three washes with wash buffer, 
100 μL of TMB substrate was added, and the mixture was 
incubated for 20 min at 37 °C. Finally, 50 μL of stop solu-
tion was added, and the optical density of each well was 
measured using a microplate reader at 450 nm. The TGF-
β1 concentration was calculated based on the standard 
sample curve.

RNA‑seq
Total RNA from HMrSV5 cells was extracted using 
TRIzol Reagent (Thermo, 15596026). Subsequently, 
the extracted RNA was further purified using an RNe-
asy Mini Kit (Qiagen, 74,004). RNA-Seq was performed 
on the purified RNA following a previously described 
method [10].

ATAC‑seq
ATAC-seq was performed as previously described, with 
slight modifications [11]. Briefly, HMrSV5 cells were 
digested with 0.25% trypsin, and after collection and 
washing with ice-cold PBS, 1 × 105 cells were lysed in ice-
cold lysis buffer (10 mM NaCl, 3 mM MgCl2, 0.5% IGE-
PAL CA-630, 0.1% Tween-20, and 10 mM Tris–HCL, pH 
7.5) for 15  min on ice. The lysate was then centrifuged 
at 800 rcf for 5 min at 4  °C. After discarding the super-
natant, the nuclei were collected, and reaction buffer 
containing Tn5 transposase (Vazyme Biotech, TD501) 
was added. The reactions were performed at 1200  rpm 
and 37 °C in a thermomixer for 30 min. The transposed 
DNA fragments were purified using the Qiagen MinElute 
PCR Purification Kit (QIAGEN, 28004). Subsequently, 
the purified DNA fragments were amplified using KAPA 
HotStart ReadyMix (Kapa Biosystems, KM2605) follow-
ing the manufacturer’s instructions. Next, Agencourt 
AMPure XP (Beckman, A63881) was used to purify the 
amplified DNA library. Finally, the library DNA was 
sequenced with 150 paired-end reads using an Illumina 
HiSeq X10 instrument.

RNA‑Seq data analysis
The sequence files of the RNA-seq data were aligned to 
the human genome version hg38 using HISAT2 [12] (ver-
sion 2.2.1). Subsequently, stringtie [13] (version 2.1.5) was 

used to call read counts and calculate TPM (transcripts 
per million) values. For the differential gene expression 
analysis, DESeq2 [14] in the R environment was used, 
and the read counts were used as input. The cutoff values 
for identifying differentially expressed genes were set at 
a fold change ≥ 2 and p value < 0.05. Genes meeting these 
criteria were considered to be differentially expressed 
between the experimental groups.

Data analysis and visualization of ATAC‑seq data
For ATAC-seq data, reads were trimmed by Trim-
momatic [15]and subsequently aligned to the human 
GRCh38 genome using Bowtie2 [16] (version 2.4.2). 
Duplicated reads were removed by Picard MarkDupli-
cates (version 2.25.0), and only uniquely mapped reads 
were retained for further analysis. The mitochondrial 
DNA and low-quality mapped reads (MAPQ score < 10) 
were filtered out using SAMtools [17] (version 1.12). 
MACS2 [18] (version 2.2.7.1) with the following param-
eters were used to call ATAC-seq peaks: –shift 100 –ext-
size 200 –nomodel –B –SPMR –g hs. The reproducible 
peaks of two replicates were produced by IDR (version 
2.0.4.2). The read coverages of the genomic regions in 
the BAM files were determined using Bedtools multicov 
[19] (version 2.30.0). DiffBind [20] was used for differen-
tial analysis of the ATAC-seq peaks. The annotation of 
the peaks in the region proximal to the target genes was 
performed via the ChIPseeker package (version 1.28.3) in 
the R environment [21]. GREAT  (http://​great.​stanf​ord.​
edu/) was used to annotate the peaks in the long-distance 
region. To visualize continuous ATAC-seq signals, bigwig 
files were created with deeptools bamCoverage [22] (ver-
sion 3.5.1). The visualization of bigwig files was achieved 
using IGV [23].

Prediction of key TFs
ANANSE [24] (version 0.3.0) was used to predict key 
TFs. Briefly, BAM files from ATAC-seq, RNA expres-
sion files and different RNA expression files were used as 
inputs. The compartments of ANANSE, ananse binding, 
ananse network, and ananse influence, were determined 
in sequence.

GO and KEGG enrichment analysis
GO and KEGG analyses were performed by Metascape 
[25] (https://​metas​cape.​org/​gp/​index.​html#/​main/​step1).

Connectivity map (CMap) analysis
CMap (https://​clue.​io) serves as a gene expression profile 
database, employing gene expression signature interven-
tions to unveil connections between diseases, genes, and 
small molecule compounds. In this study, upregulated 
and downregulated hub genes were subjected to analysis 
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via the CMap online database to identify potential small-
molecule drugs for PF treatment. Compounds displaying 
negative connectivity scores were then selected for sub-
sequent analysis, including molecular docking.

Molecular docking
Protein 3D structures were retrieved from either https://​
alpha​fold.​ebi.​ac.​uk/ or  RCSB (https://​www.​rcsb.​org/), 
while the 3D structures of drugs were obtained from the 
PubChem database [26]. The drug structures were sub-
sequently converted into Mol2 format using Open Babel 
software [27]. In cases where water was present in the 
protein 3D structure file, it was removed using PyMOL. 
Hydrogen atoms and charges were added using Autodock 
GUI. Subsequently, molecular docking of the drugs and 
target proteins was conducted using Autodock GUI, and 
the results were visualized with PyMOL.

Statistical analysis
All analyses were performed using GraphPad Prism (ver-
sion 9.0) or R (https://​www.r-​proje​ct.​org/). The data 
are presented as the mean ± s.d. Two-tailed unpaired or 
paired Student’s t test, ANOVA (one-way or two-way), 
and Spearman correlation coefficient were calculated 
according to the type of experiment. P < 0.05 was consid-
ered to indicate statistical significance.

