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Abstract 

Background  Intratumoral bacteria might play essential roles in tumorigenesis in different cancer types. However, its 
features and potential roles in hepatocellular carcinoma (HCC) are largely unknown.

Methods  In this study, we assessed bacterial RNA by 16S rRNA fluorescence in situ hybridization and detected bacte-
rial lipopolysaccharide (LPS) via immunohistochemistry. Hepa1-6 cells were used to establish orthotopic HCC models 
in mice. 2bRAD sequencing for microbiome was performed to determine the intratumoral bacterial characteristics, 
and liquid chromatography-mass spectrometry was conducted to explore the metabolic profile. The potential asso-
ciation between different intratumoral microbiota and metabolites were evaluated.

Results  We detected bacterial 16S rRNA and LPS in HCC tissues from the patients with HCC. In HCC mouse model, 
we found that the intratumor bacteria in HCC tissues were significantly different to adjacent nontumor tissues. 
Furthermore, we observed different metabolites in HCC tissues and adjacent nontumor tissues, such as N-acetyl-D-
glucosamine and a-lactose. Our results showed that several bacteria were significantly associated with metabolites, 
such as Pseudomonas koreensis, which was positively correlated with N-acetyl-D-glucosamine and negatively corre-
lated with citrulline.

Conclusions  This study confirmed the close association between different bacteria and metabolites, which might 
provide novel opportunities for developing new biomarkers and therapeutic targets for HCC.
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Background
Primary liver cancer is the fourth leading cause of can-
cer-related mortality worldwide, of which hepatocellu-
lar carcinoma (HCC) accounts for 80–90% [1, 2]. About 
800,000 people worldwide die each year from HCC [3], 
which is often caused by viral hepatitis B or C, persistent 
alcohol abuse and nonalcoholic fatty liver disease. Given 
the global increase in obesity and type 2 diabetes, meta-
bolic syndrome-related nonalcoholic fatty liver disease 
has become an increasingly risk factor for HCC [4, 5]. 
As the early symptoms and features of HCC are not typi-
cal, more than 80% of patients with HCC cannot receive 
curative treatment [6]. Therefore, the early diagnosis and 
treatment of HCC still require further exploration.

Previous studies have found that approximately 15% of 
cancers are attributable to microbial infections [7]. The 
intestinal microbiome is the most common factor domi-
nating tumor initiation, development, and therapeutic 
efficacy [8–11]. Over the years, accumulating evidence 
has proved that polymorphic intratumoral microbiomes 
enable cancer hallmark capabilities and have been rec-
ognized as emerging mechanisms of tumorigenesis and 
progression [12–14]. Various tumors, including HCC, 
were once considered sterile tissues. However, advances 
in sequencing technology have led to the identification 
and characterization of the microbial composition in 
tumor tissues. The classical technologies of 16S rRNA, 
18S rRNA and whole genome assessments have been 
extensively applied to obtain the taxonomic profile of 
the microbiome. A new method, 2bRAD sequencing 
for microbiome (2bRAD-M), overcomes the challenge 
of low microbial biomass or severe DNA degradation 
in the detected samples [15]. 2bRAD-M uses the type 
IIB restriction enzyme to perform qualitative and rela-
tive quantitative microbial analysis of the unique tags 
obtained after enzymatic digestion of the microbial 
genome. This method allows for the accurate generation 
of species-level taxonomic signatures for low microbial 
biomasses in tumor tissues and normal tissues [16, 17].

Microbial metabolism is the essential characteristic 
and function of microbes, and most of their effects on 
the host are related to microbial metabolism. Previous 
researches have extensively explored the relationship 
between gut microbiota and metabolism through multi-
omics integration analysis [18–20], but clinical data on 
intratumoral bacteria and the relationship between the 
intratumoral microbiome and metabolome have not been 
widely studied.

