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Abstract 

Immune checkpoint blockades have been prized in circumventing and ablating the impediments posed by immu-
nosuppressive receptors, reaching an exciting juncture to be an innovator in anticancer therapy beyond traditional 
therapeutics. Thus far, approved immune checkpoint blockades have principally targeted PD-1/PD-L1 and CTLA-4 
with exciting success in a plethora of tumors and yet are still trapped in dilemmas of limited response rates 
and adverse effects. Hence, unveiling new immunotherapeutic targets has aroused immense scientific interest 
in the hope of expanding the clinical application of immune checkpoint blockades to scale new heights. Human 
leukocyte antigen-G (HLA-G), a non-classical major histocompatibility complex (MHC) class I molecule, is enriched 
on various malignant cells and is involved in the hindrance of immune effector cells and the facilitation of immu-
nosuppressive cells. HLA-G stands out as a crucial next-generation immune checkpoint showing great promise 
for the benefit of cancer patients. Here, we provide an overview of the current understanding of the expression pat-
tern and immunological functions of HLA-G, as well as its interaction with well-characterized immune checkpoints. 
Since HLA-G can be shed from the cell surface or released by various cells as free soluble HLA-G (sHLA-G) or as part 
of extracellular vesicles (EVs), namely HLA-G-bearing EVs (HLA-GEV), we discuss the potential of sHLA-G and HLA-
GEV as predictive biomarkers. This review also addresses the advancement of HLA-G-based therapies in preclinical 
and clinical settings, with a focus on their clinical application in cancer.
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Background
In the process of oncogenesis and development, malig-
nant tumor cells evolve constantly and strive hard to 
build strong defenses against the immune system [1]. 
Tumor cells take full advantage of immune checkpoint 
molecules to restrain the function of immune cells, pro-
tecting themselves from attacks and achieving immune 
escape. On the contrary, a growing body of evidence 
demonstrates that strategies targeting immune check-
points exhibit the potential to restore or enhance the 
anti-tumor capacity [2], leading to the emergence of 
immune checkpoint blockade (ICB) therapy. To date, 
several immune checkpoint targeting agents have gained 
approvals for the treatment of multiple cancers as mono-
therapy or in combination with other therapeutics [3–6]. 
With the rise of ICB in immuno-oncology, the treatment 
of oncology has also entered the era of immunotherapy. 
Despite the unprecedented breakthrough achieved by 
ICB therapies, considerable challenges persist, namely 
the limited response rate, severe hazardous adverse 
events, and acquired resistance [7]. More than half of 
these patients are likely to experience immune-related 
adverse events (irAEs), with 0.3 ~ 1.3% of the cases being 
fatal, leading to treatment interruption and poor out-
comes [8]. Therefore, identification of novel immune 
checkpoints and formulation of innovative strategies are 
urgently needed, thereby broadening the clinical applica-
tion spectrum of ICB therapies.

Human leukocyte antigen-G (HLA-G), a non-classical 
major histocompatibility complex (MHC) class I mol-
ecule, was demonstrated to be integral to maternal–
fetal tolerance initially and deemed to be a vital immune 
checkpoint. HLA-G engages with ILT2/4 and KIR2DL4 
to elicit the suppression of immune effector cells, includ-
ing cytotoxic T cells and natural killer (NK) cells, as well 
as the expansion of immunosuppressive cells like Treg 
cells and myeloid-derived suppressor cells (MDSCs), 
resulting in an immunosuppressive microenvironment 
and contributing to the immune escape of tumor cells 
[9]. Due to the promising potential of HLA-G blockade, 
ongoing researches about why and how HLA-G-based 
therapeutic approaches quell the malignant phenotype 
are increasing, as exemplified by the deciphering of the 
roles of HLA-G positive cancer cells in colorectal can-
cer using spatial and single-cell transcriptomics [10], and 
the employment of HLA-G-targeted CAR-T cells for the 
direct killing of EGFR-mutated and overexpressed oral 
cancers [11]. In addition, several clinical trials have been 
designed to evaluate the effectiveness of HLA-G inhibi-
tors as monotherapy or in combination therapy for the 
treatment of solid tumors. Therefore, HLA-G-based ther-
apeutic approaches are on the way to become a hot spot 
in the field of tumor immunotherapy.