Results
Transcriptome alterations associated with high glucose 
treatment in HMrSV5 cells.
To explore potential genes associated with high glucose-
containing peritoneal dialysate treatment, we conducted 
RNA-seq analysis of HMrSV5 cells cultured in stand-
ard culture medium or culture medium supplemented 
with 60 mmol/L glucose. A total of 2775 DEGs were dif-
ferentially expressed in response to high-glucose treat-
ment, with 1164 genes downregulated and 1611 genes 
upregulated compared to those in the control condition 
(Fig. 1a, Additional file 5: Supplementary table 1). To gain 
insight into the crucial pathways involved in the glucose 
response in HMrSV5 cells, KEGG enrichment analysis 
was employed. The upregulated genes were mainly asso-
ciated with the MAPK signaling pathway, the PI3K-Akt 
signaling pathway, cytokine‒cytokine receptor interac-
tions, and the TGF-beta pathway  (Fig.  1b). However, 
the downregulated DEGs were significantly enriched in 
pathways related to protein digestion and absorption, 
as well as axon guidance (Fig.  1b). Additionally, enrich-
ment analysis of the hallmark gene sets revealed that 
the upregulated DEGs were predominantly enriched 
in processes such as EMT, TNF-α signaling via NFKB, 
angiogenesis, glycolysis, KRAS signaling, and the inflam-
matory response. Moreover, the downregulated DEGs 

were associated with processes such as myogenesis and 
KRAS signaling (Fig. 1c). Moreover, gene ontology anal-
ysis of biological processes indicated that the upregu-
lated DEGs were enriched in chemotaxis, regulation of 
adhesion, regulation of epithelial cell proliferation, and 
inflammatory response (Fig. S1a). On the other hand, the 
downregulated DEGs were specifically involved in pro-
cesses related to external encapsulating structure organi-
zation (Additional file 1: Fig. S1a).

EMT plays a central role in the development of fibro-
sis induced by high glucose treatment in HMrSV5 cells. 
To further investigate this phenomenon, we assessed the 
expression of classic EMT-associated TFs, which include 
TWIST1, TWIST2, ZEB1, ZEB2, SNAI1, and SNAI2 [28–
31]. Interestingly, we observed significant overexpres-
sion of TWIST2 and SNAI2, suggesting their potential 
central role in high glucose-induced EMT and fibrosis in 
HMrSV5 cells (Additional file 1: Fig. S1b). Moreover, 56 
genes and 27 genes in the hallmark epithelial–mesenchy-
mal transition gene sets were upregulated and downregu-
lated, respectively. The genes included CXCL1, CXCL6, 
CXCL8, SNAI2, SPP1, VEGFA, VEGFB, SERPINE1, 
TGF-β1, and THBS1 (Fig. 1e). It has been reported that 
cytokines can promote EMT [32], and in our study, we 
also noticed that upregulated genes were highly enriched 
in cytokine‒cytokine receptor interactions. These find-
ings led us to investigate the expression of several EMT-
promoting extracellular factors. Our findings revealed 
that, in addition to TGF-β1, TGF-β2, FGF2, FGF1, FGF5, 
and FGF7 were also upregulated, indicating the com-
plexity of the EMT-promoting mechanism (Additional 
file  1: Fig. S1c). Furthermore, given the significant role 
of TGF-β1 in high glucose-triggered EMT in HPMC 
cells, we conducted a detailed analysis of dysregulated 
genes in the TGF-beta pathway. The results revealed that 
TGF-β1, NOG, BCAR3, THBS1, SERPINE1, BMP2, ENG, 
and TGIF1 were upregulated, while CDH1, CDKN1C, 
SMAD6, and JUNB were downregulated (Fig. 1d). Finally, 
GSEA revealed activation of the TGF-beta signaling 
pathway and the hallmark of epithelial–mesenchymal 
transition (EMT) in HMrSV5 cells treated with high glu-
cose (Fig. 1f, g).

Overall, our findings shed light on the intricate inter-
play among various factors, transcription factors, and 
pathways involved in high glucose-induced EMT and 
fibrosis in HMrSV5 cells, helping to elucidate the under-
lying mechanisms and potential therapeutic targets 
involved in this process.

Network‑based analysis revealed hub genes and enriched 
biological processes in high glucose–treated HMrSV5 cells
To better understand the mechanism involved in high 
glucose treatment in HMrSV5 cells, we employed 

https://alphafold.ebi.ac.uk/
https://alphafold.ebi.ac.uk/
https://www.rcsb.org/
https://www.r-project.org/
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Fig. 1  Transcriptome alterations in high glucose–treated HMrSV5 cells. a Volcano plots illustrating the DEGs detected by RNA-seq. The data 
were filtered by a P value < 0.05 and an absolute fold change > 2. b, c KEGG enrichment (b) or hallmark gene set enrichment (c) of upregulated 
DEGs and downregulated DEGs. Up/Down: upregulated or downregulated genes in high glucose-treated HMrSV5 cells. d, e Heatmap showing 
dysregulated genes associated with hallmark of epithelial mesenchymal transition (d) or the TGF-beta signaling pathway. f, g Gene Set Enrichment 
Analysis (GSEA) shows that the TGF-beta signaling pathway (f) and Epithelial mesenchymal transition hallmark gene set (g)  were enriched 
in high-glucose treated HMrSV5 cells
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network-based tools, such as MCODE and CytoHubba, 
to explore the main subnetworks and hub genes. The 
analysis revealed that the highest scored subnetwork pri-
marily consisted of upregulated DEGs, suggesting their 
crucial role in this process (Fig.  2a). Notably, some of 
the key upregulated genes in this subnetwork included 

HIF-1α, TGF-β2, SPP1, FGF2, EGF, TGF-β1, and IGF2. 
Additionally, an intriguing observation was the upregu-
lation of several histone-related genes from the HIST1H 
and HIST2H families, suggesting the potential involve-
ment of histone regulation in the response of HMrSV5 
cells to high glucose. Furthermore, hallmark gene set 

Fig. 2  Network-based integrated analysis of DEGs. a The top network cluster was calculated using the MCODE app in Cytoscape. The red circle 
represents upregulated DEGs, while the blue circle indicates downregulated DEGs. b Hallmark gene set enrichment analysis of upregulated DEGs 
in the upper network cluster. c Overlap of hub genes predicted by the MNC, MCC, and Degree methods via the CytoHubba app. d, e The network 
shows the KEGG enrichment (d) and hallmark gene set enrichment (e), along with the genes associated with the overlapping hub genes in c. 
f Protein levels of E-cadherin and Vimentin in the high-glucose group compared with those in the control group. β-actin served as the protein 
loading control. g Immunostaining of Vimentin in HMrSV5 cells cultured in high-glucose medium versus control culture medium
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enrichment analysis highlighted the functions of the 
upregulated DEGs in the upper subnetwork, encompass-
ing processes such as EMT, TNF-α signaling via NF-kB, 
the inflammatory response, apoptosis, TGF-beta signal-
ing, hypoxia, and angiogenesis (Fig. 2b). Considering the 
recognized role of EMT in fibrosis across various organs, 
we assessed the protein levels of E-cadherin and Vimen-
tin through western blot and immunofluorescence stain-
ing (Fig.  2f, g). These findings indicated a decrease in 
E-cadherin and an increase in Vimentin, confirming the 
occurrence of EMT in HMrSV5 cells subjected to high 
glucose treatment.