Unlike gut microbiomes, tumor tissues are often of 
low biomass, and therefore we assessed bacterial 16S 
rRNA using the fluorescence in situ hybridization (FISH) 
method to verify the presence of bacteria in tumor 
and normal tissues of HCC patients. In addition, we 

constructed a mouse liver cancer model in situ and ana-
lyzed the intratumoral microbial community (2bRAD-M, 
n = 24) and metabolome (LC–MS, n = 24) from tumor 
tissues and normal liver tissues obtained from the HCC 
mouse model. The characterization of tumor microbiome 
and metabolome might provide new opportunities for 
developing novel biomarkers and therapeutic targets.

Materials and methods
Histology analysis
A total of 3 pairs of HCC tissues and adjacent normal 
tissues were collected from the First Affiliated Hospital, 
Zhejiang University School of Medicine. The study was 
conducted in accordance with the Declaration of Hel-
sinki, and was approved by the Ethics Committee of the 
First Affiliated Hospital, Zhejiang University School of 
Medicine (No. IIT20210168B-R1).

HCC tissues and adjacent liver tissues from HCC 
patients were paraffin-embedded and sectioned at a 
40 µm thickness. Hematoxylin and eosin (H&E) stained 
the cytoplasm and nucleus with contrasting colors to 
identify cellular components. For immunohistochemistry 
(IHC) staining, HCC sections were dewaxed with xylene 
and hydrated with absolute ethanol. The tissue sections 
were immersed in citric acid antigen retrieval buffer. 
Then, the samples were heated for 8 min to boiling, taken 
off the heat for 8 min, and then returned to a medium–
low heat for 7  min. The slices were washed 3 times in 
phosphate buffer solution (PBS) (pH 7.4) with shaking 
on a decolorizing shaker for 5 min each time. Then, the 
tissue sections were immersed in 0.3% H2O2-methanol 
for 25 min, washed with PBS, and probed with the anti-
Salmonella typhimurium lipopolysaccharide (LPS) anti-
body  (Abcam, Cambridge, UK) and a rabbit polyclonal 
anti-Ki67 antibody (Abcam, Cambridge, UK) at 4  °C 
overnight. On the second day, the slices were washed 
with PBS, and horseradish peroxidase-conjugated goat 
anti-rabbit secondary antibody was added and incu-
bated at room temperature for 1  h. Liver sections were 
scanned with panoramic MIDI (3DHISTECH, Budapest, 
Hungary).

16S rRNA fluorescence in situ hybridization (FISH)
FISH was performed to detect bacteria in HCC tis-
sues. The probe used was the universal 16S rRNA probe 
EUB338 (5’-CY3-GCT​GCC​TCC​CGT​AGG​AGT​-3’), 
which is used to specifically bind to bacterial 16S rRNA. 
After precipitating the probes, sample slides were pro-
cessed with prehybridization, hybridization, and post-
hybridization washes and DNA counterstaining, and the 
procedure was performed according to published studies 
[13, 21].
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Cell culture
The murine HCC cell line Hepa1-6 was obtained from 
American Type Culture Collection (ATCC, USA). 
Hepa1-6 cells were cultured in high glucose Dulbecco’s 
modified Eagle’s medium (Sigma-Aldrich, USA) sup-
plemented with 10% fetal bovine serum (Sigma-Aldrich, 
USA) and 1% penicillin- streptomycin (Thermo Fisher 
Scientific, USA). Prior to experiments, cells were main-
tained in an incubator at 37 °C in a 5% CO2 atmosphere.

Orthotopic HCC mouse model
The animal experiment was approved by the Animal 
Experimental Ethics Committee of The First Affiliated 
Hospital, Zhejiang University School of Medicine (pro-
ject number 20221072). Six-week-old WT C57BL/6  J 
male mice (n = 12) were obtained from the Experimental 
Animal Center of Zhejiang Academy of Medical Sciences. 
All animals were housed under specific pathogen-free 
conditions at a constant temperature (22 ± 2  °C) with a 
12-h daylight/darkness cycle, and they had free access to 
standard rodent feed and tap water until the end of the 
experiment.

