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Abstract 

Background Oral inflammatory diseases are localized infectious diseases primarily caused by oral pathogens 
with the potential for serious systemic complications. However, publicly available datasets for these diseases are 
underutilized. To address this issue, a web tool called OralExplorer was developed. This tool integrates the available 
data and provides comprehensive online bioinformatic analysis.

Methods Human oral inflammatory disease-related datasets were obtained from the GEO database and normal-
ized using a standardized process. Transcriptome data were then subjected to differential gene expression analysis, 
immune infiltration analysis, correlation analysis, pathway enrichment analysis, and visualization. The single-cell 
sequencing data was visualized as cluster plot, feature plot, and heatmaps. The web platform was primarily built using 
Shiny. The biomarkers identified in OralExplorer were validated using local clinical samples through qPCR and IHC.

Results A total of 35 human oral inflammatory disease-related datasets, covering 6 main disease types and 901 sam-
ples, were included in the study to identify potential molecular signatures of the mechanisms of oral diseases. OralEx-
plorer consists of 5 main analysis modules (differential gene expression analysis, immune infiltration analysis, correla-
tion analysis, pathway enrichment analysis and single-cell analysis), with multiple visualization options. The platform 
offers a simple and intuitive interface, high-quality images for visualization, and detailed analysis results tables for easy 
access by users. Six markers (IL1β, SRGN, CXCR1, FGR, ARHGEF2, and PTAFR) were identified by OralExplorer. qPCR- 
and IHC-based experimental validation showed significantly higher levels of these genes in the periodontitis group.

Conclusions OralExplorer is a comprehensive analytical platform for oral inflammatory diseases. It allows users 
to interactively explore the molecular mechanisms underlying the action and regression of these diseases. It also aids 
dental researchers in unlocking the potential value of transcriptomics data related to oral diseases. OralExplorer can 
be accessed at https:// smuon co. shiny apps. io/ OralE xplor er/ (Alternate URL: http:// robinl- lab. com/ OralE xplor er).
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Background
Oral inflammatory diseases comprise infectious diseases 
affecting both the soft and hard tissues of the oral cav-
ity, including periodontitis, peri-implantitis, and caries. 
If left untreated, these diseases can lead to complica-
tions both in the maxillofacial and systematic area, such 
as cardiovascular diseases [1, 2], digestive diseases [3–6], 
diabetes [7], pulmonary diseases [8, 9], and neurological 
diseases [10–13]. Hence, early diagnosis and treatment 
of oral inflammatory diseases are vital for maintain-
ing both oral and general health. However, the precise 
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biological mechanisms underlying these diseases remain 
incompletely understood. To address this gap, research-
ers have turned to transcriptomics data, which allows 
a deeper exploration of the molecular-level biological 
mechanisms involved in oral inflammatory diseases. For 
instance, Song et  al. [14] successfully identified genes 
(CTSS, PLEK, IRF-8, PTGS2, and FOSB) that may con-
tribute to the development and progression of periodon-
titis through the analysis of transcriptome data from 
periodontitis samples as well as healthy samples. These 
findings offer new theoretical support for the diagnosis 
and prediction of periodontitis.

Although there are a wealth of oral disease-related 
datasets stored in publicly available databases, they are 
not sufficient to support the effective mining and utiliza-
tion of these resources. For instance, the Gene Expres-
sion Omnibus (GEO) database contains a great number 
of user-uploaded datasets, including oral disease samples 
and normal oral samples, that can be freely downloaded. 
However, the extraction and analysis of the data heavily 
depend on programming or software processing, which 
the GEO platform itself does not provide. As a result, 
dental researchers without a programming background 
often struggle with fully utilizing the available data due 
to the lack of suitable data analysis tools. To address this 
issue, zero-code web tools that support online data analy-
sis have emerged as a potential solution. In the oncology 
field, the TIMER web platform [15] is a typical example, 
offering a wide range of built-in datasets and the ability 
for users to upload their own data for comprehensive 
analyses of different cancer types and immune infiltration 
landscapes. Extensive research and analysis of publicly 
available datasets in the field of oral and maxillofacial 
diseases reveal a similar underutilization of data. There-
fore, the development of an integrated online analysis 
platform with a wide range of built-in oral inflammatory 
disease datasets would greatly benefit dental research-
ers, enabling them to fully explore existing data, identify 
molecular characteristics of diseases, and further inves-
tigate disease-related mechanisms. This platform would 
provide new insights for clinicians in diagnosing and 
treating oral diseases.