In this review, we overview the fundamentals and 
immunobiology of HLA-G and pinpoint its discrepancy 
with PD-L1. In addition, we highlight the latest preclini-
cal and clinical trial advances, with the aim of providing 
further insight into HLA-G-based modalities for cancer 
treatment and proposing new perspectives on targeted 
therapy for cancer patients.

Molecular structure and distribution characteristics 
of HLA‑G
The HLA-G gene, being highly homologous to the clas-
sical MHC molecules, is located in chromosome 6p21.3 
containing eight exons encoding the signal peptide, 
the extracellular α1-α3 domain, the transmembrane 
domain, and the intracellular region, successively. The 
second codon of exon 6 acts as an early stop codon and 
the resulting intracellular cytoplasmic tail of HLA-G is 
shorter compared to the classical MHC molecules [9]. 
The HLA-G gene also comprises seven introns. Moreo-
ver, it has been well-established that at least seven dif-
ferent isoforms were generated via alternative splicing. 
Isoforms HLA-G1, HLA-G2, HLA-G3, and HLA-G4 
retain the transmembrane domain to express the cor-
responding membrane-bound proteins, whereas the 
HLA-G5, HLA-G6, and HLA-G7 exist in soluble form 
due to the absence of transmembrane domain [12–14]. 
The characteristics of each isoform are summarized in 
Table 1.

Unlike classical MHC class I molecules, the expres-
sion of HLA-G is highly restricted. In physiological 
conditions, HLA-G is exclusively found in a few tissues 
and cells, including extravillous trophoblasts of the pla-
centa [5], cornea [6], and thymus epithelial cell [7], con-
tributing to immune tolerance through interaction with 
corresponding ligands on immune cells. However, over-
expression of HLA-G is induced under multiple patho-
logical conditions, including malignant tumors, viral or 
microbial infections [8–11], and autoimmune diseases 
[12, 13] Convergent data implicated that HLA-G was 
enriched in several tumors, thereby fueling the immune 
evasion.

Underlying mechanisms regulating HLA‑G expression
Several mechanisms are involved in the comprehensive 
modulation of HLA-G, namely epigenetic regulation, 
transcription factors, post-transcriptional regulation, and 
post-translational modification, as presented in Fig. 1.

1. Epigenetic regulation

Covalent binding of methyl group (-CH3) to cytosine 
residues could promote methylation of CpG islands in 
the HLA-G promoter region, silencing the transcription 
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of HLA-G gene [15]. In this context, expression of DNA 
methyltransferases (DNMTs), a contributing factor to 
hypermethylation of promotor, was inversely correlated 
with HLA-G protein level [16]. On the contrary, DNMT 
inhibitor 5-Aza could induce a rise in HLA-G mRNA and 
protein in breast cancer cells [17], which was also con-
firmed in renal cell carcinoma, melanoma, pancreatic 

cancer, ovarian cancer, glioblastoma and choriocarci-
noma [18–22]. In addition, histone acetylation was aug-
mented in the presence of histone deacetylase inhibitor 
(HDACi) sodium butyrate, valproic acid, or trichostatin 
A (TSA), reinvigorating the transcription of HLA-G [19, 
23]. Indeed, as one of the important intrinsic drivers of 
gene regulation, epigenetics could be widely exploited in 

Table 1 Characteristics of seven identified HLA-G isoforms

Isoform Type Alternative splicing Structure characteristics

HLA-G1 Membrane-bound Full-length, wild type Has α1, α2, and α3 domains, non-covalently bind to β2-microglobulin 
(β2m)

HLA-G2 Membrane-bound Without exon 3 Has α1 and α3 domains, lack of α2 domain, non-covalently bind to β2m

HLA-G3 Membrane-bound Without exon 3 and exon 4 The shortest isoform, only has α1 domain

HLA-G4 membrane-bound Without exon 4 Has α1 and α2 domains, lack of α3 domain

HLA-G5 Soluble Contains intron 4 (with an early stop codon) Without transmembrane domain, has α1, α2, and α3 domains, non-cova-
lently bind to β2m

HLA-G6 Soluble Contains intron 4 (with an early stop codon) Without transmembrane domain, has α1 and α3 domains, non-covalently 
bind to β2m

HLA-G7 Soluble Contains intron 2 (with an early stop codon) Without transmembrane domain, only has α1 domain