After a week of adaptive feeding, the mice were anes-
thetized and placed on a laboratory table in the supine 
position. After disinfecting the abdomen of the mice, 
sterilized small forceps and ophthalmic scissors were 
used to open the mouse abdomen along the middle line 
of the abdomen to avoid unnecessary bleeding. The left 
lobe of the liver was removed using sterile swabs. A 
total of 3 × 105 Hepa1-6 cells in 10  µl Corning Matrigel 
(Matrigel:PBS = 1:4) were injected into the left lobe of 
the liver, which was then placed back into the abdominal 
cavity. The surgical site was sutured and disinfected with 
iodophor. Continuous monitoring and care were given to 
mice after surgery. After 2  weeks, the HCC tissues and 
paired adjacent liver tissues were harvested from mice for 
further analysis. During the processes of model construc-
tion, liver samples handling, transportation and sequenc-
ing, strict aseptic procedures were followed to eliminate 
potential bacterial contamination.

2bRAD sequencing for microbiome (2bRAD‑M)
2bRAD-M is a microbial diversity analysis technique 
based on 2b-RAD technology [22], which performs quali-
tative and relative quantitative analysis of microorgan-
isms by unique tags obtained after enzymatic cleavage 
of microbial genomes by type IIB restriction enzymes. A 
database containing unique tags of each microorganism 
(2b-Tag-DB) was used for qualitative analysis [15, 22]; 
that is, all microbial species that had unique tags were 

screened. The 2b-Tag-DB was established again for the 
quantitative microorganisms, and the relative quantita-
tive analysis was carried out; that is, the microbial spe-
cies obtained in the previous step were subsequently 
screened, and the abundance was estimated according to 
the distribution of unique tags.

Bioinformatics analysis of the microbiome
Microbial genomes were electronically cleaved using the 
BcgI restriction enzyme to extract raw reads. The clean 
reads for each sample were searched separately in the 
2bRAD-M database (http://​github.​com/​shihu​ang047/​
2bRAD-M) to obtain microbial annotation information 
for that sample. The clean reads of each sample were 
retrieved in the new database using a secondary library 
built using the genomes of the microorganisms that 
might be present, and the relative abundance of each 
microorganism in the sample was calculated using the 
special formula [15, 17]. Finally, the samples were anno-
tated and summarized at different classification levels, 
such as phylum, genus and species. The R package Vegan 
v2.5.7 was used to perform PCoA ordination.

Metabolomics analysis
Liquid chromatography-mass spectrometry (LC–MS) 
technology [23] was used in this nontargeted metabo-
lomics research [24, 25]. The experimental process 
mainly included metabolite extraction, LC–MS detection 
and data analysis. Samples were stored at −80  °C after 
collection until analysis. In brief, HCC tissues and liver 
tissues were mixed with 300 μL of precooled acetonitrile 
and 200 mg of ceramic beads. Next, the mix was homog-
enized and centrifuged (4 °C, 12,000 rpm) for 10 min. The 
supernatant was centrifuged (4  °C, 12 000 rpm, 10 min) 
again and then filtered using 0.22  μm syringe filters 
before analysis. The QExactiveTM HF mass spectrom-
eter was operated in positive and negative polarity mode 
with a spray voltage of 3.5 kV, sheath gas flow rate of 35 
psi, capillary temp of 320  °C, and aux gas flow rate of  
10 L/min [26, 27].

Bioinformatics analysis of metabolomics
The raw data were first analyzed using Compound Dis-
coverer 3.1 (CD3.1) software. The peaks were simply 
screened, and were aligned according to retention time 
deviation and mass deviation for different samples to 
make the identification more accurate. Subsequently, all 
the peaks were extracted based on the set ppm, signal-
to-noise ratio (S/N), additive ions and other information, 
and the peak area was quantified. Then, spectroscopic 

http://github.com/shihuang047/2bRAD-M
http://github.com/shihuang047/2bRAD-M
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processing and database retrieval were conducted to 
obtain qualitative and quantitative results of metabolites 
by comparing high-resolution secondary spectral data-
bases mz Cloud and mz Vault and Mass List primary 
database retrieval, and then quality control was car-
ried out on the data to ensure the accuracy and reliabil-
ity of data results. Next, the metabolites were subjected 
to principal component analysis (PCA) and partial least 
squares discriminant analysis (PLS-DA). Hierarchical 
clustering (HCA) and metabolite correlation analysis 
were used to reveal the relationships between samples 
and metabolites. The KEGG database was used to iden-
tify potential biological pathways [28].

