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Abstract 

Background The relationship between the gut mycobiome and end-stage renal disease (ESRD) remains largely 
unexplored.

Methods In this study, we compared the gut fungal populations of 223 ESRD patients and 69 healthy controls 
(HCs) based on shotgun metagenomic sequencing data, and analyzed their associations with host serum and fecal 
metabolites.

Results Our findings revealed that ESRD patients had a higher diversity in the gut mycobiome compared to HCs. 
Dysbiosis of the gut mycobiome in ESRD patients was characterized by a decrease of Saccharomyces cerevisiae 
and an increase in various opportunistic pathogens, such as Aspergillus fumigatus, Cladophialophora immunda, 
Exophiala spinifera, Hortaea werneckii, Trichophyton rubrum, and others. Through multi-omics analysis, we observed 
a substantial contribution of the gut mycobiome to host serum and fecal metabolomes. The opportunistic patho-
gens enriched in ESRD patients were frequently and positively correlated with the levels of creatinine, homocysteine, 
and phenylacetylglycine in the serum. The populations of Saccharomyces, including the HC-enriched Saccharomyces 
cerevisiae, were frequently and negatively correlated with the levels of various toxic metabolites in the feces.

Conclusions Our results provided a comprehensive understanding of the associations between the gut mycobiome 
and the development of ESRD, which had important implications for guiding future therapeutic studies in this field.
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Introduction
Chronic kidney disease (CKD) is a long-term progres-
sive renal injury that impacts more than 800 million indi-
viduals worldwide [1]. At the end stage of CKD, known 
as ESRD, patients often require renal replacement ther-
apy, such as dialysis or transplantation, which not only 
imposes a significant economic burden but also leads to a 
dramatic fall in their quality of life [2]. This highlights the 
importance of research into the pathogenesis and treat-
ment of CKD. CKD can have various etiologies, including 
diabetes, hypertension, smoking, and other underlying 
conditions [3]. In recent years, the role of gut bacteria 
in the development of CKD has received considerable 
attention [4, 5]. A multi-omics study reported that tox-
ins produced by bacteria accumulate in the blood of CKD 
patients, exacerbating the progression of the disease [5]. 
Specifically, Eggerthella lenta and Fusobacterium nuclea-
tum can accelerate the accumulation of phenylacetylgly-
cine, phenyl sulphate, and indoxyl sulphate in the blood 
of CKD mouse models, leading to an increase in the 
severity of glomerulosclerosis and renal fibrosis [5]. Sev-
eral studies have also established a correlation between 
gut bacteria and CKD clinical characteristics such as 
diabetes, proteinuria, elevated levels of inflammatory 
cytokines, and increasing galactose-deficient IgA1 [6–8].

The gut is also a major reservoir of fungi in the human 
body. Recent studies have highlighted the association 
between alterations in the gut fungal community and 
immune-related disorders such as rheumatoid arthritis 
[9], multiple sclerosis [10], and inflammatory bowel dis-
ease [11]. In the context of CKD, patients with impaired 
immune function and prolonged use of immunosuppres-
sive drugs are particularly susceptible to fungal infec-
tions [12]. Importantly, the gut fungal community in 
CKD patients has been linked to their immunological 
profiles [13], suggesting a possible influence of gut fungi 
on immune dysfunction in CKD patients. On the other 
hand, the impaired intestinal barrier in CKD patients 
contributed to the translocation of gut microbes or their 
toxins into the bloodstream [14]. A study with uremic 
mice indicated that intestinal mucosal injury may exac-
erbate the translocation of Candida albicans and result 
in systemic infection, although such cases have not been 
reported in humans [15]. Overall, accumulating evi-
dences hint that the gut mycobiome may play a role in 
the health of CKD patients.

Currently, the relationship between the gut mycobiome 
and chronic kidney disease especially ESRD, remains 
largely unexplored. Given that ESRD patients have a 
higher risk of fungal infections, we performed a multi-
omics analysis based on the gut mycobiome, fecal metab-
olome, and serum metabolome datasets from 69 healthy 
controls and 223 ESRD patients. The analysis aimed to 

identify the gut fungal markers associated with ESRD, 
and investigate their interactions with host metabolism.