Fig. 1 Regulation of HLA-G expression. The transcriptional activity of HLA-G is modulated by epigenetic alterations and several transcription factors 
in response to environmental and drug stimuli. A number of miRNAs can directly target the 3’UTR of HLA-G mRNA and impede HLA-G translation. 
HLA-G is also subjected to diverse post-translational modifications, including ubiquitination, nitration, and glycosylation. Moreover, various 
hormones, cytokines, and chemotherapy drugs can enhance HLA-G expression via direct binding with HLA-G gene or activation of downstream 
signaling pathways. Ac acetylation, Me methylation, Ub ubiquitination, Glc glycosylation, NO nitration
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the field of cancer treatment. Given that inhibitors of epi-
genetic regulators could potentiate HLA-G expression, 
their combination with HLA-G blockade deserves fur-
ther exploration as novel therapeutics.

2. Transcriptional regulation

In addition to epigenetic mechanisms, transcriptional 
regulation mediated by multiple regulatory elements is 
involved in the regulation of HLA-G expression. It should 
be noted that the promoter of HLA-G is extremely diver-
gent from that of any other MHC class I gene. The pro-
moter regions of MHC class I genes contain regulatory 
modules that activate transcription, mainly including 
enhancer A, the interferon-stimulated responsive ele-
ment (ISRE), and the SXY module. However, in HLA-G 
promoter, the enhancer A and SXY modules are modi-
fied, while the ISRE is absent. HLA-G exhibited a strong 
binding affinity to the p50 homodimeric subunit of 
NF-κB due to the sequence differences in the enhancer 
A (κB1 and κB2 sites), whereas none of the other NF-κB 
subunits with transcriptional properties, including p65 
and c-Rel, recognized these sites [24]. Moreover, the 
MHC master transcription factors NLRC5 and CIITA 
failed to bind to the HLA-G gene promoter owing to the 
absence of the conserved SXY module [25]. As early as 
2002, transcriptional regulators C-jun, cAMP-responsive 
element binding protein (CREB)-1, and ATF1 have been 
proven to engage with the three CRE/TRE regulatory ele-
ments in the HLA-G promoter region, potentiating the 
basal level of HLA-G promoter activity through trans-
activation [26]. Consistently, Michael Friedrich et al. have 
recently validated the binding of CREB to HLA-G pro-
motor sequences in renal cancer cells [17]. In addition, 
the binding of IRF-1, HIF-1, or HSF-1 to corresponding 
elements augmented HLA-G transcription in response to 
external stimuli, respectively [27–29]. Unlike HLA-E and 
HLA-F, HLA-G was barely responsive to the regulation of 
RFX5, due to the lack of transcriptional scaffold created 
by RFX5, resulting in the inability of NLRC5 and CIITA 
to bind to the promoter [30]. Given its unique transcrip-
tional regulation pattern, it is reasonable to conclude that 
HLA-G functions distinctively throughout the immune 
response. Conversely, the long interspersed nuclear ele-
ments (LINE)-1 scattered throughout the upstream 
region of HLA-G leading to the silencing of the gene [31], 
whereas the binding of Ras responsive element binding 
protein (RREB)-1 to Ras responsive element was capa-
ble of restraining HLA-G transcription [32], which might 
partially account for the restricted expression of HLA-G 
under physiological conditions. Overall, novel transcrip-
tion factors of HLA-G remain to be explored in order to 
screen attractive candidate drugs that might expand the 
applicability of HLA-G-based therapeutics.

3. Post-transcriptional regulation

MicroRNAs (miRNAs) are a class of highly conserved 
endogenous non-coding single-stranded RNAs with a 
total length of approximately 22 nt, modulating the tran-
scription of target genes via base-pair complementation 
[33]. Indeed, a number of miRNAs could interact with 
the 3’UTR region to hinder the translation of HLA-G, 
including miR-148a, miR-148b, miR-152, miR-133a, 
miR-139-3p, miR-548, miR-608, miR-628, miR-138-
1-3p, miR19a, miR-19b-1, miR744 [34–42]. The varying 
levels of HLA-G expression within the tissues might be 
attributed to the presence of different types and amounts 
of miRNAs. Placental tissues exhibited relatively low 
expression of miR-148a and miR-152, making the pla-
centa one of the few tissues rich in HLA-G [38]. Con-
versely, the high expression of miR-148a and miR-152 has 
been demonstrated to be related to the reduced HLA-G 
protein level in renal cancer and colon cancer [34, 43]. 
Notably, miRNAs differed in affinity for 3’UTR sequences 
in HLA-G, as denoted by the fact that miR-152, miR148a, 
miR-148b, and miR-133a had sequentially weaker affin-
ity for HLA-G validated by miTRAP technology [34]. In 
addition, miR-139-3p could bind to the non-polymorphic 
sequences in HLA-G 3’UTR region specifically, while 
miR-608 exclusively bound to the polymorphic sequences 
[37]. Convincing data is required to elucidate the under-
lying mechanisms of miRNAs regulation and their corre-
lation with cancers.