Statistical analysis
Statistical analyses were performed using SPSS (ver-
sion 26) and the R  software (version 4.0). Comparisons 
between two groups were calculated by Student’s t test. 
In addition, spearman correlation analysis was used to 
calculate the relationship between two groups based on 
relative abundance. P < 0.05 was considered statistically 
significant.

Results
Bacterial RNA and lipopolysaccharide (LPS) are present 
in tumor tissues of HCC patients
Due to the low biomass of tumor microbiome, verifying 
the presence of bacteria in tumor samples is challenging. 
In order to characterize and visualize intratumor bacte-
ria, we performed 16S rRNA fluorescence in situ hybridi-
zation (FISH) detection and bacterial outer membrane 
LPS immunohistochemical (IHC) staining on 3 pairs 
of human HCC tissues and paracancer normal tissues. 
H&E staining (Fig.  1A) and proliferative marker Ki67 
IHC staining (Fig.  1B) suggested abnormal proliferation 
of tumor cells in HCC patients. Compared with nor-
mal liver tissue, the expression of Ki67 was significantly 
higher in the nucleus of HCC, indicating that HCC cells 
were highly malignant. In addition, the bacterial LPS 
expression was low in normal liver tissue, weakly posi-
tive (+ , light brown particles) in the cytoplasm of hepa-
tocellular carcinoma cells, and strongly positive (+ +  + , 
dark brown particles) in the edge of complete necrosis 
area of tumor tissue (Fig.  1C). Bacterial 16S rRNA was 
detected in HCC tissues by FISH (Fig.  1D). The result 

Fig. 1  Bacterial components exist in cancer tissues and peritumoral normal tissues of HCC patients. Representative images of the liver tissue 
and HCC tissue with A H&E staining, B Ki67 immunohistochemistry staining, C LPS immunohistochemistry staining. Images taken at 10 × and 
40 × magnification, respectively. D Representative confocal micrographs of 16S rRNA FISH in human liver tissue and HCC tissue. Cellular nuclei are 
labeled in blue, and bacteria in red. Images taken at 40 × magnification. Scale bars = 20 μm
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demonstrated the presence of bacteria inside HCC tissue, 
and the discrepancy in bacteria between HCC tissues and 
normal liver might be associated with HCC cell growth.

Differences in microbial diversity between HCC tissues 
and normal liver tissues in mouse models
We performed 2bRAD-M to compare the microbial com-
munity differences between HCC tissue and normal liver 

tissue from mouse models. Microbial alpha diversity 
estimated by Chao1 index was significantly increased 
in HCC tissues compared with normal liver tissues 
(P = 0.0046) (Fig.  2A). The β-diversity was determined 
by principal coordinates analysis (PCoA) of unweighted 
UniFrac PC1-3 to describe the microbiome space 
of different samples. Based on Bray–Curtis distance 
(P = 0.001), it showed that the microbial communities in 

Fig. 2  Microbial diversity of HCC tissues and normal liver tissues in mice. A Microbial alpha diversity estimated by Chao1 index was significantly 
increased in HCC tissues compared with normal liver tissues. B Beta diversity was calculated using PCoA based on Bray–Curtis distance (p = 0.001), 
respectively. It indicated distinctly different microbiota compositions between HCC and normal liver tissues. C Composition of microbiota at phylum 
level in HCC tissues versus normal liver tissues. Comparison of microbiota at the D phylum, E genus, and F species levels between groups. PCoA 
principal coordinates analysis
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HCC tissues and normal liver tissues were notably sepa-
rated in the direction of the PC1 axis, which represented 
that the overall microbial communities were prominently 
different between HCC tissues and normal liver tissues 
(Fig. 2B).