Methods
Data sources
All fecal metagenomic sequencing samples from 223 
ESRD patients and 69 healthy individuals used in this 
study are available at the NCBI Sequence Read Archive 
under the accession ID PRJNA449784 [5]. The serum and 
fecal metabolomic profiles of all subjects were deposited 
in the MetaboLights database under the accession ID 
MTBLS700. The demographic data (e.g., gender, age, and 
body mass index [BMI]) of subjects were obtained at the 
following site: https:// www. ebi. ac. uk/ metab oligh ts/ edi-
tor/ MTBLS 700/ sampl es.

Construction of gut fungi genome catalog
In order to construct a reliable and high-quality cata-
log of fungal genomes associated with various human 
body sites, we conducted a comprehensive search in the 
National Center of Biotechnology Information (NCBI) 
RefSeq genome database that included approximately 
6000 fungal genomes available until April 2020. Subse-
quently, we manually extracted candidate genomes based 
on their metadata records in the BioSample or original 
studies. The extracted genomes had to meet the following 
criteria: (1) the genome size < 100 Mb and N50 length > 20 
kb, (2) documentation of the relevant species colonizing 
or infecting a specific human body site, and (3) exclu-
sion of non-diet derived fungi such as Agaricus bisporus, 
Auricularia auricula-judae, Ganoderma lucidum, and 
so on. A total of 1503 human-associated genomes were 
retained and clustered into 106 nonredundant genome 
species-level clusters (hereinafter referred to as “species”) 
using dRep v3.4.0 with the parameters ’dereplicate -pa 0.9 
-sa 0.96 -nc 0.3 -S_algorithm fastANI’ [16]. For each fun-
gal species, the genome with the longest N50 length was 
designated as the reference genome. Finally, the genomes 
of 106 species were employed to construct our catalog of 
gut fungal references.

Processing of metagenomic sequencing data
To ensure data quality, we employed fastp v0.20.164 to 
process each metagenomic sample [17]. The raw reads 
suffered from several filtering steps, including trimming 
of polyG tails and removal of low-quality reads as fol-
lows: (1) reads shorter than 90bp; (2) reads with a mean 
Phred quality score lower than 20; (3) reads with over 
30% of their bases having a Phred quality score lower 
than 20; (4) reads with a mean complexity below 30%; 
and (5) unpaired-end reads. To minimize the impact of 
non-specific mapping of reads to fungal genomes in sub-
sequent analysis, we mapped the quality-filtered reads 

https://www.ebi.ac.uk/metabolights/editor/MTBLS700/samples
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against three databases: the GRCh38 genome, the Uni-
fied Human Gastrointestinal Genome (UHGG) collec-
tion [18], and the SILVA rRNA database [19]. This step 
allowed us to exclude reads derived from human or 
prokaryotic sources.

For each sample, the remaining reads were aligned 
against our customized catalog of gut fungal genomes 
using bowtie2 [20], and the read counts for each genome 
were calculated. To generate mycobiome composition 
profiles, the read count of each genome was first nor-
malized by dividing its genomic size, and the normalized 
read count was further divided by the sum of all normal-
ized read counts in a sample. This process defined the 
relative abundance of each population in the sample. For 
different fungal taxa, the relative abundance of a taxon 
was calculated as the sum of the relative abundance of all 
populations assigned into that taxon.

Statistical analysis and visualization
Statistical analysis and visualization were carried out by 
the R language (version 4.1.2) [21].