4. Post-translational modification

Protein expression and function could be modified by 
the addition or removal of specific chemical groups to 
amino acids, namely the post-translational modifications, 
such as phosphorylation, acetylation, ubiquitination, 
and glycosylation, which together constitute a complex 
network of regulation. Ubiquitinated HLA-G complexes 
have been found in the circulation and unleashed as 
exosomes, favoring tumor spread [44]. The detection of 
HLA-G nitration in patient plasma and exudate might 
be associated with the metalloproteinase-mediated 
shedding of HLA-G from cell surface, and that nitrated 
HLA-G retained its original biological function and effec-
tively inhibited NK cytotoxicity [45, 46]. HLA-G in body 
fluids could be used as a humoral biomarker for several 
diseases, especially malignancies. Thus, ascertaining 
whether the measurement of ubiquitinated or nitrated 
HLA-G would achieve better specificity and sensitivity 
will be crucial, offering predictive and therapeutic oppor-
tunities. Moreover, glycosylated HLA-G was produced by 
placental trophoblast cells and secreted into the amniotic 
fluid, being crucial for the maintenance of maternal–fetal 
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immune tolerance [47], but mechanistic evidence for the 
role of HLA-G in tumor immune-evasive is still missing.

5. Others

In addition, hormones and cytokines have also been 
reported to modulate HLA-G expression. Progesterone 
could directly bind to the progesterone response ele-
ment (PRE) in the HLA-G promoter and induce HLA-G 
transcription in trophoblast cells, breast cancer cells, 
and choriocarcinoma cells [48–50]. HLA-G protein level 
was elevated in breast cancer cells in response to estra-
diol administration [51]. Likewise, prolactin exhibited 
the same promoting effect on trophoblast cells [52]. The 
low expression of HLA-G in trophoblast cells has been 
validated to be a contributing factor to recurrent mis-
carriage, whereas glucocorticoids could potently reverse 
the phenomenon and enhance HLA-G expression in a 
concentration-dependent manner, hinting that glucocor-
ticoids might be beneficial to protecting the fetus from 
immune system attack in patients with recurrent mis-
carriage [53]. Moreover, mounting studies have shown 
that epidermal growth factor (EGF), interferons (IFN-
α, IFN-β, IFN-γ), interleukins (IL-1β, IL-2, IL-4, IL-10), 
transforming growth factor (TGF-β) and tumor necrosis 
factor (TNF-α) could regulate HLA-G expression [52, 
54–64]. It is noteworthy that in certain HLA-G-negative 
cell lines, IFN-γ failed to upregulate HLA-G levels but 
could further amplify 5-Aza-induced HLA-G expres-
sion, hinting an important role of IFN-γ in maintaining 
HLA-G expression. Notably, IFN-γ failed to upregulate 
HLA-G levels in some HLA-G-negative cell lines [65, 66].

Studies on HLA-G expression being modulated by 
aberrant signaling pathways are limited. Chemotherapy 
upregulated HLA-G by inhibiting DNMT1 and induc-
ing demethylation of TAP1, providing opportunities for 
anti-HLA-G CAR-NK cells to eliminate cancer cells [22]. 
More recent research demonstrated that EGFR promoted 
IL-1β secretion via NLRP3 inflammasome to induce 
HLA-G expression, resulting in immunosuppression in 
oral squamous cell carcinoma (OSCC) [11].