Moreover, the CytoHubba results revealed 20 genes 
that were consistently predicted to be hub genes by mul-
tiple methods, including FGF2, SPP1, HIF-1α, VEGFA, 
TGF-β1, EGF, and CD44 (Fig.  2c, d, e). KEGG enrich-
ment analysis indicated that these hub genes were par-
tially involved in ECM-receptor interactions, the HIF-1α 
signaling pathway, and some cancer-related pathways 
(Fig.  2d). Additionally, enrichment analysis of the hall-
mark gene sets revealed that these hub genes were 
enriched mainly in the pathways related to apoptosis, 
TGF-beta signaling, epithelial–mesenchymal transition, 
and hypoxia (Fig. 2e). In summary, network-based analy-
ses emphasized the significance of upregulated genes, 
including key hub genes, in the response of HMrSV5 cells 
to high-glucose treatment. The potential involvement of 
histone regulation and the enrichment of diverse biologi-
cal processes shed light on the intricate molecular inter-
actions underlying high glucose-induced fibrosis and 
EMT in HMrSV5 cells.

Genome‑wide changes in chromatin accessibility and their 
links to the transcriptome
Chromosome accessible regions function as cis-DNA 
elements for the binding of TFs and associated proteins. 
The dynamic regulation of chromosome accessibility is 
of paramount importance in the precise control of gene 
expression [33]. To investigate the regulatory effect of 
high glucose treatment on HMrSV5 cells, we utilized 
ATAC-seq to profile chromosome accessibility in both 
control and high glucose-treated samples.

Hierarchical clustering of the ATAC-seq profiles 
revealed that the two replicates of control and high glu-
cose-treated HMrSV5 cells were closely correlated within 
their respective groups, indicating good repeatability and 
reliability of our ATAC-seq data (Fig. 3a). Upon genome-
wide analysis, we did not observe any significant over-
all increase or decrease in chromosome accessibility at 
the genomic scale (Fig.  3b). Further examination of the 
ATAC-seq peaks demonstrated that approximately half 
of these peaks were located near transcript start sites 
(TSSs), also known as the proximal region, in both the 

control and high glucose-treated samples (Fig. 3c, d). The 
results demonstrated that the ATAC-seq signal in the 
proximal region was significantly and positively corre-
lated with the expression of the nearest genes (Additional 
file  2: Fig. S2a). Additionally, we observed prominent 
enrichment of ATAC-seq signals at regions approxi-
mately 1.5 kb surrounding the TSS, with a notably lower 
signal intensity directly occurring at the TSS (Fig.  3e). 
This observation suggested the potential binding of tran-
scription factors at the TSS, which could be involved in 
the regulation of gene expression.

To further explore the dynamics of chromosome acces-
sibility resulting from high glucose treatment, we con-
ducted a difference analysis to identify altered ATAC-seq 
peaks. Our analysis revealed 714 hypo-peaks (lower 
ATAC-seq signal in high glucose-treated HMrSV5 than 
in the control sample) and 942 hyperpeaks (higher 
ATAC-seq signal in high glucose-treated HMrSV5 than 
in the control sample) (Fig. 4a, b; Additional file 6: Sup-
plementary table 2).

Interestingly, the hypo-peaks and hyperpeaks exhibited 
distinct distribution patterns. Approximately half of the 
hypo-peaks were located in the proximal region (within 
2  kb surrounding the transcription start site), whereas 
only a quarter of the hyperpeaks were found in this 
region (Fig. 4c).

To investigate the relationship between chromosome 
accessibility and gene expression, we annotated the 
altered peaks to the closest genes when they were located 
in the proximal region or linked the peaks beyond the 
proximal region to their target genes using the GREAT 
tool (http://​great.​stanf​ord.​edu/​public/​html/, Additional 
file  7: Supplementary table  3). We observed a positive 
correlation between the fold change in the ATAC-seq 
peak and the fold change in the expression of the dif-
ferentially expressed genes (DEGs) (Additional file  3: 
Fig. S3a, b). Additionally, hypo- or hyperpeaks located 
beyond the proximal region (distal region) were associ-
ated with reduced or increased expression, respectively 
(Additional file 3: Fig. S3b). Our comprehensive analysis 
revealed that approximately 398 downregulated genes 
were predominantly linked to hypo ATAC-seq peaks 
in both the proximal and distal regions (Fig.  4d). Simi-
larly, 566 upregulated genes were annotated to hyper 
ATAC-seq peaks in both the proximal and distal regions 
(Fig. 4e). These findings suggest that alterations in chro-
mosome accessibility play a role in the dysregulation of 
specific genes.

Furthermore, we focused on the upregulated genes 
linked to hyper ATAC-seq peaks, as they were more 
prominent among the main alterations observed in 
response to high-glucose treatment (Fig.  2). Hallmark 
gene set enrichment analysis demonstrated that these 

http://great.stanford.edu/public/html/
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genes were mainly associated with TNF-α signaling via 
NFKB, EMT, KRAS signaling, the inflammatory response, 
and apoptosis (Fig.  4f ). These gene sets were consistent 
with our previous RNA-seq analysis (Fig.  1c), further 
validating the hypothesis that alterations in chromosome 

accessibility are major epigenetic factors contributing to 
gene dysregulation in high glucose-induced pathologi-
cal changes in HMrSV5 cells. As examples of such genes, 
we presented SNAI2, TGF-β1, HIF-1α, FGF2, VEGFA, 
and VEGFC as examples of chromosome accessibility 

Fig. 3  Chromosome accessibility profile of HMrSV5 under different conditions. a Hierarchical clustering of ATAC-seq signals from the indicated 
samples. b Correlation analysis of ATAC-seq signals between the high glucose treatment group and the control group. Each dot represents one 
ATAC-seq peak. The values were normalized using the following formula: R/L × 10e9, where R represents the raw read count located in the peak 
and L represents the total read count of the ATAC-seq library. c, d Genomic distribution of ATAC-seq peaks in control HMrSV5 cells (c) and high 
glucose–treated HMrSV5 cells (d). ATAC-seq signals surrounding transcript start sites (TSSs)
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change-associated dysregulated genes (Fig.  4g, h, Addi-
tional file 3: Fig. S4a–d).