Based on this context, we developed OralExplorer, a 
web-based tool that specifically targets the exploration 
of inflammatory diseases in the oral cavity. The primary 
objective of OralExplorer is to retrieve comprehensive 
datasets pertaining to oral inflammatory diseases from 
large public databases and to subsequently preprocess 
the data. This web tool will also enable users to conduct 
a wide array of bioinformatics analyses through our dedi-
cated server. The primary purpose of OralExplorer is to 
facilitate the convenient mining of oral data resources, 
easy exploration of disease-related biomarkers, and 

provision of bioinformatics support for theoretical 
hypotheses about disease mechanisms.

Methods
Data collection
We conducted a search in the public GEO database for 
datasets pertaining to oral inflammatory diseases. As 
part of our screening process, we focused exclusively 
on datasets involving human subjects. We excluded any 
datasets that did not include a control group or lacked 
sufficient clinical information. Ultimately, we identified 
and included 35 datasets that were relevant to our study 
on oral inflammatory diseases (specifically periodontitis 
and peri-implantitis) (Additional file 1: Table S1). Addi-
tionally, we took the initiative to clean and integrate data 
from certain datasets that encompassed different stages 
of treatment for the same disease. These consolidated 
datasets were also incorporated into our research.

Data preprocessing and analysis
Bulk RNA-seq data for all 27 datasets and their cor-
responding clinical information were obtained using 
the GEOquery package [16]. The transcriptomic data 
included high-throughput sequencing and microarray 
data. We applied Fragments Per Kilobase of transcript 
per Million mapped reads (FPKM) conversion to data-
sets that only had raw sequencing count reads to obtain 
uniform processing. All expression profiling data were 
manually verified for precompleted normalization. For 
those datasets without normalization, we used the limma 
package [17]. Gene symbol conversion was performed 
using the AnnoProbe package [18] and manually cross-
checked. The eight single cell RNA-seq datasets were 
obtained from the GEO dataset website (https:// www. 
ncbi. nlm. nih. gov/ geo/). Seurat objects were then gen-
erated utilizing the Seurat package (version 4.4.0) [19]. 
Low-quality cells were eliminated by filtering out those 
with fewer than 200 or more than 2500 UMI counts and 
> 5% of mitochondrial genes. The resulting filtered data 
was used for subsequent analyses.

For the analysis of differential gene expression, we uti-
lized the limma package to identify genes that were dif-
ferentially expressed between the disease and normal 
groups. These differentially expressed genes were then 
ranked based on the magnitude of their log2FoldChange 
values. To visually represent the results of the gene dif-
ferential expression analysis, we employed the Enhanced-
Volcano package [20] to create a volcano plot and the 
ComplexHeatmap package [21] to generate a heatmap.

For the immune infiltration analysis, we focused on 
the analysis results obtained from various immune 
infiltration algorithms. To achieve this, we utilized the 
IOBR package [22], which integrates multiple immune 
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infiltration algorithms. The immune infiltration algo-
rithms supported by IOBR include TIMER [15], xCell 
[23], CIBERSORT [24], EPIC [25], quanTIseq [26], and 
MCP-counter [27]. Nonimmunologically relevant cells 
identified by these algorithms were excluded, leaving us 
with a total of 42 immune cell types for further analysis 
(Additional file  2: Table  S2). To compare the difference 
in immune infiltration between the disease and normal 
groups, we employed the Wilcoxon rank sum test. The 
visualization of the immune infiltration analysis involved 
the use of heatmaps, boxplots, and bubble plots. The 
implementation of these visualizations was performed 
with the ComplexHeatmap package, the ggpubr package 
[28], and the corrplot package [29].

For pathway enrichment analysis, Gene Set Enrichment 
Analysis (GSEA) and Single-sample Gene Set Enrichment 
Analysis (ssGSEA), were employed. Initially, a collection 
of 13,661 commonly used pathways from the Molecular 
Signatures Database (MSigDB) was obtained. This collec-
tion includes 50 hallmark pathways, 3050 C2 canonical 
pathways, and 10,561 C5 gene ontology pathways (Addi-
tional file 3: Table S3). The differential expression analysis 
results were subjected to GSEA using the clusterProfiler 
package [30]. The visualization of the results utilized the 
enrichplot package [31] and the GseaVis package [32]. 
Three types of visualization methods were used: dotplot, 
enrichmap, and enrichplot. ssGSEA was performed using 
the GSVA package [33]. The limma package was used 
to analyse the difference between the ssGSEA pathway 
enrichment scores of the disease groups and the control 
groups. Boxplots were generated using the ggpubr pack-
age, and heatmaps were plotted using the ComplexHeat-
map package.