Multivariate analyses
A Bray–Curtis distance matrix was generated using the 
square-root transformed species-level profiles. This was 
done using the ’vegdist’ function from the vegan package 
[22]. Principal coordinates analysis (PCoA) was then per-
formed on the distance matrix using the ’pcoa’ function 
in the ape package. Permutational multivariate analysis 
of variance (PERMANOVA) was conducted using the 
’adonis’ function in the vegan package, based on the dis-
tance matrix. In order to avoid the impact of intra-indi-
vidual variation, the additional PERMANOVA analysis 
was performed using the ’adonis’ function with the for-
mula ’Matrix ~ gender + age + BMI + ESRD_status’.

Alpha diversity
We calculated the number of observed species by count-
ing the species with a relative abundance greater than 
zero in each sample. Shannon’s index and Simpson’s 
index were defined using the function ‘diversity’ in the 
vegan package.

Significance test
The Wilcoxon rank-sum test was implemented using 
the function ‘wilcox.test’. The student’s t-test was imple-
mented using the function ‘t.test’.

Linear discriminant analysis effect size (LEfSe) analysis
Based on the taxonomic profiles combining all taxo-
nomic levels, LEfSe analysis was implemented using the 
LEfSe Conda version 1.1.01 [23].

Explanatory power
According to Wang et  al.’s study [5], the evaluation of 
explanatory power between different omics datasets 
was performed using stepwise PERMANOVA analy-
sis. For example, in the assessment of the explanatory 
power of the gut mycobiome on the serum metabolome, 
the following steps were followed: (1) The R-squared 
value  (R2) for each fungal species with respect to the 
serum metabolome was calculated using the ’adonis’ 
function, and the resulting  R2 was adjusted using the 
’RsquareAdj’ function. (2) The fungal species exhibit-
ing the largest adjusted  R2 was selected as the first vari-
ate. (3) A second PERMANOVA analysis was executed 
using the first variate and each remaining fungal spe-
cies as variables. (4) If the largest adjusted  R2 from the 
second PERMANOVA analysis is smaller than that 
from the first PERMANOVA analysis, the latter is con-
sidered as the explanatory power of the gut mycobiome 
on the serum metabolome. (5) If the largest adjusted 
 R2 from the second PERMANOVA analysis is greater, 
the process is repeated for a third PERMANOVA anal-
ysis. In this case, the analysis includes another fungal 
species in addition to the two variates with the largest 
adjusted  R2 from the second PERMANOVA analysis. 
(6) The process continues until the largest adjusted  R2 
from the last PERMANOVA analysis is smaller than 
that from the previous PERMANOVA analysis. The lat-
ter is then considered as the explanatory power of the 
gut mycobiome on the serum metabolome.

Correlation analysis
We performed a correlation analysis between the rela-
tive abundance of gut fungal species and the level of host 
metabolites using the function ‘cor.test’ with the option 
‘method = spearman’. The resulting p-values were then 
adjusted using the function ‘p.adjust’ with the option 
‘method = BH’. A correlation was considered significant if 
the adjusted p-value was less than 0.05.

Visualization
The sunburst diagram of taxonomic hierarchy was gener-
ated using the function ‘plot_ly’ in the package plotly. All 
other data were visualized using the function ‘ggplot’ in 
the package ggplot2.

Classification model
The random forest classifier based on the gut mycobiome 
was built using the ‘randomForest’ function followed by 
5 times of five-fold cross-validations, and their perfor-
mances were evaluated based on area under the receiver 
operator characteristic curve (AUC) that was calculated 
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by the ‘roc’ function. The importance ordering of markers 
was obtained via the ‘importance’ function.

Results
Sample information and fungal database
In our study, we aimed to characterize the gut myco-
biome in patients with ESRD. To achieve this, we 
performed a re-analysis of publicly available deep-
sequencing metagenomic samples. The dataset 
included samples from 223 ESRD patients and 69 
healthy controls (Additional file  1: Table  S1), with an 
average high-quality read data of 11.2 ± 1.7 Gb. The 
demographic data showed a significant difference 
between healthy controls and ESRD patients in age 
and gender (Student’s t-test, p < 0.001) but not in BMI 
(Student’s t-test, p = 0.967). More subject metadata had 
been summarized in Wang’s study [5]. In addition, we 
obtained serum and fecal metabolome profiles for 284 

of the same subjects, allowing us to explore the poten-
tial association between the gut mycobiome and the 
development of ESRD.