Identification of HIF‑1α as a key transcription factor 
regulating epithelial–mesenchymal transition and its role 
in high glucose‑mediated regulation of TGF‑β1
To identify potential key transcription factors associ-
ated with high glucose-treated HMrSV5 cells, we per-
formed an integrated analysis of RNA-seq and ATAC-seq 
data using the ANANSE tool, which utilizes ATAC-seq 
data and/or H3K27ac data, along with RNA-related dif-
ferentially expressed genes (DEGs), to predict key TFs. 
The analysis revealed 36 TFs, including HIF-1α, PRX3, 
TGIF1, ARNTL, and XBP1, which were predicted to 
play important roles in high glucose-treated HPMCs 
compared to those in the control treatment (Fig.  5a, 
Additional file  8: Supplementary table  4). Of particular 
interest, HIF-1α was the top candidate gene, and its asso-
ciation with high glucose-induced fibrosis in HMrSV5 
cells has not been well documented, prompting us to 
further investigate its role. Next, we examined the over-
lap between the predicted HIF-1α target genes and the 
DEGs, revealing approximately 154 genes preferentially 
targeted by HIF-1α, the majority (150) of which were 
upregulated (Fig.  5b, Additional file  9: Supplementary 
table 5). Hallmark gene set enrichment analysis indicated 
that these 150 upregulated genes were enriched mainly in 
the TNF-α signaling pathway via NFKB, EMT, the inflam-
matory response, hypoxia, glycolysis, apoptosis, angio-
genesis, and DNA repair (Fig.  5c). Notably, since EMT 
was identified as a significant pathological symptom 
induced by high glucose-containing peritoneal dialysis in 
HMrSV5 cells and since TGF-β1 was reported to be the 
main factor responsible for this EMT process, we further 
investigated the intersection of these 150 HIF-1α  target 
genes with genes involved in the TGF-beta pathway and 
EMT-associated genes (Fig. 5d, e). Our analysis revealed 
that HIF-1α  regulates TGF-β1 and SERPINE1 in the 
TGF-beta pathway, as well as 23 other genes, including 
TGF-β1, CXCL8, CXCL6, SNAI2, VEGFA, and VEGFC, 
which are associated with EMT.

To validate the regulatory effect of HIF-1α on TGF-
β1, we established HIF-1α-overexpressing HMrSV5 cells 
and control HMrSV5 cells through lentivirus transduc-
tion. We treated these cells with culture medium con-
taining a high concentration of glucose or ordinary 
culture medium for 5  days and collected the cells at 
regular intervals for mRNA detection. In the ordinary 
culture medium, there was no significant difference 
in TGF-β1 expression between the control and HIF-
1α-overexpressing cells. However, under high-glucose 
conditions, HIF-1α-overexpressing cells exhibited sig-
nificantly greater expression of TGF-β1 on day 1, day 3, 

day 4, and day 5 (Fig. 5f ). Moreover, the dual-luciferase 
activity assay corroborated the enhancement of TGF-
β1 transcriptional activity by HIF-1α in a high glucose-
dependent manner (Fig. 5g). Consistently, this regulatory 
mechanism was confirmed by ELISA (Fig. 5h).

We also investigated the correlation between HIF-1α 
and TGF-β1 expression using data from both the CCLE 
database and the GTEx database [34]. In general, 
HIF-1α and TGF-β1 were not significantly associated 
with each other (P = 0.594) according to the CCLE data-
base. However, upon closer examination, we observed 
a significant positive correlation between the expres-
sion of these genes in cells cultured in DMEM (R = 0.25, 
P = 0.0005, 4.5  g/L glucose) but not in cells cultured 
in RPMI medium (R = 0.08, P = 0.06, 2.05  g/L glucose) 
(Fig.  6a). Furthermore, we detected a stronger correla-
tion between HIF-1α and TGF-β1 in tissues with higher 
glucose demand, such as the brain, liver, and heart, than 
in tissues with lower glucose demand, including the skin, 
adipose tissue, bladder, and esophagus (Fig. 6b, c). More-
over, in the GSE125498 dataset, comprising 33 peritoneal 
cell samples derived from peritoneal dialysis patients, we 
observed a positive correlation between the hallmarks 
of hypoxia, the TGF-beta signaling pathway, and EMT 
(Fig. 6d). Additionally, we discovered a positive correla-
tion between the expression of HIF-1α and the expres-
sion of genes in the TGF-beta signaling pathway (Fig. 6e). 
These results further support our finding that HIF-1α-
mediated regulation of TGF-β1 is influenced by high 
glucose levels and suggest that HIF-1α  can enhance the 
stimulatory effect of high glucose on TGF-β1.

Drug discovery for peritoneal fibrosis and molecular 
docking of drugs with proteins
In the pursuit of identifying potential drugs for PF treat-
ment, we conducted CMap analysis (Fig. 7a). The CMap 
database (connectivity map, https://​clue.​io) is a valu-
able resource for revealing the functional relationships 
among genes, drugs, and diseases. The dataset includes 
expression data from cultured human cells treated with 
diverse small molecules, including FDA-approved drugs 
and experimental compounds. CMap allows research-
ers to compare gene expression profiles across various 
experiments, aiding in the identification of drugs with 
similar or opposing effects on gene expression. This, in 
turn, facilitates the discovery of new therapeutic appli-
cations for existing drugs or the potential identifica-
tion of side effects. Leveraging the three methods with 
Cytohubba in Cytoscape, we identified 151 commonly 
upregulated hub genes and 141 commonly downregu-
lated genes, which were employed as inputs for CMap 
analysis on the website (Fig. 7b). We identified 73 drugs 
with negative connectivity scores (Additional file  10: 

https://clue.io
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Supplementary table  6), indicating potential efficacy 
in reversing PF triggered by high glucose. Notably, the 
top three pathways associated with these drugs were the 
EGFR pathway, RAF pathway, and Src pathway (Fig. 7c). 

Additionally, five drugs, WZ4002, lapatinib, PD98059, 
AS605240, and PP1, had negative scores in more than 
two tested cell lines. Finally, we validated the interactions 
of WZ4002 with EGFR, lapatinib with ERBB2, PD98059 

Fig. 5  Integrated prediction and analysis of key TFs involved in high-glucose treatment. a Key TFs predicted through integrated analysis 
of ATAC-seq and RNA-seq data using ANANSE in high glucose–treated HMrSV5 cells versus controls. b The overlap of HIF-1α candidate target genes 
with differentially expressed genes in the indicated groups. c Hallmark gene set enrichment of HIF-1α target overexpressed genes in the high 
glucose-treated group. d, e HIF-1α candidate target genes in the hallmark gene sets of TGF-beta signaling (d) and epithelial–mesenchymal 
transition (EMT) (e). f Overexpression of HIF-1α exacerbates the high glucose-induced increase in TGF-β1 mRNA expression in HMrSV5 cells. ns, 
not significant; *P < 0.05; **P < 0.01; ***P < 0.001. P values were calculated by Student’s t test. g Overexpression of HIF-1α exacerbates the high 
glucose-induced increase in the transcription of the TGF-β1 promoter in HMrSV5 cells, as determined by dual luciferase reporter assays. h 
Quantitative assessment of TGF-β1 in the cell culture medium using ELISA
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Fig. 6  Correlations between HIF-1α and TGF-β1 in model cells and human tissues. a mRNA expression correlation between HIF-1α and TGF-β1 
in the CCLE database. Left: all cells. Right: Subgroups of cells cultured in low-glucose culture medium or high-glucose culture medium. (https://​
sites.​broad​insti​tute.​org/​ccle/). b Overview of the correlation between HIF-1α and TGF-β1 mRNA expression in tissues with higher glucose demand 
or lower glucose demand. The data were sourced from the GTEx database. (https://​www.​gtexp​ortal.​org/). c Correlations of HIF-1α and TGF-β1 
expression in various tissues: the esophagus, adipose tissue, skin, brain, heart, and liver. d The correlation analysis between the indicated gene sets 
in GSE125498. e Positive correlation between HIF-1α and TGF-beta pathway in GSE125498

https://sites.broadinstitute.org/ccle/
https://sites.broadinstitute.org/ccle/
https://www.gtexportal.org/
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with MAPK1, AS605240 with PIK3CG, and PP1 with 
RCT (Fig. 7d) with molecular docking analysis.