In the correlation analysis, our focus was on the cor-
relations between different genes, between genes and 
immune infiltration, and between genes and pathways. 
We conducted a pairwise correlation study between dif-
ferent genes using two analysis algorithms: Spearman and 
Pearson. We utilized the ggplot2 package [34] to generate 
correlation scatterplots and the circlize package [35] to 
plot correlation scatter plots and multigene correlation 
chordal plots. Additionally, we calculated the correlation 
between gene expression levels and immune infiltration 
scores. We then visualized the results of their correla-
tion analyses using the ggplot2 package as a heatmap. To 
examine the correlation between genes and pathways, we 
conducted a correlation analysis between ssgsea scores 
and gene expression values calculated using the GSVA 
package. The results were then visualized as correlation 
heatmaps using the ggplot2 package.

In the single-cell analysis, each dataset underwent nor-
malization using the "NormalizeData" function, and the 
"vst" method was employed to identify the 2000 most 

variable features of each dataset through the "FindVari-
ableFeatures" function. Subsequently, the data was scaled 
to adjust for sequencing depth using "ScaleData," and 
Principal component analysis (PCA) was conducted to 
cluster the cells initially via the "RunPCA" method. The 
determination of the number of principal components 
was customized for different datasets using an Elbow-
Plot. Following this, a K-nearest-neighbors plot, based 
on Euclidean distances in PCA space and utilizing the 
aforementioned principal component parameters, was 
constructed using "FindNeighbors." Clustering was fur-
ther optimized by implementing the Louvain algorithm 
through the "FindClusters" function, which enhances 
the modularity of the dataset and combines cells based 
on global and local features. Subsequently, non-linear 
dimensionality reduction was performed using T-dis-
tributed Stochastic Neighbor Embedding (t-SNE) to 
facilitate dataset visualization and exploration. The "Fin-
dAllMarkers" function was then utilized to identify cell 
identity markers, with genes having a log-fold change 
threshold > 0.25 considered significant as differentially 
expressed genes (DEGs). Cell types were further anno-
tated manually based on DEGs within different cells. The 
functions mentioned above are derived from the Seurat 
package. Additionally, ssGSEA scores were calculated 
for each cell and cluster using the GSVA package. The 
ssGSEA scores encompass 186 KEGG pathways, 1615 
Reactome pathways, and 50 Hallmark pathways. The fea-
tures of genes and ssGSEA scores were visualized using 
the "FeaturePlot" function of the Seurat package. Further-
more, the heatmap of genes and ssGSEA scores within 
each cluster was generated using the ComplexHeatmap 
package.

Website development
The OralExplorer website was developed using R. The 
primary tool used for constructing the web interface 
and implementing interactive functionality was the 

Table 1 Primers of target genes

Details of the primers of target genes

Gene Forward (5′-3′) Reverse (5′-3′)

IL-1β TTC GAG GCA CAA GGC ACA A TGG CTG CTT CAG ACA CTT GAG 

CXCR1 CTG ACC CAG AAG CGT CAC 
TTG 

CCA GGA CCT CAT AGC AAA CTG 

PTAFR ATG GAG CCA CAT GAC TCC TC AAT GAC CCC GAG CAC AAA GAT 

SRGN ACT GAC CTT TTT CCA AAG 
ACGAG 

CTG ATC CAG AGT AGT CCT 
CAGAA 

FGR ACT ATG AGG CTC GAA CTG 
AGG 

TCA GCT TGG ATT GAG TCA ACAG 

ARHGEF2 CAG GCA TGA CCA TGT GCT ATG TTT ACA GCG GTT GTG GAT AGTC 
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Shiny package. OralExplorer aims to provide users with 
a user-friendly web interface that facilitates exploration 
of transcriptome biomarker analysis of oral disease data-
sets. The website comprises eight modules: Home, Input 
Data, Differential Gene, Immunoinfiltration, Correlation 
Analysis, Enrichment Analysis, Single-cell Analysis and 
Docs. We independently deployed OralExplorer on both 
the shinyapps.io platform (https:// smuon co. shiny apps. 
io/ OralE xplor er/) and our local server (http:// robinl- lab. 
com/ OralE xplor er) for free access.