Microbial communities’ structure between HCC tissues 
and normal liver tissues in mouse models
The microbial communities’ structure of each sam-
ple at phylum, genus, and species levels were presented 
in Additional file  1: Figure S1. At the phylum level, a 
total of 11 and 10 phyla were identified in the HCC tis-
sues and normal liver tissues, respectively. Overall, Fir-
micutes was the dominant phylum in the tumor group 
(39.59%), followed by Proteobacteria (24.91%) and Bac-
teroidetes (14.00%), while Proteobacteria was the major 
phylum in the normal liver group (58.66%), followed by 
Firmicutes (19.70%) and Bacteroidetes (6.77%) (Fig.  2C) 
(Additional file 1: Table S1). The main bacterial genus in 
the HCC tissue group was Lactobacillus (14.42%), fol-
lowed by Mycoplasma (9.44%) and Escherichia (8.87%). 
In the normal liver group, the primary genera were Pseu-
domonas (46.05%), Streptococcus (8.94%), and Mucispiril-
lum (6.50%) (Additional file  1: Fig. S2A) (Additional 
file  1: Table  S2). At the species level, Mycoplasma_sp_
HU2014, Escherichia coli, and Allobacillus sp SKP4-8 

were the top 3 most abundant taxa in the tumor group, 
and Pseudomonas koreensis, Streptococcus mutans, and 
Mucispirillum schaedleri were the richest taxa in the nor-
mal group (Additional file 1: Fig. S2B) (Additional file 1: 
Table S3).

Differential abundances in bacterial taxa between HCC 
tissues and normal liver in mice
Statistical analysis was carried out at the levels of phylum, 
genus and species, which showed significant differences 
in the abundance of dominant bacterial taxa between 
the two groups. Compared to normal liver tissues, phy-
lum Firmicutes was markedly increased (P < 0.05), while 
Proteobacteria was decreased in HCC tissues (P < 0.05, 
Fig. 2D). At the genus level, 8 genera, including Helico-
bacter, Muribaculum, and Cutibacterium were remark-
able increased, while 2 genera, Pseudomonas and 
Sphingomonas were decreased in HCC tissues versus 
normal liver tissues (all P < 0.05, Fig. 2E). At the species 
level, Pseudomonas koreensis and Ralstonia sp UNC-
404CL21Col showed the most obvious significant differ-
ences in the two groups (Fig. 2F).

Additionally, to discover high-dimensional biomarkers, 
Linear discriminant analysis (LDA) Effect Size (LEfSe) 
and LDA score was applied to compare bacterial taxa 
of the two groups. A cladogram representative of the 

Fig. 3  The specific characterization of microbiota between two groups based on LEfSe and LDA analysis. A Cladogram generated by the LEfSe 
represents the taxonomic hierarchical structure of the identified microbial populations. Red nodes and green nodes represent relatively high 
abundance of species with significant difference in tumor and normal group, respectively. Yellow nodes indicate that there was no significant 
difference in the comparison of species in the two groups. B The histogram of LDA scores showed g significant difference in microbe type 
and abundance between tumor and normal group. LEfSe linear discriminant analysis effect size, LDA linear discriminant analysis
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phylogenetic distribution and their predominant bacte-
ria showed great difference in taxa between HCC tissues 
and normal liver tissues (Fig.  3A). LDA score displayed 
the prominent bacteria difference between two groups, 
which showed that Pseudomonas was the most featured 
taxa in the normal liver group and Firmicutes was the 
most characteristic taxa in the tumor group (Fig. 3A, B).

Analysis of the functional differences of microbial genes 
between the HCC tissues and normal tissues of mice
To explore the difference in microbial gene function, 
we used Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Clusters of Orthologous Groups of proteins 
(COG) functional analysis to determine the top 10 bio-
logical pathways and protein differences. In HCC tissues, 
the microbial gene’s functions were markedly enriched 
in basal transcription factors, followed by flavone and 
flavonol biosynthesis and autophagy yeast (Fig.  4A, B). 
Through COG analysis, we found that several COG pro-
teins were different between the two groups. For example, 
the level of COG0395 (ABC-type glycerol-3-phosphate 

transport) in HCC tissues was obviously higher than 
in normal liver tissues (Fig.  4C, D). Collectively, all the 
results revealed significant differences in microbial taxa 
between cancerous and adjacent tissues, suggesting 
HCC tissues and normal tissues have different microbial 
environments.