Discussion
An increasing number of studies have provided evidence 
that high glucose levels play a pivotal role in driving peri-
toneal fibrosis. However, despite the involvement of sev-
eral molecules in this process being previously reported 
[35–39], our understanding of the precise transcriptome 
alterations and the involvement of chromatin accessibil-
ity in the transcriptional regulatory networks triggered 
by high glucose concentrations is limited. Further investi-
gations are warranted to comprehensively elucidate these 
mechanisms and improve our understanding of high glu-
cose-induced peritoneal fibrosis.

In the present study, through an analysis of differen-
tial mRNA expression, we identified several upregu-
lated genes associated with peritoneal fibrosis, including 
TWIST1, TWIST2, ZEB1, ZEB2, SNAI1, and SNAI2. 
Twist reportedly contributes to peritoneal fibrosis dur-
ing PD treatment by regulating YB-1 [40]. Additionally, 
ZEB2, known for preserving liver angioarchitecture and 
protecting against liver fibrosis [41], may also play a role 
in peritoneal fibrosis.

Furthermore, our hub gene analysis and network analy-
sis identified several critical hub genes, including HIF-1α, 
VEGFA, TGF-β1, FGF2, EGF, and MMP9. Previous stud-
ies have suggested the importance of fibroblast growth 
factor (FGF) in human peritoneal mesothelial cells cul-
tured in high glucose medium, indicating its potential 
significance in the initiation of peritoneal fibrosis and 
the possible efficacy of glucocorticoids in preventing 
such fibrosis in peritoneal dialysis patients [42]. Moreo-
ver, VEGF has been linked to angiogenesis, increased 
endothelial permeability, and angiogenesis induction 
[43]. EGF has been reported to induce a morphological 
change toward a fibroblastic phenotype [44], and EGFR 
has been associated with tissue fibrosis in various organs, 
including the liver, lung, and kidney [45–47].

Moreover, we found that these hub genes are involved 
in the HIF-1α signaling pathway, the IL6-JAK-STAT3 
signaling pathway, hypoxia, the TGF-beta pathway, and 
EMT. This finding is consistent with previous studies 
showing that the HG/STAT3/HIF-1α signaling pathway 
may play an important role in the pathogenesis of peri-
toneal fibrosis induced by high glucose-based dialysis 
fluid [48]. Additionally, IL-6 has been reported to pro-
mote EMT in HPMCs possibly through the JAK/STAT3 
signaling pathway [49]. Interestingly, we also observed 
the upregulation of multiple histone-associated genes, 
warranting further inquiry to elucidate the intricate role 
of histone regulation in the initiation of high glucose-
induced peritoneal fibrosis.

The use of Tn5 transposase-based ATAC-seq offers 
several advantages, including increased speed, the abil-
ity to work with low input cell numbers, and improved 
repeatability when compared to those of FAIRE-seq 
and DNase-seq. By employing ATAC-seq, we reliably 
detected changes in chromosome accessibility during 
high glucose treatment in HPMCs. Our observations 
revealed significant alterations in the accessibility of 
numerous chromosome regions, with a distinct pattern 
characterized by hyperpeaks primarily located in distal 
regions. These findings suggest that long-range regula-
tion by enhancers may play a crucial role in the upregula-
tion of the majority of genes. For instance, the elevation 
of many genes, such as TGF-β1, SNAI2, and HIF-1α, 
was associated with hyper ATAC-seq peaks surround-
ing these genes. Previous studies have reported that Snail 
contributes to pancreatic tumor development by promot-
ing fibrotic reactions through the increased TGF-beta 
pathway [50]. Additionally, overexpression of TGF-β1 
via a viral vector induces the expression of genes associ-
ated with peritoneal fibrosis and EMT [51]. Furthermore, 
HIF-1 is a heterodimeric protein composed of HIF-1α 
and HIF-1β subunits that activate the transcription of 
many genes encoding proteins involved in angiogen-
esis, extracellular matrix remodeling, migration, inva-
sion, and metastasis [52]. As anticipated, the identified 
chromosome accessibility-associated genes are largely in 
line with the alterations observed in the transcriptome, 
suggesting that chromosome accessibility alterations 
predominantly play a role in the modification of genes 
induced by high glucose. Open chromatin regions func-
tion as crucial cis-regulatory elements, facilitating the 
binding of transcription factors. Therefore, our findings 
offer valuable insights for advancing the understanding of 
the regulatory mechanisms governing these genes.

Open chromatin regions play crucial roles as cis-reg-
ulatory elements by facilitating the binding of transcrip-
tion factors. Through the integration of chromosome 
accessibility and RNA-seq data, we identified several key 
transcription factors involved in the regulation of gene 
changes triggered by high glucose, including SMAD3, 
PBX3, ARNTL, and E2F4. ARNTL2 knockdown report-
edly suppressed EMT activity, as evidenced by reduced 
expression of N-cadherin and Vimentin and increased 
expression of E-cadherin [53]. In addition, the Snail-
Smad3/TGF-beta signaling pathway synergistically aug-
ments EMT and migration in hepatocellular carcinoma 
(HCC) [54].