Gingival tissue sample collection
From September 2022 to October 2022, we collected 
samples from six subjects with moderate to severe peri-
odontitis as well as six subjects with good periodontal 
health among patients treated at the Stomatological Hos-
pital, School of Stomatology, Southern Medical Univer-
sity. The study protocols were approved by the Ethics 
Committee of Stomatological Hospital of Southern Med-
ical University, and informed consent was obtained from 
all volunteers. Criteria for subject recruitment included 
the following: (i) voluntary completion of an informed 
consent form; (ii) diagnosis of vertical impaction by oral 
and maxillofacial surgery and recommendation for verti-
cal impaction aiding eruption; (iii) patients with gingival 

hyperplastic lesions, moderate/severe chronic periodon-
titis diagnosed by periodontology, and gingival hypertro-
phy, hyperplasia, or the presence of pseudo periodontal 
pockets that are not conducive to plaque control after 
basic periodontal treatment requiring periodontal sur-
gery; (iv) no sex restrictions; and (v) 18–50 years of age. 
The exclusion criteria were as follows: (i) the presence of 
underlying systemic diseases (e.g., heart disease, diabetes, 
hypertension, blood diseases) in patients who were una-
ble to tolerate the corresponding surgery; (ii) pregnancy 
in women; and (iii) taking antibacterial or anti-inflamma-
tory drugs in the past 3 months.

Quantitative real-time PCR (qPCR)
After sampling, gingival tissue samples were stored in ep 
tubes without RNase, placed in liquid nitrogen and pro-
cessed within 2 h. We extracted total RNA from gingival 
tissues using the TRIzol method (AG RNAex Pro RNA) 
according to the corresponding instructions, measured 
the concentration of the RNA precipitate after dissolv-
ing it in diethylcarbamoyl pyrocarbonate (DEPC) water, 
adjusted the mass of RNA for all samples to 1000 ng and 
reverse-transcribed the total RNA to cDNA in a quan-
titative polymerase chain reaction (qPCR) reaction sys-
tem (Roche LoghtCycler 96, Roche, China) to set up the 

Fig. 1 Overview of the data processing flow and analysis modules of OralExplorer. OralExplorer collects oral inflammatory disease data 
from the GEO database and performs subsequent analysis and web tool construction. OralExplorer consists of five major modules: differential gene 
expression analysis, immune infiltration analysis, correlation analysis, enrichment analysis and single-cell analysis. GEO: Gene Expression Omnibus

https://smuonco.shinyapps.io/OralExplorer/
https://smuonco.shinyapps.io/OralExplorer/
http://robinl-lab.com/OralExplorer
http://robinl-lab.com/OralExplorer
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qPCR reaction programme. The gene expression of IL1β, 
SRGN, CXCR1, FGR, ARHGEF2 and PTAFR was ana-
lysed by the 2 - ΔΔCt method using β-actin as a control. 
Details of the primers used are shown in Table 1.

Immunohistochemistry (IHC)
After the extraction of gingival tissues, samples were 
fixed using 4% paraformaldehyde (ES-8100, ECOTOP, 

Guangzhou, China) for 24  h. The fixed samples were 
then dehydrated, embedded in paraffin, and sectioned 
into 4-μm thick slices. Immunohistochemical staining 
was employed to determine the localization of IL-1beta, 
SRGN, CXCR1, and PTAFR expression. First, the tissue 
sections were subjected to heat-induced epitope anti-
gen retrieval in sodium citrate buffer (pH 6.0). Next, 
endogenous peroxidase activity was inactivated with 

Fig. 2 Differentially expressed gene analysis. A The results of gene variance analysis were visualized by volcano plots. The red points represent 
upregulated genes, the blue points represent downregulated genes, and the grey points represent genes that are not statistically significant. B 
Gene difference analysis results visualized by heatmap. The top of the heatmap shows the data groupings (healthy and diseased groups). The body 
of the heatmap displays the normalized gene expression values with squares of different colour gradients. Darker red colours represent higher gene 
expression values, and darker blue colours represent lower gene expression values. The right side of the heatmap shows the significance (p value) 
and fold change (Log2FoldChange) of the results of differential gene expression analysis. The calculation of p values and fold changes was based 
on the limma package
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3% H2O2, and the sections were treated with 5% goat 
serum at room temperature to prevent nonspecific pro-
tein binding. The sections were then incubated with 
primary antibodies, including anti-IL-1beta antibody 
(1:800, GB11113-100, Servicebio, Wuhan, China), anti-
SRGN antibody (1:100, A6951, ABclonal, Wuhan, China), 
anti-CXCR1 antibody (1:500, GB11625-100, Servicebio, 
Wuhan, China), and anti-PTAFR antibody (1:100, bs-
1478R, Bioss Antibodies, Beijing, China) for 12 h at 4 °C. 
Following incubation with primary antibodies, the sec-
tions were washed with PBS. Subsequently, the sections 
were incubated with a secondary antibody for 50 min at 
room temperature. Colour development was achieved by 
adding 3,3′-diaminobenzidine (DAB) substrate, and the 
sections were counterstained with haematoxylin for bet-
ter visualization.