Metabolites associated with HCC‑related microbiota in HCC 
tissues and normal liver tissues from a mouse model
To better explore the role of intratumoral bacteria in 
metabolic homeostasis, we used LC–MS to identify the 
protein components in HCC tissues and normal liver 
tissues in a mouse model. Principal component analysis 
(PCA) and partial least squares discrimination analysis 
(PLS-DA) methods were applied to observe the overall 
distribution trend of metabolites, which exhibited note-
worthy differences between the two groups (Fig. 5A, B). 
The model was verified by sevenfold cross-validation 
and 200 response permutation tests. Variable impor-
tance in the projection (VIP) of the PLS-DA model was 
applied to analyze differentially abundant metabolites, 

Fig. 4  Microbial gene functional enrichment analysis between the two groups. A Boxplot of KEGG functional analysis. B The clustering heatmap 
of KEGG analysis. C Boxplot of COG analysis. D Clustering heatmap of COG analysis
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and the reliability of the model is shown in Fig.  5C. As 
shown in Fig. 5D, the number of total significant metab-
olites was 258, and 170 significantly upregulated and 
downregulated 88 metabolites were selected. The top 20 
upregulated and downregulated metabolites are shown in 
Fig. 5E.

The top 2 upregulated and downregulated metabo-
lites between the two groups, as shown in Fig.  6A, B, 
were 13Z, 16Z-docosadienoic acid and docosatrienoic 
acid, which were upregulated in HCC tissues compared 
with normal liver tissues. N-{4-Methyl-3-[(2-toluidino-
carbothioyl)amino]phenyl}methanesulf-onamide and 
ethyl 3-cyano-6-methyl-2-(phenylthio)isonicotinate 

were the top 2 downregulated metabolites. To further 
explore the differences in metabolic patterns of metab-
olites between HCC tissues and normal liver tissues, we 
performed cluster analysis of differential metabolites. 
In negative ionization mode, the different metabolites 
were clustered, as shown in Fig. 6C. In positive ioniza-
tion mode, the different metabolites were clustered, as 
shown in Fig. 6D.

Correlation analysis of differential metabolites
We analyzed correlations of differential metabolites 
between HCC tissues and normal liver tissues, with 
red representing positive correlations and blue dots 

Fig. 5  Comparison of the metabolome between HCC tissues and normal tissues. A Overall distribution trends of samples between the two groups 
by principal component analysis (PCA) and partial least squares discrimination analysis (PLS-DA). B Different colored points represent samples 
from different experimental groups, and ellipses represent 95% confidence intervals. C PLS-DA model validation based on sevenfold cross-validation 
and 200 permutation tests. D The overall distribution of differential metabolites. E Matchstick plots among differential metabolites
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representing negative correlations. We found that many 
metabolites were related with each other; for example, 
D-(-)-glutamine was significantly positively associated 
with DL-glutamine, α-lactose, and 1-nitrosopyrroli-
dine (Additional file  1: Fig. S3A), and 13Z,16Z-doco-
sadienoic acid and docosatrienoic acid were negatively 
correlated with ethyl3-cyano-6-methyl-2-(phenylthio)
isonicotinate and positively correlated with L-palmitoy-
camitine (Additional file 1: Fig. S3B). To clearly demon-
strate the association among metabolites, we drew spin 
diagrams based on the correlation coefficient among 
the top 20 different metabolites in positive/negative 
ionization mode (Additional file 1: Fig. S3C, D).