HLA‑G expression and clinical significance in cancer
HLA-G is engaged in the evolution of normal tissue 
cells and their transformation into malignant cells, and 
its expression and polymorphisms have been linked to 
precancerous lesions and cancer susceptibility. Long-
term and persistent infection with high-risk HPV viruses 
would result in cervical intraepithelial neoplasia (CIN), 
approximately 30–40% of which will progress to inva-
sive cervical cancer [67, 68]. Growing studies have sug-
gested that HLA-G 3’UTR polymorphisms are likely 
to be independent risk factors for HPV infection, as 

indicated by the intimate association between HLA-G 
14bp In/ + 3142G/ + 3142C allele and susceptibility to 
HPV and the progression of cervical lesions [69]. It has 
also been shown that amplification of HLA-G + 3142C 
allele was a contributing factor to sHLA-G upregula-
tion and significantly correlated with susceptibility to 
HPV [70–73]. In addition, HLA-G*01:01:02/01:01:08 
alleles and HLA-G*01:04:01 homozygote were associ-
ated with increased risk and decreased risk of infection, 
respectively [74, 75]. HLA-G*01:01:02 and HLA-G*01:03 
alleles were found to be significantly related to persis-
tent HPV16 infection [75]. HLA-G has been implicated 
in malignant transformation [76], increasing through-
out CIN progression [77–79] and peaking in cervical 
cancer [79–81]. Along similar lines, in hepatocellular 
carcinoma, the HLA-G 14bp I/D polymorphism was sig-
nificantly correlated with tumor development in HBV/
HCV( +) cases rather than in the HBV/HCV(-) subset 
[82]. A large-scale GWAS study identified HLA-G as a 
principal locus related to the risk of CRC [83], with DelG 
haplotype and InsC haplotype indicating an increased or 
decreased risk of developing CRC, respectively [84]. In 
breast cancer, HLA-G + 3142G was a protective factor for 
cancer susceptibility, while the + 3142C allele acted in the 
opposite way [85]. 14bp Del and + 3010/ + 3142/ + 3187 
variants were found to be of great value in distinguishing 
breast cancer patients from the general population [86]. 
Similarly, HLA-G 14bp Del allele and 14bp Del/ + 3142 
C variants displayed a higher frequency in patients with 
gastric cancer [87]. Thus, HLA-G polymorphic variants 
are closely related to the development or progression of 
several malignant pathologies.

HLA-G was aberrantly enriched in a variety of tumors 
(Fig.  2), including colorectal cancer [88], gastric cancer 
[89], ovarian cancer [90–93], thyroid cancer [40], cervi-
cal cancer [78, 94], and endometrial cancer [95–97]. In 
colorectal cancer, HLA-G was observed to aggregate at 
the invasion front in cancer foci, which was conducive 
to the formation of an immunosuppressive microenvi-
ronment, favoring further invasion and metastasis [10]. 
It is desirable to explore whether this phenomenon is 
universal in pan-cancer. HLA-G exhibited a strong co-
localization with CA125 in ovarian cancer [98], indicat-
ing that HLA-G might be a valuable predictive biomarker 
for early ovarian cancer. HLA-G expression has been 
reported to be modulated by the grading and staging of 
the tumor, and HLA-G protein levels were significantly 
higher in patients with advanced stages in comparison 
to early-stage and normal [11, 98–102]. Inconsistently, 
HLA-G expression did not correlate with disease stage in 
thyroid cancer [103]. HLA-G is suggestive of tumor pro-
gression and recurrence as denoted by the positive cor-
relation between HLA-G high-expression and advanced 
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stage [99, 104–107], distant metastasis [108], lymph node 
metastasis [102, 105, 109], and higher recurrence rates 
[90, 101, 110]. In ovarian cancer, compared to the tumor 
cells in situ, metastatic tumor cells in ascites had higher 
expression of HLA-G, which was inversely correlated to 
the frequency of immune cell infiltration and positively 
related to disease progression, tumor metastasis, and 
poor prognosis [93, 98]. Also, extensive evidence has 
confirmed that high HLA-G expression was positively 
related to shorter survival [43, 64, 88, 90, 102, 111–120] 
and was an independent risk factor for prognosis [51, 
115, 121–126]. Recently, an eight-gene prognostic model 
constructed on the basis of HLA-G-driven differential 
genes demonstrated good predictive value for the prog-
nosis of cervical cancer patients (AUC = 0.896) [127]. 
HLA-G may also function as a biomarker for screening 
potential benefit populations and evaluating therapeu-
tic efficacy, as exemplified by a substantial reduction 
of HLA-G expression after chemotherapy administra-
tion, which probably arises from the increased sensitiv-
ity to chemotherapy of HLA-G+ tumor cells [128], and a 
higher response rate to chemotherapy in ovarian cancer 
patients with high HLA-G expression compared to the 