All images of immunohistochemical results were 
obtained using a digital pathology scanner (Aperio 
VERSA) and analysed using ImageJ software. In brief, 
three immunohistochemical images of gingival tis-
sues were randomly selected from both the healthy and 
inflammatory groups. These images were used to iden-
tify the specific area where the epithelial layer intersects 
with the lamina propria. Additionally, three fields of 
view were randomly chosen to calculate the area. ImageJ 
software was employed to process the images, specifi-
cally for colour deconvolution of DAB and haematoxylin 
staining. The resulting brown channel images captured 
DAB staining, which was suitable for further analysis. To 
ensure consistency, a uniform measurement threshold 
was applied to all images. The area fraction was then cal-
culated by determining the ratio of the positively stained 
area to the area of the fixed rectangular box. Statistical 
analysis was carried out to assess the differences between 
the healthy and inflammatory groups.

Statistical analysis
Statistical analysis was performed in the R software 
environment. Boxplots were used to display the data, 
with the median indicated by the centerline and the 

interquartile spacing represented by the boxes on either 
side. Bivariate differences were assessed for statistical 
significance using the Wilcoxon rank sum test. Two-
sided tests were conducted to calculate p values, and 
values less than 0.05 were considered statistically sig-
nificant. Asterisks were used to indicate the level of sig-
nificance based on the following p values: *: p < 0.05, **: 
p < 0.01, ***: p < 0.001, ****: p < 0.0001.

Results
OralExplorer is a web-based tool designed for research 
on oral diseases (Fig. 1). It consists of five main analy-
sis function modules. These modules allow users to 
explore the results of differential gene expression analy-
sis, immunoinfiltration analysis, correlation analysis, 
pathway enrichment analysis and single-cell analysis. 
Users can also customize the parameters of the analysis 
methods to suit their specific needs. Additionally, the 
tool provides detailed analysis results and high-reso-
lution visualization images that can be easily accessed 
and downloaded for local use. The "Home" page offers a 
general overview of OralExplorer’s structure, accompa-
nied by sample visualizations of each analysis module. 
The "Docs" page provides contact information for the 
web developer as well as answers to frequently asked 
questions about using the website and its solutions.

Data summary
OralExplorer incorporates 35 datasets of human oral 
inflammatory diseases across 6 main oral disease types, 
including peri-implantitis, periodontitis, pulpitis, caries, 
temporomandibular joint osteoarthritis and gingivitis. 
These datasets consist of a total of 901 samples. The input 
data module provides a table summarizing information 
about each dataset, including disease type, species, sam-
ple size, and more. This table also includes an integrated 
summary and design overview of the dataset, making it 
easy to access detailed experimental information. Users 
can simply click on the hyperlinks within the table to 

Fig. 3 Immune infiltration analysis. A Heatmap of differences in immune infiltration between the disease and healthy groups. The top 
of the heatmap shows the data grouping (healthy and disease groups). The main body of the heatmap shows the normalized immune infiltration 
scores in squares with different colour gradients. Darker red indicates more infiltration of that immune cell, and darker blue indicates less infiltration 
of that immune cell. The significance (p value) and fold change (Log2FoldChange) values for the results of the immune infiltration difference 
analysis are shown on the right side of the heatmap. The calculation of p values and fold changes was based on the limma package. B Box 
plots of immune infiltration differences. Yellow and gray represent healthy and diseased groups, respectively. “*” indicates the statistical results 
for immune cell differences. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. C Scatterplot of the correlations between two immune cells. Rs 
and Ps represent Spearman’s correlation coefficients and p values, respectively. Rp and Pp represent Pearson’s correlation coefficients and p values, 
respectively. D Heatmap of the correlation between multiple immune cells, where the numbers in each grid are the corresponding correlation 
coefficients. Red represents a positive correlation, and blue represents a negative correlation. The darker the colour, the stronger the correlation

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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navigate to the corresponding GEO dataset webpage if 
they wish to explore a specific dataset further.

Differential gene expression analysis
For the results of differential gene expression analysis 
between disease group samples and normal group sam-
ples, two visualization options are provided to users: 
volcano plots and heatmaps (Fig. 2). The default signifi-
cance thresholds for differentially expressed genes are a 
p value less than 0.05 and an absolute log2Foldchange 
value greater than 1.5. By default, the results display 
10 gene names that are significantly upregulated and 
downregulated, which are annotated in the visualiza-
tion results. However, users have the flexibility to adjust 
the significance thresholds and gene name annotations 
according to their individual analysis and visualization 
needs. Additionally, users can review the complete dif-
ferential expression analysis results online on the table 
page or download and save the results locally. OralEx-
plorer serves as a valuable tool for researchers to obtain 
further support for their hypotheses. For instance, Yu 
[36] conducted protein blotting experiments, immuno-
histochemical analysis, and real-time qPCR on gingival 
tissues obtained from patients with periodontitis. The 
findings revealed that the expression levels of VNN1 and 
VNN2 were significantly upregulated in the periodontitis 
cohort. These observations align with the results of the 
differential expression analysis of GSE10334-Periodonti-
tis in OralExplorer, as shown in Fig. 2A, B.