Functional enrichment analysis of differential metabolites
We performed KEGG pathway analyses to further under-
stand the biochemical metabolic pathways and signal 
transduction pathways that the differential metabolites 
were enriched in. Based on positive and negative ioni-
zation modes, we found that the differential metabolites 

were mainly involved in biosynthesis of amino acids, argi-
nine and proline metabolism, purine metabolism, pyrim-
idine metabolism, biosynthesis of unsaturated fatty acids, 
fatty acid biosynthesis, and 2-oxocarboxylic acid metabo-
lism (Fig. 7A, B). Biosynthesis of unsaturated fatty acids 
and biosynthesis of amino acids were common pathways 
at the level of positive and negative charges. Further-
more, 4 differential metabolites were selected at the level 
of positive charge: pantothenate, methylmalonate, cyto-
sine and cis-4-hydroxy-D-proline. At the level of negative 
charge, a pathway known as glycosylphosphatidylinosi-
tol (GPI)-anchor biosynthesis—Mus musculus (house 
mouse) and 5 differential metabolites (ethanolamine 
phosphate, L-citrulline, IDP, riboflavin and L-palmitoyl-
carnitine) were identified (Fig. 7C, D).

Correlation analysis between differential metabolites 
and intratumoral bacteria
Based on the possible sources of top 20 differential 
metabolites, we classified them into two categories: 

Fig. 6  The different metabolites between HCC tissues and normal liver tissues. A–B Boxplot of four differential metabolites. C–D Heatmap 
visualizing metabolites between tumor and normal tissues based on hierarchical clustering analysis
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Fig. 7  Functional enrichment analysis of differential metabolites. A–B KEGG enrichment bubble diagram based on positive and negative charges 
of different metabolites. C–D Diagram of the KEGG regulatory network based on positive and negative charges of different metabolites. E 
Correlation analysis between top 20 differential metabolites and the top 10 bacterial taxa
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metabolites probably derived from the host, and metab-
olites probably originating from both the host and 
microorganisms. Subsequently, spearman rank correla-
tion analysis was performed to investigate the associa-
tion between the top 20 differential metabolites and the 
top 10 differential intratumoral bacteria (Fig.  7E). The 
results indicated that the bacteria Allobacillus sp SKP4 
8 and Ralstonia sp UNC404CL21Col showed significant 
positive correlations with most metabolites possibly orig-
inating from both the host and microorganisms, includ-
ing citrulline, cytidine 5’-monophosphate (hydrate), 
indole-3-lactic acid, 2’-O-methylguanosine, cytidine-
5’-monophosphate, L-( +)-Citrulline, cis-4-Hydroxy-
D-proline, and myristic Acid, while showed significant 
negative correlations with a-Lactose and N-acetyl-D-
glucosamine. However, the association trend of Pseu-
domonas koreensis and Pseudomonas psychrotolerans 
with metabolites was opposite to Allobacillus sp SKP4 
8 and Ralstonia sp UNC404CL21Col. Additionally, we 
found that downregulated microbes in HCC tissues were 
significantly positively correlated with some metabolites 
that were also decreased in HCC tissues. These results 
suggest that some microbes that are decreased in HCC 
tumor tissues might be protective microbes that are also 
involved in the synthetic and metabolic processes of 
some protective compound metabolites [29].

Discussion
With the development of intratumor microbiome 
assessment techniques, more and more intratumor 
microbiome characteristics have been identified in dif-
ferent types of tumors [8, 30, 31]. In 2020, Nejman et al. 
detected intratumoral bacteria in seven cancer types and 
indicated the presence of intratumor bacteria in tumors 
and immune cells. In addition, the intratumor bacteria 
were significantly different among the cancer types [13]. 
Similar to these results, a negative relationship between 
the intratumoral bacterial load and lymphocyte infiltra-
tion was observed in nasopharyngeal carcinoma. Fur-
thermore, the intratumoral bacterial load was associated 
with the survival rate, including disease-free survival, 
overall survival and distant metastasis-free survival [32]. 
A recent study showed that intratumor bacteria could 
markedly inhibit lung metastasis in a breast tumor mouse 
model [33]. Taken together, intratumor bacteria could 
play essential roles in tumor initiation and development, 
and the potential function and targeted therapy for intra-
tumor bacteria is worth exploring.