Furthermore, we made an intriguing observation that 
HIF-1α appears to potentially regulate TGF-β1 in a high 
glucose-dependent manner, a finding that we subse-
quently validated through our experiments and dataset 
exploration. Although several mechanisms have been 
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elucidated in previous research, such as PKC mediating 
the high glucose-induced upregulation of TGF-β1 and 
fibronectin synthesis by HPMC, leading to the progres-
sive accumulation of extracellular matrix and eventual 
peritoneal fibrosis [55], and Ang II-induced TGF-β1 
and fibronectin expression in HPMC being mediated by 
NADPH oxidase-dependent ROS [56], our study presents 
the first report of HIF-1α promoting TGF-β1 mRNA 
levels, promoter transcription activity and protein levels 
under specific conditions. These results contribute to a 
deeper understanding of the intricate regulatory mecha-
nisms involved in high glucose-triggered gene changes 
and their implications for peritoneal fibrosis develop-
ment. Several drugs have been found to have the function 
of inhibiting HIF-1α activity, including 2-Methoxyestra-
diol, Bendazol, PX-478, etc. Bendazol is an antihyper-
tensive drug that can enhance NO synthase activity in 
glomeruli and collecting tubules. Bendazol can inhibit 
the development of form-deprivation myopia (FDM) 
and the upregulation of HIF-1α. PX-478 2HCl is an 
orally active selective HIF-1α inhibitor. PX-478 2HCl can 
induce apoptosis and has anti-tumor activity [57]. How-
ever, the role of these drugs in the treatment of peritoneal 
fibrosis remains to be further verified, and it is expected 
to be helpful for clinical treatment.

There are several limitations in our research that war-
rant acknowledgment. First, it is important to note that 
our study was exclusively conducted using a model cell 
line (HMrSV5). There are not enough samples from 
patients, and insufficient data have not been collected 
at present. To validate our findings, additional clinical 
samples need to be collected for further analysis. Sec-
ond, additional research is necessary to fully comprehend 
the intricate mechanisms by which HIF-1α promotes the 
level of TGF-β1 under high-glucose stimulation.

Conclusions
Our study provides a comprehensive overview of the 
changes in the transcriptome and chromosome accessi-
bility in HPMCs stimulated with high glucose. Notably, 
we observed a strong correlation between alterations in 
chromosome accessibility and gene expression, highlight-
ing the pivotal role of these alterations in the pathologi-
cal changes induced by high glucose. Most importantly, 
we have identified crucial transcription factors par-
ticipating in this process and demonstrated the regula-
tion of TGF-β1 by HIF-1α in a high glucose depended 
manner.  We also explored pharmaceutical compounds 
that exhibit potential therapeutic efficacy against peri-
toneal fibrosis. Overall, our findings contribute to an 
enhanced understanding of the regulatory mechanisms 
underlying HPMC pathology changes triggered by high 

glucose and offer potential targets for future therapeutic 
interventions.
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Additional file 1: Fig. S1. Gene Ontology enrichment analysis and RNA 
expression analysis of key transcription factors associated EMT and dys-
regulated extracellular cytokines. a GO enrichment of dysregulated genes. 
Up/Down: upregulated or downregulated genes in high glucose–treated 
HMrSV5 cells. b, c RNA expression of well-known key EMT-associated 
TFs (b) or dysregulated EMT-promoting external cytokines (c). ns, not 
significant; *P<0.05; **P<0.01; ***P<0.001. P values were calculated by 
Student’s t test.

Additional file 2: Fig S2. The ATAC-seq signal in the proximal region posi-
tively correlated with the annotated gene expression. a The correlation 
between the ATAC-seq signal and the expression of the nearest genes. The 
correlation score was calculated by Spearman correlation analysis.

Additional file 3: Fig S3. Alterations in ATAC-seq signals positively cor-
relate with gene dysregulation. a The correlation between the fold change 
in ATAC signals and the fold change in annotated DEGs (only genes with a 
fold change >=2 were considered). b Gene expression of hyper or hypo-
ATAC-seq peak-annotated genes between the control and high-glucose 
treatment groups (p values were calculated by Student’s t test).

Additional file 4: Fig S4. Hyper ATAC-seq signals were detected at the 
HIF-1α, FGF2, VEGFA, and VEGFC loci. a ATAC-seq signals at the indicated 
gene loci (left) and the RNA expression of the associated gene (right).

Additional file 5: Supplementary table 1.

Additional file 6: Supplementary table 2.

Additional file 7: Supplementary table 3.

Additional file 8: Supplementary table 4.

Additional file 9: Supplementary table 5.

Additional file 10: Supplementary table 6.

https://doi.org/10.1186/s12967-024-05037-6
https://doi.org/10.1186/s12967-024-05037-6


Page 17 of 18Song et al. Journal of Translational Medicine          (2024) 22:243 	

Acknowledgements
We would like to express our gratitude to Professor Guoshuang Xu for his 
invaluable assistance in preparing the manuscript.

Author contributions
SZ, GBT, and QS conceived and designed the study. QS, PBW, and HW partici-
pated in the data processing and bioinformatic analyses. ZY and WW were 
responsible for the validation of the analyses. QS and GBT wrote the original 
draft of the manuscript. MJP and XJL performed the experimental validation.

Funding
This project was supported by the National Natural Science Foundation of 
China (Grant No. 61372151).

Availability of data and materials
The study’s findings are supported by the data available in the paper and 
its supplementary information file. Additionally, all sequencing data can be 
accessed through the Gene Expression Omnibus (GEO) accession number 
GSE2251221. For any other relevant data not available in the paper or GEO, 
interested parties can request access from the corresponding authors, who 
are subject to reasonable conditions.

Declarations

Ethics approval and consent to participate
The data used in this study were ethically approved, and informed consent 
was obtained from the participants in the original research.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Nephrology, Shaanxi Second People’s Hospital, Xi’an, Shaanxi, 
People’s Republic of China. 2 Department of Nephrology, The First Hospital 
of Lanzhou University, Lanzhou, Gansu, People’s Republic of China. 3 Key Labo-
ratory of Biomedical Information Engineering of Ministry of Education, School 
of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, 
People’s Republic of China. 4 Department of Emergency, Xijing Hospital, The 
Fourth Military Medical University of People’s Liberation Army, Xi’an, Shaanxi, 
People’s Republic of China. 5 School of Automation Science and Engineering, 
Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, 
Xi’an, Shaanxi, People’s Republic of China. 6 Department of Clinical Medicine, 
Xi’an Medical University, Xi’an, Shaanxi, People’s Republic of China. 

Received: 12 September 2023   Accepted: 24 February 2024

References
	1.	 Teitelbaum I. Peritoneal dialysis. N Engl J Med. 2021;385:1786–95.
	2.	 Cho Y, Johnson DW. Peritoneal dialysis-related peritonitis: towards 

improving evidence, practices, and outcomes. Am J Kidney Dis. 
2014;64:278–89.

	3.	 Balzer MS. Molecular pathways in peritoneal fibrosis. Cell Signal. 2020;75: 
109778.

	4.	 Kaneko K, Hamada C, Tomino Y. Peritoneal fibrosis intervention. Perit Dial 
Int. 2007;27:82–6.

	5.	 Taheri S, Thiagaraj SS, Shukla TS, Gutlapalli SD, Farhat H, Muthiah K, Pal-
lipamu N, Hamid P. A review on major pathways leading to peritoneal 
fibrosis in patients receiving continuous peritoneal dialysis. Cureus. 
2022;14: e31799.