Immune infiltration analysis
Immune cell composition and proportions play a signifi-
cant role in disease regression [37]. To characterize the 
composition and proportions of immune cells in oral 
diseases, we employed six advanced immune cell algo-
rithms: TIMER, xCell, CIBERSORT, EPIC, quanTIseq, 
and MCPcounter. We performed an analysis to iden-
tify differences in immune infiltration between various 
groups, and the outcomes were visualized in heatmaps 

or boxplots, as shown in Fig. 3A and B. Furthermore, in 
OralExplorer, users can explore the correlations between 
different immune cell infiltration profiles, including cor-
relations between two or more immune cells, as illus-
trated in Fig. 3C and D.

Correlation analysis
Genes, pathways, and cells exhibit interconnectedness 
and interact with each other. To delve deeper into these 
associations, we offer users the ability to conduct corre-
lation analyses involving genes, immune cells, and path-
ways. Users can conveniently search for specific disease 
types and gene sets that they are interested in, filter sub-
groups for inclusion in the samples, and select target 
genes, immune cells, or pathways. Our platform provides 
two correlation analysis algorithms (Spearman and Pear-
son) as well as various visualization options, such as scat-
terplots, chord plots, and heatmaps Fig. 4A–D.

Enrichment analysis
OralExplorer offers two commonly used pathway enrich-
ment algorithms, GSEA and ssGSEA, along with 13,661 
commonly used pathway gene sets from the MSigDB 
database. Users have the option to choose from three 
visualization methods, dotplot, Enrichmap, and classic 
GSEA enrichplot, to present the results of GSEA pathway 
enrichment analysis (Fig. 5A–C). For ssGSEA, users can 
select specific pathways of interest to generate boxplots 
illustrating the differences in pathway scores between 
normal and disease groups (Fig. 5D). Additionally, users 
can choose up to 15 pathways to create heatmap visuali-
zations of ssGSEA pathway enrichment analysis results 
(Fig.  5E). Publication-worthy visualizations and detailed 
enrichment analysis results can be downloaded by users 
for further study.

(See figure on next page.)
Fig. 4 Correlation analysis. A Scatterplot of correlations between single genes showing the correlations between 2 genes. Rs and Ps represent 
Spearman correlation coefficients and p values, respectively, and Rp and Pp represent Pearson correlation coefficients and p values, respectively. 
B Correlation chord plots between multiple genes. The colour of the line connecting the genes represents the magnitude of the correlation 
between the two genes. Red and blue represent positive and negative correlations, respectively. The darker the colour, the stronger the correlation. 
C Heatmap of gene-immune cell correlation. The red and blue colours in the heatmap represent the normalized correlation results. The darker 
the red colour is, the stronger the positive correlation, and the darker the blue colour is, the stronger the negative correlation. Missing values 
are shown in white. The colour shade of the orange triangles in the upper left corner of each box indicates the statistical results for correlation 
differences, where light to dark orange triangles represent p > 0.05, p < 0.05, p < 0.01, and p < 0.001, respectively. D Gene-pathway correlation 
heatmap showing the correlation between selected genes and selected pathways. Red and blue in the heatmap represent positive and negative 
values, respectively, of normalized correlations; the darker the red colour is, the stronger the positive correlation, and the darker the blue colour is, 
the stronger the negative correlation. Missing values are shown in white. The orange triangles in the upper left corner represent different p values 
according to the colour shade, where light to dark orange represents p > 0.05, p < 0.05, p < 0.01, and p < 0.001, respectively
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Fig. 4 (See legend on previous page.)
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Fig. 5 Gene enrichment analysis. A Enrichment results of GSEA in the disease group vs. the healthy group are visualized in dotplots. Positive 
and negative NES values were utilized to differentiate upregulated and suppressed groups. The sizes of the dots represent the numbers of genes 
enriched in the pathway, and the colour represents the corrected p value. Colours closer to red represent stronger significance, and colours 
closer to blue represent weaker significance. GeneRatio = Count/setSize. B GSEA enrichment map. The size of the circle represents the number 
of genes enriched in the pathway. The colour represents the size of the adjusted p value, where the closer the colour is to blue, the less statistically 
significant the difference is, and the closer the colour is to red, the more statistically significant the difference is. C GSEA enrichment plot 
showing the enrichment results of specific pathways in this dataset. D ssGSEA was visualized by box plots. Yellow and gray colours were used 
to represent healthy and diseased groups, respectively, and p values were calculated by the Wilcoxon test. E Heatmap visualization of ssGSEA 
results. The yellow and gray squares at the top represent the healthy and diseased groups, respectively. Red and blue in the body of the heatmap 
represent positive and negative values of normalized pathway expression, respectively. The darker the red colour, the higher the expression value, 
and the darker the blue colour, the lower the expression value. The two columns on the right side of the heatmap represent the significance (p 
value) and the multiplicity of differences (Log2 FoldChange) for each pathway between different groups. The darker the blue colour, the more 
statistically significant the difference. The longer the yellow columns are, the greater the multiplicity of differences between groups. GSEA: Gene Set 
Enrichment Analysis; NES: normalized enrichment score; ssGSEA: Single-sample Gene Set Enrichment Analysis
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Single-cell analysis
In OralExplorer, single-cell analysis visualizations 
encompass cluster plot, feature plot, and heatmap visu-
alizations. The cluster analysis visualization displays the 
oral single-cell dataset post-downscaling and clustering, 
enabling users to easily observe the result of cell clusters 
(Fig.  6A). Furthermore, we calculated ssGSEA scores() 
for individual cells and clusters for subsequent visuali-
zation in feature plots and heatmaps, respectively. The 
feature plot allows users to select the gene or pathway 
of interest and observe its expression in different cells 
(Fig. 6B, C). Similarly, the heatmap enables users to read-
ily observe the expression of various genes and pathways 
across different clusters (Fig. 6D, E).