To accurately determine the composition of the myc-
obiome, we developed a customized fungi database 
based on a series of rigorous filter criteria (see details 
in Methods). This database consisted of 106 nonredun-
dant reference species that were clustered based on a 
threshold of 96% average nucleotide identity (ANI) 
from a pool of 1503 human-associated genomes (Addi-
tional file  1: Table  S2). Subsequently, the high-qual-
ity reads from each sample were mapped against the 
genomes of 106 nonredundant species in the database 
to generate mycobiome profiles. Besides, 80 high-level 
taxa were detected in the study samples, representing 
48 genera, 35 families, 16 orders, 7 classes, and 3 phyla 
(Fig. 1).
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Fig. 1 Sunburst diagram of taxonomic hierarchy for 106 gut fungal species and 80 high-level taxa
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Altered gut mycobiome structure in ESRD patients
We first compared the overall composition structure of 
the gut mycobiome between healthy controls and ESRD 
patients using PCoA and PERMANOVA. PCoA based on 
Bray-cutis distance of species-level composition showed 
that the top two principal coordinate axes (PCoA1 and 
PCoA2) accounted for 26.8% and 10.4% of the total vari-
ation, respectively (Fig.  2a). Along the PCoA1, ESRD 
patients showed a mild but statistically significant sepa-
ration from healthy controls (Wilcoxon rank-sum test, 
p = 0.030). PERMANOVA also showed a significant dif-
ference in the gut mycobiome between healthy controls 
and ESRD patients (Adonis, p = 0.003). Given the poten-
tial confounding effect of individual heterogeneity, we 

performed additional PERMANOVA analyses by con-
trolling for host variables including gender, age, and 
BMI. The result showed that ESRD status remained sig-
nificantly associated with gut mycobiome composition 
(Adonis, p = 0.005), highlighting the robustness of this 
association.

Alpha diversity was used to estimate the richness and 
evenness of gut mycobiome in ESRD patients based on 
three indexes including the number of observed species, 
Shannon’s index, and Simpson’s index. The ESRD patients 
showed a higher mycobiome richness and evenness com-
pared to healthy controls, although the significant differ-
ence was only observed in Shannon’s index (Wilcoxon 
rank-sum test, p = 0.007; Fig. 2b).
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In terms of the fungal taxa, the gut mycobiome of all 
subjects was usually dominated by Saccharomycotina, 
followed by Pezizomycotina, Basidiomycota, and Muco-
romycota (Fig.  2c). At the genus level, Saccharomyces 
was the first most abundant genus, while other common 
genera, such as Aspergillus, Candida, and Nakaseomyces, 
had relatively high abundances in both groups (Fig. 2d). 
Comparison analysis showed that 2 genera were sig-
nificantly enriched in ESRD patients (Fig. 2e), including 
Aspergillus (Wilcoxon rank-sum test, adjusted p = 0.019) 
and Hortaea (adjusted p = 0.025).

Gut fungal signatures associated with ESRD
We conducted the LEfSe analysis to identify the fun-
gal taxa that showed statistical differences (p < 0.05, 
LDA > 2.0) in relative abundance between the ESRD 
patients and healthy controls. The analysis revealed a total 
of 41 significantly different fungal taxa, spanning across 
3 classes, 4 orders, 7 families, 11 genera, and 16 species 
(Fig. 3; Additional file 1: Table S3). At the class and order 
levels, all 7 fungal taxa were significantly enriched in 
ESRD patients, including the classes Dothideomycetes, 