counterparts with low HLA-G expression [129]. Simi-
larly, HLA-G receptor ILT2 was related to worse adju-
vant chemotherapy responses and indicative of poor 
response to anti-PD-1/PD-L1 therapies when combined 
with the absence of  CD8+T cells [130]. In colorectal 
cancer, HLA-G allele could be used to screen patients 
who might show a good response to first-line FOLFIRI 
chemotherapy regimens, as the response rate compared 
favorably in patients carrying + 3010G and + 3187G allele 
with that seen in patients carrying + 2960-Ins allele [131]. 
Collectively, the above results indicate that HLA-G has 
potential clinical implications in guiding the treatment of 
cancer patients, and may serve as a potential diagnostic 
and prognostic biomarker.

Intriguingly, sHLA-G in circulation has fueled the 
tumor cells to spread immunosuppressive signals. Ele-
vated levels of sHLA-G have been observed in gastric 
cancer, ovarian cancer, cervical cancer, and endome-
trial cancer, hinting at the potential of sHLA-G in dis-
tinguishing malignant from benign and defining tumor 
stages [82, 91, 132–137]. Besides, serum sHLA-G levels 
exhibited remarkable diagnostic value for thyroid cancer 
(AUC = 0.925), which was linked to clinicopathological 

Fig. 2 A schematic presentation of expression and clinical significance of HLA-G in cancers. HLA-G is aberrantly enriched in various cancers 
and associated with clinical characteristics and prognosis
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features including tumor size, lymph node metastasis, 
and degree of differentiation, and showed significant 
negative correlation with 1 year and 3 year survival rates 
[138]. In colorectal cancer, sHLA-G levels in plasma were 
positively correlated with the number of metastatic sites 
[139, 140] and inversely related to survival [108], whereas 
high levels of sHLA-G in saliva were suggestive of later 
disease stage [141]. High levels of plasma sHLA-G were 
found in patients with locally advanced breast cancer 
[142], rather than in the triple-negative breast cancer 
(TNBC) subgroup [143, 144]. This difference may be 
attributed to the lack of hormone receptors, as suggested 
by experimental studies that have shown elevated levels 
of sHLA-G in hormone-receptor-positive patients com-
pared to their negative counterparts [51]. A recent study 
revealed that in TNBC patients, sHLA-G plasma lev-
els were significantly increased after neo-adjuvant and 
adjuvant chemotherapy compared with pre-treatment, 
and were associated with distant metastases and poorer 
disease outcomes [144]. In contrast, plasma sHLA-G 
dramatically declined within 30 days after radical hyster-
ectomy [145]. Hence, whether monitoring the dynamic 
changes of sHLA-G in plasma could be employed in 
evaluating efficacy and predicting recurrence in tumor 
patients after surgery or chemotherapy warrants further 
investigation. Moreover, increased amount of HLA-G-
bearing extracellular vesicles (HLA-GEV) predisposed 
epithelial ovarian cancer patients to disease progres-
sion and poor prognosis, being indicative of higher dis-
ease risks [146]. Recently, HLA-G protein expression on 
the membrane of exosomes has also been confirmed in 
gastric cancer [136]. Compared with tissue biopsies for 
intra-tumor HLA-G expression, liquid biopsies for anal-
ysis of HLA-GEV are easy in operation, cost-effective, 
and noninvasive. It is reasonable to speculate that the 
measurement of HLA-GEV in combination with sHLA-
G might be a supplement to tumor markers in cancer 
screening.

In conclusion, owing to the heterogeneity of the tumors 
and the discrepancies in detection tools and reagents, 
studies regarding HLA-G expression in cancers have 
shown mixed results (Table 2). Therefore, it is imperative 
to conduct additional pre-clinical and clinical research to 
pinpoint the role of HLA-G in precancerous and malig-
nant lesions. This will help advance the potential of 
HLA-G as a predictive biomarker for early cancers from 
bench to bedside.