Experimental validation: investigation of differentially 
expressed genes related to periodontitis
We conducted online differential gene expression analy-
sis using OralExplorer on multiple datasets associated 
with periodontitis, including GSE10334, GSE16134, 
GSE23586, GSE33774, GSE173078, and GSE106090. The 
analysis revealed simultaneous significant upregulation of 
IL1β, SRGN, CXCR1, FGR, ARHGEF2, and PTAFR in all 
six periodontitis-related datasets (Fig. 7A, B, Additional 

file 4: Table S4). To validate the expression levels of these 
genes, we conducted qPCR on human periodontitis 
patient samples and normal human periodontal sam-
ples. Except for FGR, all other genes exhibited significant 
upregulation in the periodontitis group (Fig. 7C). Addi-
tionally, we conducted immunohistochemical analysis to 
explore the protein translation of IL1β, SRGN, CXCR1, 
and PTAFR in patients with periodontitis. Similar to the 
mRNA expression results, enhanced protein expression 
of IL1β, SRGN, CXCR1, and PTAFR was observed in the 
periodontitis group (Fig. 7D).

Discussion
Because of the widespread use of sequencing technology, 
an increasing number of oral disease-related datasets 
are now publicly available. This availability has greatly 
facilitated the exploration of oral disease development 
mechanisms by dentists and dental researchers. How-
ever, dentists without a programming background still 
face significant challenges in utilizing these datasets for 
in-depth analysis and visualization. To address this issue, 
we present OralExplorer, a user-friendly, interactive web 
tool specifically designed for the analysis of oral datasets. 
OralExplorer integrates 35 human oral inflammatory dis-
ease-related datasets from the GEO dataset, consisting of 

Fig. 6 Single-cell analysis. A Single-cell clustering map obtained after dimensionality reduction using PCA and TSNE on the oral single-cell dataset 
and manual annotation of cell clusters. B Gene feature maps: feature maps of the expression values of genes normalised to be displayed in different 
cells. C Pathway feature map: ssGSEA score expression values in different cells. D Heatmap of expression values of cells after normalisation 
in different cluter. E Heatmap of normalised ssGSEA scores in different cluter. ssGSEA: Single-sample Gene Set Enrichment Analysis
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Fig. 7 Validation of periodontitis-associated differentially expressed genes using qPCR and IHC. A Venn diagram shows the intersection 
of differentially expressed genes in the six datasets, including IL1β, SRGN, CXCR1, FGR, ARHGEF2, and PTAFR. B Heatmap illustrates differentially 
expressed genes in the six datasets. C Boxplots show the qPCR results of the six genes (IL1β, SRGN, CXCR1, FGR, ARHGEF2, and PTAFR) in gingival 
tissues of the periodontitis group and healthy group. D IHC result plots and corresponding histograms show the protein expression levels 
of IL1β, SRGN, CXCR1 and PTAFR in gingival tissues of periodontitis and healthy groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. IHC: 
Immunohistochemistry; qPCR: quantitative polymerase chain reaction
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901 samples across six main oral disease types. It offers 
five major analysis modules: differential gene expression 
analysis, immune infiltration analysis, correlation analy-
sis, pathway enrichment analysis and single-cell analysis. 
OralExplorer provides a simple and intuitive visualiza-
tion interface as well as user-friendly operations, enabling 
dentists and medical researchers to effectively explore 
the value of oral disease data.