Eurotiomycetes, and Sordariomycetes as well as the 
orders Capnodiales, Eurotiales, Microascales, and 
Onygenales. At the family level, 6 fungal populations, 
including Ajellomycetaceae, Arthrodermataceae, Asper-
gillaceae, Microascaceae, Pleosporaceae, and Teratospha-
eriaceae, were significantly enriched in ESRD patients, 
while only Rhizopodaceae were significantly enriched in 
healthy controls. At the genus level, 9 fungal populations, 
including Aspergillus, Candida, Curvularia, Emergomy-
ces, Exophiala, Hortaea, Lomentospora, Scedosporium, 
and Trichophyton, were significantly enriched in ESRD 
patients, whereas Phialophora and Rhizopus were sig-
nificantly enriched in healthy controls. At the species 
level, 12 fungal species were enriched in ESRD patients, 
while 4 species were enriched in healthy controls. Nota-
bly, ESRD patients exhibited a significant reduction in the 
dominant gut fungus Saccharomyces cerevisiae compared 
to healthy controls. Conversely, various opportunistic 
pathogens were enriched in ESRD patients, including 
Aspergillus fumigatus, Exophiala spinifera, Hortaea wer-
neckii, Lomentospora prolificans, Trichophyton rubrum, 
and so on.

Saccharomyces cerevisiae
Rhizopus oryzae
Phialophora verrucosa
Malassezia furfur

Curvularia papendorfii
Cladophialophora immunda

Emergomyces orientalis
Phialophora americana
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Fig. 3 Differential enrichment of gut fungal taxa in ESRD patients and healthy controls. The cladogram visualizes all differentially enriched taxa 
identified by LEfSe analysis. Each dot corresponds to a fungal taxon, with significant enrichments (p < 0.05, LDA > 2.0) labeled in brown for ESRD 
patients and blue for healthy controls. The bar plot at the bottom right displays the differentially enriched species (p < 0.05, LDA > 2.0)
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Correlations between gut mycobiome, serum metabolome, 
and fecal metabolome
In our study, we conducted an integrated analysis of 
multi-omics datasets, including the gut mycobiome, 
serum metabolome, and fecal metabolome, to explore 
the potential contribution of the gut mycobiome to host 
health. The PERMANOVA analysis indicated that the gut 
mycobiome explained 11.3% and 8.8% of the variances 
in the host serum metabolome and fecal metabolome, 
respectively (Fig.  4a). When differentiating between 
healthy controls and ESRD patients, both groups show 
considerable explanatory power of the gut mycobiome 
for the metabolic profiles. Specifically, the gut mycobi-
ome of ESRD patients accounted for 13.9% and 13.4% 

of the variance in the serum and fecal metabolome, 
respectively, while the gut mycobiome of healthy con-
trols accounted for 23.5% and 20.3% of the variance in the 
serum and fecal metabolome, respectively (Fig. 4b).

To identify the fungal species associated with serum 
and fecal metabolites, we performed a correlation 
analysis using Spearman correlation analysis with Ben-
jamini–Hochberg adjustment (q value < 0.05). The 
results revealed that 15 fungal species were signifi-
cantly correlated with at least one metabolite, including 
6 ESRD-enriched and 1 HC-enriched species (Fig.  4c). 
Among them, The ESRD-enriched species Cladophial-
ophora immunda displayed significant positive corre-
lations with four serum metabolites, namely carnitine, 
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phenylacetylglycine, homocysteine, and creatinine [5]. 
In the fecal metabolome, Cladophialophora immunda 
showed significant negative correlations with Benza-
ldehyde and Cyclopentasiloxane. The other 5 ESRD-
enriched species, including Aspergillus fumigatus, 
Exophiala spinifera, Hortaea werneckii, Trichophyton 
rubrum, and Candida sp. LDI48194, also exhibited con-
sistent positive associations with the above-mentioned 
serum metabolites. Conversely, the HC-enriched spe-
cies Saccharomyces cerevisiae was significantly and nega-
tively correlated with three (potential) toxic metabolites, 
including the serum metabolite p-cresol sulfate, and the 
fecal metabolites 4-ethylphenol and dimethyl sulfone. 
Additionally, several fungi that did not show significant 
differences between healthy controls and CKD patients 
were frequently associated with fecal metabolites. Par-
ticularly, Saccharomyces paradoxus and Saccharomyces 
jurei were significantly and negatively correlated with 
p-cresol, 4-ethylphenol, and dimethyl sulfone in the fecal 
metabolome.