HLA‑G interplay with immune receptors
Several receptors for HLA-G have been identified, includ-
ing ILT2, ILT4, and KIR2DL4. ILT-2 and ILT-4 are the 
members of the leukocyte immunoglobulin-like receptor 
(LILR) family. Each consists of four extracellular Ig-like 

domains, with D1D2 responsible for HLA-G binding and 
D3D4 acting as a scaffold [147]. ILT2 and ILT4 both have 
a cytoplasmic tail that contains immunoreceptor tyros-
ine-based inhibitory motifs (ITIM) that interact with 
tyrosine phosphatases (SHP1/SHP2) and initiate inhibi-
tory signaling [148]. It has been revealed that the ILTs 
have a broad specificity for MHC class I molecules, but 
they exhibit the highest affinity for HLA-G [149]. Moreo-
ver, the binding affinity of HLA-G to ILTs was improved 
by the dimerization of HLA-G due to the increased 
exposure of binding site [147, 150]. ILT2 is expressed 
on various immune cells, including T cells, B cells, NK 
cells, myeloid-derived suppressive cells (MDSCs), den-
dritic cells (DCs), and monocytes/macrophages, whereas 
ILT4 is exclusively presented on DCs, monocytes/mac-
rophages, neutrophils and MDSCs [151–155]. KIR2DL4 
belongs to the killer cell immunoglobulin (Ig) like recep-
tor (KIR) family, with a charged arginine residue near the 
top of its transmembrane region that can associate with 
the immunoreceptor tyrosine-based activating motif 
(ITAM). It also has a single intracellular ITIM domain 
and exhibits weak inhibitory potential [156]. Due to its 
unique structure, KIR2DL4 functions as both an activat-
ing and inhibitory receptor. KIR2DL4 lacks a D1 domain, 
and its interaction with HLA-G is mediated by the D0 
or D2 domain [157]. In contrast to ILT2/4, which is 
expressed in a wide range of cells, KIR2DL4 is predomi-
nantly found on NK cells [156]. A recent study demon-
strated that KIR2DL4 synergized with FcRγ to augment 
NK cell activation and degranulation, whereas the inter-
action of HLA-G with KIR2DL4 attenuated NK cell 
cytotoxicity in HER2-positive breast cancer [158]. Other 
receptors, such as CD160, are expressed by endothelial 
cells, and the interaction between HLA-G and CD160 
can lead to apoptosis and thus inhibit angiogenesis [159]. 
In addition, it has been reported that HLA-G binding to 
CD8 modulates the activation and apoptosis of cytotoxic 
T cells and NK cells [160–162].

HLA‑G functions on immune cells
Broad evidence has suggested that HLA-G could modu-
late innate and adaptive immunity through its interaction 
with ILT2/4 and KIR2DL4 (Fig.  3). HLA-G restrained 
 CD4+ and  CD8+ T cells proliferation [163, 164], and con-
comitantly induced apoptosis through Fas/FasL signal-
ing pathway via CD8 ligation [160, 162]. Furthermore, 
HLA-G fostered the differentiation of the CD4 + T cells 
into Treg cells [165, 166], while HLA-G1-induced  CD4+ 
T cells would enter a long-term unresponsive state to 
the specific immunity, diffusion of which might cause a 
wider range of immune tolerance [167]. HLA-G directly 
impaired the cytotoxicity of effector T cells [168], miti-
gating the anti-tumor activity of γδΤ cells [169] and 
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Table 2 Expression and clinical features of HLA-G in different tumors

Tumor HLA‑G expression, Method Clinical implication References

Breast cancer 94.1%, IHC Positively associated with shorter OS and RFS [244]

Breast cancer 70.7%, IHC Positively associated with advanced disease 
stage

[107]

Breast cancer 66%, IHC An independent prognosis factor [51]

Breast cancer 62.2%, IHC Positively associated with shorter survival [111]

Breast cancer 41%, IHC Positively associated with shorter DFS [114]

Breast cancer 24%, IHC Not associated with clinical outcome [245]

Breast cancer Not mentioned 14-bp Ins/Del and + 3142 C/G are associated 
with breast cancer susceptibility

[85]

Breast cancer Not mentioned HLA-G 14bp Del and the + 3010/ + 3142/ + 3187 
variants are more prevalent in breast cancer 
patients than in controls

[86]

Breast cancer Median sHLA-G plasma level 41.3 ng/ml, ELISA A higher level of sHLA-G before NACT is related 
to disease progression

[142]

Triple negative breast cancer (TNBC) Median sHLA-G plasma level 8.6 ng/ml, ELISA High post-chemotherapy sHLA-G levels were 
associated with the development of distant 
metastases and poorer disease outcomes. The 
combination of high sHLA-G levels post-chemo-
therapy and ILT-2 rs10416697C allele carrier sta-
tus is a better independent indicator for disease 
outcome in TNBC than the lymph nodal status 
pre-chemotherapy

[144]