	6.	 Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for 
assaying chromatin accessibility genome-wide. Current Protocol Mol Biol. 
2015;109:21–21.

	7.	 Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, Silva TC, 
Groeneveld C, Wong CK, Cho SW. The chromatin accessibility landscape 
of primary human cancers. Science. 1898;2018:362.

	8.	 Wang D, Diao H, Getzler AJ, Rogal W, Frederick MA, Milner J, Yu B, Crotty 
S, Goldrath AW, Pipkin ME. The transcription factor Runx3 establishes 
chromatin accessibility of cis-regulatory landscapes that drive memory 
cytotoxic T lymphocyte formation. Immunity. 2018;48(659–674): e656.

	9.	 Xie H, Zhang W, Zhang M, Akhtar T, Li Y, Yi W, Sun X, Zuo Z, Wei M, 
Fang X. Chromatin accessibility analysis reveals regulatory dynamics of 
developing human retina and hiPSC-derived retinal organoids. Sci Adv. 
2020;6:5247.

	10.	 Wang X, Yan J, Shen B, Wei G. Integrated chromatin accessibility and 
transcriptome landscapes of doxorubicin-resistant breast cancer cells. 
Front Cell Dev Biol. 2021;9: 708066.

	11.	 Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for 
assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 
2015;109:21–9.

	12.	 Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome 
alignment and genotyping with HISAT2 and HISAT-genotype. Nat Bio-
technol. 2019;37:907–15.

	13.	 Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. 
StringTie enables improved reconstruction of a transcriptome from RNA-
seq reads. Nat Biotechnol. 2015;33:290–5.

	14.	 Love MI, Huber W, Anders S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

	15.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illu-
mina sequence data. Bioinformatics. 2014;30:2114–20.

	16.	 Langdon WB. Performance of genetic programming optimised Bowtie2 
on genome comparison and analytic testing (GCAT) benchmarks. Bio-
Data mining. 2015;8:1–7.

	17.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abe-
casis G, Durbin R. The sequence alignment/map format and SAMtools. 
Bioinformatics. 2009;25:2078–9.

	18.	 Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, 
Nusbaum C, Myers RM, Brown M, Li W, Liu XS. Model-based analysis of 
ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

	19.	 Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics. 2010;26:841–2.

	20.	 Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, 
Brown GD, Gojis O, Ellis IO, Green AR. Differential oestrogen receptor 
binding is associated with clinical outcome in breast cancer. Nature. 
2012;481:389–93.

	21.	 McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, 
Bejerano G. GREAT improves functional interpretation of cis-regulatory 
regions. Nat Biotechnol. 2010;28:495–501.

	22.	 Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flex-
ible platform for exploring deep-sequencing data. Nucleic Acids Res. 
2014;42:W187–91.

	23.	 Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer 
(IGV): high-performance genomics data visualization and exploration. 
Brief Bioinform. 2013;14:178–92.

	24.	 Xu Q, Georgiou G, Frölich S, van der Sande M, Veenstra GJC, Zhou H, 
van Heeringen SJ. ANANSE: an enhancer network-based computational 
approach for predicting key transcription factors in cell fate determina-
tion. Nucl Acids Res. 2021;49:7966–85.

	25.	 Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, 
Benner C, Chanda SK. Metascape provides a biologist-oriented resource 
for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

	26.	 Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He 
S, Shoemaker BA, et al. PubChem substance and compound databases. 
Nucleic Acids Res. 2016;44:D1202-1213.

	27.	 O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison 
GR. Open babel: an open chemical toolbox. J Cheminform. 2011;3:33.

	28.	 Xu Y, Qin L, Sun T, Wu H, He T, Yang Z, Mo Q, Liao L, Xu J. Twist1 promotes 
breast cancer invasion and metastasis by silencing Foxa1 expression. 
Oncogene. 2017;36:1157–66.

	29.	 Whiteman EL, Liu CJ, Fearon ER, Margolis B. The transcription factor snail 
represses Crumbs3 expression and disrupts apico-basal polarity com-
plexes. Oncogene. 2008;27:3875–9.

	30.	 Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Miku-
lits W, Brabletz T, Strand D, Obrist P, et al. The transcription factor ZEB1 



Page 18 of 18Song et al. Journal of Translational Medicine          (2024) 22:243 

(deltaEF1) promotes tumour cell dedifferentiation by repressing master 
regulators of epithelial polarity. Oncogene. 2007;26:6979–88.

	31.	 Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D’Alessio 
AC, Young RA, Weinberg RA. Poised chromatin at the ZEB1 promoter 
enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 
2013;154:61–74.

	32.	 Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, Wani 
NA, Rizwan A, Bagga P, Singh M, et al. Cytokine-chemokine network 
driven metastasis in esophageal cancer; promising avenue for targeted 
therapy. Mol Cancer. 2021;20:2.

	33.	 Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition 
of native chromatin for fast and sensitive epigenomic profiling of open 
chromatin, DNA-binding proteins and nucleosome position. Nat Meth-
ods. 2013;10:1213–8.

	34.	 Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim 
S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, et al. The cancer cell line 
Encyclopedia enables predictive modelling of anticancer drug sensitivity. 
Nature. 2012;483:603–7.

	35.	 Ma YL, Chen F, Yang SX, Chen BP, Shi J. MicroRNA-21 promotes the 
progression of peritoneal fibrosis through the activation of the TGF-β/
Smad signaling pathway: an in vitro and in vivo study. Int J Mol Med. 
2018;41:1030–8.

	36.	 Balzer MS, Rong S, Nordlohne J, Zemtsovski JD, Schmidt S, Stapel B, 
Bartosova M, von Vietinghoff S, Haller H, Schmitt CP, Shushakova N. SGLT2 
inhibition by intraperitoneal dapagliflozin mitigates peritoneal fibrosis 
and ultrafiltration failure in a mouse model of chronic peritoneal expo-
sure to high-glucose dialysate. Biomolecules. 2020;10:1046.

	37.	 Liu J, Feng Y, Sun C, Zhu W, Zhang QY, Jin B, Shao QY, Xia YY, Xu PF, Zhang 
M, Jiang CM. Valsartan ameliorates high glucose-induced peritoneal 
fibrosis by blocking mTORC1 signaling. Exp Biol Med. 2020;245:983–93.

	38.	 Che M, Shi T, Feng S, Li H, Zhang X, Feng N, Lou W, Dou J, Tang G, Huang 
C, et al. The microRNA-199a/214 cluster targets E-Cadherin and claudin-2 
and promotes high glucose-induced peritoneal fibrosis. J Am Soc Neph-
rol. 2017;28:2459–71.