Increasing evidence showed that the intratumoral 
microbiota could play essential roles in HCC progres-
sion. Xue et  al. assessed the characteristics of bacte-
ria in 47 paired HCC and liver tissues using 16S rRNA 
sequencing and explored the potential association among 

differentially expressed genes and metabolites [14]. Based 
on the analysis of normal liver, peritumoral, and HCC 
tissue samples, the features of diversity, structure, and 
abundance were described, and a prognostic prediction 
model was built in the HCC cohort [12]. In this study, we 
adopted 2bRAD-M and LC–MS tools to determine the 
potential association between the intratumoral micro-
biota and metabolites in mice. Our findings showed that 
the intratumoral microbiota and metabolites were evi-
dently different in HCC and paired nontumor tissues. 
To sum up, the features of the intratumoral microbiota 
might represent potential strategies for HCC diagnosis 
and treatment, and the intratumoral microbiota could 
provide clues for therapeutic decision-making in HCC.

Studies have shown significant differences between 
cancer and normal tissues, including between genes, 
metabolites, and RNA methyladenosine [34–37]. Our 
research classified the Top20 differential metabolites 
based on their potential sources into two categories: 
probably derived from the host, and probably derived 
from both the host and microorganism. Furthermore, 
we evaluated the relationship between the tumor micro-
biota and metabolites in a liver cancer mouse model. 
The results indicated a significant positive correlation 
between the metabolites D-( −)-Glutamine and DL-
Glutamine, probably derived from the host, and Pseu-
domonas koreensis and Pseudomonas psychrotolerans. 
It suggests that the microbiota may indirectly influence 
the abundance of metabolites by affecting the host’s 
metabolic status. In recent years, the role of glutamine 
metabolism imbalance in the pathogenesis of HCC has 
been increasingly emphasized [37, 38]. Functionally, 
decreased GOT2 expression has been found to promote 
glutaminolysis through glutamine metabolism and con-
tribute to HCC progression [38]. In addition, Wei et  al. 
found that HMGB1 regulated glutamine metabolism in 
HCC cell through dual mechanisms. On the one hand, 
HMGB1 could promote glutamine synthetase expression 
via the mTORC2-AKT-C-MYC pathway. On the other 
hand, HMGB1 could inhibit glutamate dehydrogenase by 
inducing the mTORC1 pathway to down-regulate SIRT4 
[39]. These findings highlight the importance of studying 
tumor metabolism as biomarkers for HCC diagnosis and 
prognosis prediction.

Accumulated evidence suggests that there is a close 
relationship between intratumoral bacteria and metabo-
lite [40, 41]. Microbiota derived metabolites play a role 
in regulating the tumor microenvironment [42]. Citrul-
line, for example, is a metabolite that derived from both 
host and microbial sources [43, 44]. Citrulline is known 
to have two synthetic pathways that are primarily com-
pleted in the small intestine [45]. In our study, citrulline 
has strong correlation with muribaculaceae bacterium 
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isolate 102 HZI, Ralstonia sp UNC404CL21Col and 
Allobacillus sp SKP48, suggesting that these bacteria in 
tumors may be involved in the metabolic pathway of cit-
rulline in the liver. Although the evidence for the associa-
tion between the microbiota and metabolites is relatively 
weak, it provides some clues for us to further explore the 
specific function and mechanism of metabolites derived 
from intratumoral bacteria.

In conclusion, we utilized 2bRAD-M and LC–MS to 
describe the features of bacteria and metabolites in an 
HCC mouse model. Our findings might provide clues 
for further study of the potential function of bacteria and 
metabolites in tumor tissues.

Conclusion
The intratumoral microbial signature of the microbiome 
in HCC tissues and paired normal tissues was demon-
strated. The tumor microenvironment can be better 
understood by the correlation between microbial species 
and metabolites. Differential bacteria and its metabolites 
might be new biomarkers for prognosis and treatment of 
HCC patients.
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