Classification of ESRD state based on the gut mycobiome
Finally, to evaluate the ability of the gut mycobiome to 
classify ESRD patients and healthy controls, we con-
structed a random forest model based on the rela-
tive abundances of the gut fungal profiles. The model 
obtained a cross-validation AUC of 0.705 (95% confi-
dence interval [CI] 0.639–0.772; Fig. 5a) in distinguishing 
patients from controls. Several species, including Clad-
osporium sphaerospermum, Rhizopus delemar, control-
enriched Malassezia furfur and Phialophora verrucosa, 
and ESRD-enriched Cladophialophora immunda and 

Aspergillus fumigatus featured the highest discrimination 
importance in the random forest model (Fig. 5b).

Discussion
Numerous studies have shed light on the presence of gut 
dysbiosis in CKD patients, focusing primarily on ana-
lyzing the gut bacteriome [5, 24, 25]. However, limited 
research has been conducted to investigate the relation-
ship between the gut mycobiome and CKD [13]. Here, we 
constructed a comprehensive gut fungal genome data-
base that closely relates to the human mycobiome. Using 
this database, we explored the alterations in gut fungal 
communities in a cohort comprising 69 healthy controls 
and 223 ESRD patients. Meanwhile, we investigated the 
relationships between gut fungal species and host fecal 
and serum metabolites, highlighting the potential impact 
of gut fungal species on ESRD patients.

We developed a nonredundant gut fungal database 
comprising 106 species-level genomes. This database 
exhibited an approximately 25% increase in the num-
ber of species compared to the MetaPhlAn 4 database, 
which included 85 fungal species [26]. Importantly, our 
database only included fungi that have been reported to 
colonize or infect various parts of the human body. Fungi 
derived from dietary sources, such as mushrooms and 
Ganoderma, were specifically excluded as these fungi are 
typically transient and lack activity in the gut. Utilizing 
this database, we observed that Saccharomyces was the 
most prevalent genus in this cohort, which is supported 
by previous findings [27–29]. Especially, S. cerevisiae 
accounted for 41.5% of the fungal composition.
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Microbiome analysis revealed that there were signifi-
cant differences in fungal community diversity and struc-
ture between ESRD patients and healthy controls. We 
observed a significant increase in alpha diversity indexes 
among ESRD patients, consistent with a previous study 
on CKD based on the internal transcribed spacer (ITS) 
sequencing method [13]. Notably, an increase in gut 
fungal diversity has been observed in various patient 
populations with immune system disorders, such as 
IBD, multiple sclerosis, and acquired immune deficiency 
syndrome [10, 30, 31]. ESRD patients are characterized 
by immune dysregulation [12], and their gut fungi have 
been associated with levels of host C-reactive protein and 
serum κ/γ light chains [13]. These findings suggest a rela-
tionship between the gut mycobiome and the immune 
system in ESRD patients.