OralExplorer is a user-friendly web tool for oral disease 
research that offers unique advantages in terms of data 
inclusion, interface and operation, analysis functions, and 
customization features. First, OralExplorer fills a signifi-
cant gap in zero-code online analysis in the dental field 
by combining the bioinformatics analysis of oral-related 
disease with emerging Shiny web tools. This integration 
allows researchers to conduct preliminary studies of oral 
disease mechanisms through simple online operations, 
even without programming knowledge. Moreover, the 
interface of OralExplorer is designed to be simple and 
clear, with user-friendly prompts, further improving the 
ease of use. In terms of analysis functions, OralExplorer 
harnesses transcriptome data to provide various analy-
sis capabilities. These include exploring gene expression 
differences at the transcriptional level, pathway enrich-
ment analysis, correlation analysis, immune infiltration 
analysis and single-cell analysis. Within the immune 
infiltration analysis module, OralExplorer offers six reli-
able immune infiltration algorithms, allowing users to 
assess the immune infiltration of samples and generate or 
validate hypotheses related to inflammation and immune 
cells. The ability to compare results from multiple 
immune infiltration algorithms in OralExplorer enhances 
the reliability of the conclusions. Finally, OralExplorer 
offers a wealth of customization features to cater to dif-
ferent research needs. Users have the flexibility to adjust 
analysis parameters, analysis methods, and visualization 
methods according to their requirements. Additionally, 
we compared OralExplorer with many popular web-
based tools, such as HPV-TIMER [38] and CAMOIP 
[39]. Our findings revealed that OralExplorer not only 
possesses comparable functionality to these tools but 
also undergoes validation using qPCR and immuno-
histochemistry results from clinical samples, ensuring 
the scientific robustness and reliability of OralExplorer 
analyses. Overall, OralExplorer’s unique combination of 
datva inclusion, interface and operation, analysis func-
tions, and customization features make it a valuable tool 
for oral disease research.

To validate the accuracy and reliability of the online 
analysis provided by OralExplorer, we employed addi-
tional validation methods, such as qPCR and IHC. An 
online differential expression analysis conducted using 

OralExplorer revealed several genes that were sig-
nificantly upregulated in all six periodontitis-related 
datasets, including IL-1β, SRGN, CXCR1, FGR, ARH-
GEF2, and PTAFR. These results align with our own 
laboratory findings. Specifically, we observed that 
IL-1β, SRGN, CXCR1, and PTAFR exhibited significant 
upregulation at both the RNA transcript and protein 
translation levels in periodontitis patients compared to 
healthy periodontal patients. We also observed a signif-
icant increase in ARHGEF2 expression in periodontitis 
patients. Notably, the findings we obtained are consist-
ent with previous studies conducted by other research-
ers. For instance, Cheng et al. demonstrated that IL-1β 
expression is upregulated in periodontitis and plays a 
role in inflammation, immunomodulation, and bone 
resorption in periodontitis [40]. Additionally, Cai et al. 
revealed that FGR expression is upregulated in peri-
odontitis and may serve as an important biomarker of 
the condition [41]. Caetano et al. conducted single-cell 
transcriptional profiling on gingival tissues obtained 
from healthy individuals and patients with periodonti-
tis [42]. The analysis revealed a notable increase in CD2 
expression in T-cells, a finding that was subsequently 
validated using OralExplorer.

However, OralExplorer has certain limitations. Cur-
rently, we do not have sufficient resources to include 
histologic information, and there is a lack of diversity in 
terms of the included disease types. Furthermore, our 
database only includes data on human species, without 
any information on animal models. In the future, we plan 
to address these shortcomings by continuously updating 
OralExplorer to incorporate more oral disease-related 
datasets. Additionally, 2 weeks prior to each OralEx-
plorer update, an announcement is posted on our web-
site to remind users to conduct and save the necessary 
analyses in a timely manner. Our goal is to enhance the 
tool and better support oral inflammatory disease-related 
biomarker research.

Conclusions
OralExplorer is an efficient user-friendly web tool 
for analysing oral disease biomarkers. It enables oral 
researchers to explore transcriptome data related to oral 
diseases in public databases with maximum efficiency. 
We welcome feedback from users and will continue to 
update the website to ensure its usefulness as an auxiliary 
tool for oral disease research in the future.
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