	39.	 Zhang Y, Xiao WH, Huang YX, Yang YY, Ouyang SX, Liang YM, Liu KH. miR-
128-3p inhibits high-glucose-induced peritoneal mesothelial cells fibrosis 
via PAK2/SyK/TGF-β1 axis. Ther Apher Dial. 2023;27:343–52.

	40.	 He L, Che M, Hu J, Li S, Jia Z, Lou W, Li C, Yang J, Sun S, Wang H, Chen X. 
Twist contributes to proliferation and epithelial-to-mesenchymal transi-
tion-induced fibrosis by regulating YB-1 in human peritoneal mesothelial 
cells. Am J Pathol. 2015;185:2181–93.

	41.	 de Haan W, Dheedene W, Apelt K, Décombas-Deschamps S, Vinckier S, 
Verhulst S, Conidi A, Deffieux T, Staring MW, Vandervoort P, et al. Endothe-
lial Zeb2 preserves the hepatic angioarchitecture and protects against 
liver fibrosis. Cardiovasc Res. 2022;118:1262–75.

	42.	 Ogata S, Yorioka N, Kohno N. Glucose and prednisolone alter basic 
fibroblast growth factor expression in peritoneal mesothelial cells and 
fibroblasts. J Am Soc Nephrol. 2001;12:2787–96.

	43.	 Aroeira LS, Aguilera A, Selgas R, Ramírez-Huesca M, Pérez-Lozano ML, 
Cirugeda A, Bajo MA, del Peso G, Sánchez-Tomero JA, Jiménez-Heffernan 
JA, López-Cabrera M. Mesenchymal conversion of mesothelial cells as 
a mechanism responsible for high solute transport rate in peritoneal 
dialysis: role of vascular endothelial growth factor. Am J Kidney Dis. 
2005;46:938–48.

	44.	 Leavesley DI, Stanley JM, Faull RJ. Epidermal growth factor modifies 
the expression and function of extracellular matrix adhesion receptors 
expressed by peritoneal mesothelial cells from patients on CAPD. Neph-
rol Dial Transplant. 1999;14:1208–16.

	45.	 Fuchs BC, Hoshida Y, Fujii T, Wei L, Yamada S, Lauwers GY, McGinn CM, 
DePeralta DK, Chen X, Kuroda T, et al. Epidermal growth factor receptor 
inhibition attenuates liver fibrosis and development of hepatocellular 
carcinoma. Hepatology. 2014;59:1577–90.

	46.	 Vallath S, Hynds RE, Succony L, Janes SM, Giangreco A. Targeting EGFR 
signalling in chronic lung disease: therapeutic challenges and opportuni-
ties. Eur Respir J. 2014;44:513–22.

	47.	 Liu N, Guo JK, Pang M, Tolbert E, Ponnusamy M, Gong R, Bayliss G, Dwor-
kin LD, Yan H, Zhuang S. Genetic or pharmacologic blockade of EGFR 
inhibits renal fibrosis. J Am Soc Nephrol. 2012;23:854–67.

	48.	 Yang X, Bao M, Fang Y, Yu X, Ji J, Ding X. STAT3/HIF-1α signaling activa-
tion mediates peritoneal fibrosis induced by high glucose. J Transl Med. 
2021;19:283.

	49.	 Xiao J, Gong Y, Chen Y, Yu D, Wang X, Zhang X, Dou Y, Liu D, Cheng G, Lu 
S, et al. IL-6 promotes epithelial-to-mesenchymal transition of human 
peritoneal mesothelial cells possibly through the JAK2/STAT3 signaling 
pathway. Am J Physiol Renal Physiol. 2017;313:F310-f318.

	50.	 Shields MA, Ebine K, Sahai V, Kumar K, Siddiqui K, Hwang RF, Grippo PJ, 
Munshi HG. Snail cooperates with KrasG12D to promote pancreatic 
fibrosis. Mol Cancer Res. 2013;11:1078–87.

	51.	 Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, 
Kelly MM. Transient overexpression of TGF-{beta}1 induces epithelial 
mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol. 
2005;16:425–36.

	52.	 Schito L, Semenza GL. Hypoxia-inducible factors: master regulators of 
cancer progression. Trends Cancer. 2016;2:758–70.

	53.	 Lu M, Huang L, Tang Y, Sun T, Li J, Xiao S, Zheng X, Christopher O, Mao 
H. ARNTL2 knockdown suppressed the invasion and migration of colon 
carcinoma: decreased SMOC2-EMT expression through inactivation of 
PI3K/AKT pathway. Am J Transl Res. 2020;12:1293–308.

	54.	 Wang B, Liu T, Wu JC, Luo SZ, Chen R, Lu LG, Xu MY. STAT3 aggravates TGF-
β1-induced hepatic epithelial-to-mesenchymal transition and migration. 
Biomed Pharmacother. 2018;98:214–21.

	55.	 Ha H, Yu MR, Lee HB. High glucose-induced PKC activation mediates TGF-
beta 1 and fibronectin synthesis by peritoneal mesothelial cells. Kidney 
Int. 2001;59:463–70.

	56.	 Noh H, Ha H, Yu MR, Kim YO, Kim JH, Lee HB. Angiotensin II mediates 
high glucose-induced TGF-beta1 and fibronectin upregulation in HPMC 
through reactive oxygen species. Perit Dial Int. 2005;25:38–47.

	57.	 Wartewig T, Daniels J, Schulz M, Hameister E, Joshi A, Park J, Mor-
rish E, Venkatasubramani AV, Cernilogar FM, van Heijster FHA, et al. 
PD-1 instructs a tumor-suppressive metabolic program that restricts 
glycolysis and restrains AP-1 activity in T cell lymphoma. Nat Cancer. 
2023;4:1508–25.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Integrative analysis of chromatin accessibility and transcriptome landscapes in the induction of peritoneal fibrosis by high glucose
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Cell culture
	Western blot
	Immunofluorescence staining
	Construction of the HIF-1α overexpression plasmid
	Lentivirus production and transduction
	Luciferase activity assay
	ELISA
	RNA-seq
	ATAC-seq
	RNA-Seq data analysis
	Data analysis and visualization of ATAC-seq data
	Prediction of key TFs
	GO and KEGG enrichment analysis
	Connectivity map (CMap) analysis
	Molecular docking
	Statistical analysis

	Results
	Transcriptome alterations associated with high glucose treatment in HMrSV5 cells.
	Network-based analysis revealed hub genes and enriched biological processes in high glucose–treated HMrSV5 cells
	Genome-wide changes in chromatin accessibility and their links to the transcriptome
	Identification of HIF-1α as a key transcription factor regulating epithelial–mesenchymal transition and its role in high glucose-mediated regulation of TGF-β1
	Drug discovery for peritoneal fibrosis and molecular docking of drugs with proteins

	Discussion
	Conclusions
	Acknowledgements
	References