Comparison analysis of fungal community composi-
tion revealed 16 species with a significant difference 
between ESRD patients and healthy controls. Among 
them, 12 species were enriched in ESRD patients, 
including Aspergillus fumigatus, Exophiala spinif-
era, Hortaea werneckii, Lomentospora prolificans, and 
Trichophyton rubrum. Fungal infections caused by 
these pathogens have been previously reported in indi-
viduals with kidney disease [32–37]. It is noteworthy 
that gut Candida, particularly C. albicans, is enriched 
in various patient populations with immune, digestive, 
cancer diseases, and so on [9, 30, 38, 39]. In this study, 
we also observed a significant increase in Candida in 
ESRD patients. However, at the species level, only Can-
dida sp. LDI48194 was enriched in ESRD patients, and 
no significant difference was observed in C. albicans 
between the two groups. This highlights the unique 
gut fungal dysbiosis in the ESRD population. In con-
trast, only four species were enriched in the healthy 
controls, including Saccharomyces cerevisiae which 
was the most abundant fungus in the gut. Saccharo-
myces cerevisiae, a component of the healthy mycobi-
ome, has been reported to possess probiotic properties 
[30, 40]. Patients with kidney disease often experience 
some gastrointestinal issues. A previous study has indi-
cated a link between inflammatory bowel disease and 
an elevated risk of chronic kidney disease [41]. A study 
in mice has shown that Saccharomyces cerevisiae can 
inhibit and reduce colonic inflammation induced by 
chemicals [42]. Furthermore, some researchers have 
developed specific probiotics derived from Saccharo-
myces cerevisiae [43]. These findings hinted the possible 
potential of S. cerevisiae for improving inflammatory 
issues in the intestines of kidney disease patients. On 
the other hand, many articles mention that patients 
with kidney disease often experience gastrointestinal 
motility problems, making them prone to constipation 

[44, 45]. In summary, future intervention studies on 
Saccharomyces cerevisiae in populations with kidney 
disease, aiming at improving both intestinal inflamma-
tion and constipation, are worth considering.

Besides, the multi-omics analysis revealed a close 
connection between the gut mycobiome and host 
metabolome. The previous study has demonstrated 
that gut bacteria contribute to the accumulation of ure-
mic toxins in the bloodstream of CKD patients [5]. It 
is worth noting that the explanatory powers of the gut 
mycobiome on the metabolic profiles were approxi-
mately 10% to 20% lower compared to the contribution 
of the gut bacteriome reported by the previous study 
[5]. This reduction can be explained by the fact that the 
gut microbiome is primarily dominated by bacteria, 
which account for over 80% of the microbial sequences 
[18]. On the other hand, correlation analysis showed 
several ESRD-enriched fungi, including Cladophial-
ophora immunda, Aspergillus fumigatus, and Hortaea 
werneckii, showed a positive correlation with the levels 
of three uremic toxins (i.e., creatinine, homocysteine, 
and phenylacetylglycine) in the serum. Conversely, 
the populations of Saccharomyces, including Saccha-
romyces cerevisiae, were found to be significantly and 
negatively correlated with various (potential) toxic 
metabolites that were reported to be present in the 
bloodstream or feces [46–48]. These findings suggest 
that gut fungi may also play a role in the accumulation 
of microbiota-driven toxins in the human body.

Our study has some limitations, and it is essential 
to consider future work to address them. For instance, 
the absence of longitudinal data in the study hinders 
our ability to monitor and analyze changes in the gut 
mycobiome over time in patients with kidney disease. 
Conducting long-term follow-ups and collecting sam-
ples from patients with chronic kidney disease from 
stages 1 to 5 would enable a systematic exploration of 
the microbial communities. This is crucial for captur-
ing the dynamic characteristics of the fungal commu-
nity in the gut and understanding how it responds to 
various factors or treatments. Moreover, some studies 
have demonstrated associations between fungal com-
munities and host immune and inflammatory factors. 
The research by Hu et al. emphasized that the level of 
serum free light chain lambda in CKD patients was 
positively correlated with Saccharomyces [13], while 
Qiu et  al. showed a positive association between Sac-
charomyces and various serum cytokines [49]. Unfor-
tunately, the data we utilized does not include publicly 
available results of immune globulins or related blood 
test outcomes [5]. More data is needed to validate the 
interaction between the immune system and gut fungi 
in populations with kidney disease.
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Conclusion
In conclusion, our study demonstrates significant 
changes in the gut mycobiome of ESRD patients which 
are associated with host immune, inflammation, and 
toxin levels, ultimately contributing to patient health. 
However, our study is limited to correlational analyses 
and does not establish definitive causal relationships. 
Additionally, due to the lack of detailed clinical infor-
mation available for the samples, we did not consider 
other risk factors such as diabetes and hypertension 
that may influence gut mycobiome. Additional datasets 
are required to validate the impact of these factors.
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