Cervical cancer 75.9%, IHC An early marker for disease progression [78]

Cervical cancer 45%, IHC Association with the size of the main lesion, par-
ametrial invasion, and lymph node metastasis

[137]

Cervical cancer 35.7% in CIN, 62.8% in SCC, IHC Positively associated with disease progression [80]

Cervical cancer 31.6%, IHC Low expression of HLA-G5 is detected in all 
HPV-related cases

[94]

Cervical cancer Not mentioned 14bp In/ + 3142G/ + 3142C allele is associated 
with susceptibility to HPV and the progression 
of cervical lesions

[69]

Cervical cancer Not mentioned  + 3142 C/C genotype and C allele are associated 
with increased risk

[71]

Cervical cancer Not mentioned 14 bp del allele promotes high-risk HPV infec-
tion, del/C haplotype is associated with invasive 
cervical cancer development

[72]

Cervical cancer Not mentioned HLA-G*01:01:02 and HLA-G*01:03 alleles are 
related to persistent HPV16 infection

[75]

Cervical cancer Not mentioned 14 bp In and + 3142G are increased 
in the HPV18-infected group compared 
with the control. HLA-G expression increases 
from CIN1 to CIN2/3 lesions and is highest 
in patients with adenocarcinoma

[77]

Cervical cancer 12.5% in CIN 1, 35.9% in CIN 2/3, 78% in cervical 
cancer, IHC

HLA-G expression increases from CIN 1 to CIN 
2/3 and is highest in patients with cervical 
cancer. HLA-G expression is higher in CIN 
and cancer patients with HPV 16/18 than in CIN 
patients without HPV

[79]

Cervical cancer Median sHLA-G plasma level 115.8 U/ml, ELISA sHLA-G level could be used as a diagnostic 
marker

[132]

Cervical cancer Median sHLA-G plasma level 50.86 U/ml, ELISA sHLA-G level could be used as a diagnostic 
marker and decreases within 30 days after radi-
cal hysterectomy

[145]

Colorectal cancer 70.7%, IHC HLA-G expression above 55% was associated 
with a worse prognosis

[120]

Colorectal cancer 70.6%, IHC Associated with the OS, an independent factor 
for OS

[139]
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Table 2 (continued)

Tumor HLA‑G expression, Method Clinical implication References

Colorectal cancer 64.6%, IHC Associated with the depth of invasion, histologi-
cal grade, host immune response, lymph nodal 
metastasis, and clinical stages of the disease

[124]

Colorectal cancer 59.1%, IHC Associated with tumor node metastasis staging [105]

Colorectal cancer Median sHLA-G plasma level 124.3 U/ml, ELISA sHLA-G level is higher in colorectal cancer 
and may be a diagnostic marker

[246]

Colorectal cancer 14.9% in  EpCAM+ cancer cells, Flow cytometry Associated with lymph node metastasis 
and shorter OS

[102]

Colorectal cancer Not mentioned HLA-G DelG haplotype is associated 
with increased cancer risk, while InsC haplotype 
is associated with decreased risk. InsC haplotype 
is independently associated with longer EFS

[84]

Colorectal cancer Median sHLA-G plasma level 59.17 U/ml, ELISA sHLA-G level is correlated with HLA-G 3’UTR 
polymorphisms/haplotypes. Patients carry-
ing + 3010G and + 3187G alleles have a higher 
chance of complete response to first-line 
FOLFIRI treatment

[131]

Colorectal cancer Median sHLA-G plasma level 36.8 U/ml, ELISA sHLA-G above median levels (≥ 36.8 U/ml, sHLA-
Ghigh) had a shorter survival time than those 
with sHLA-Glow (< 36.8 U/ml,), an independent 
prognostic factor

[108]

Colorectal cancer Median sHLA-G salivary level 18.84 U/ml, ELISA sHLA-G salivary level is associated 
with advanced stages and sHLA-G serous level

[141]

Colon cancer 22.1%, IHC Positively associated with shorter OS and DFS [247]

Esophageal cancer 90%, IHC Correlated with histologic grade, depth of inva-
sion, nodal status, host immune response, 
clinical stage of disease, and worse prognosis, 
an independent prognostic factor

[248]

Esophageal cancer 70%, IHC; median sHLA-G plasma level 15.04 U/
ml, ELISA

Associated with cancer cell differentiation, 
lymph node metastasis, and poor prognosis

[109]

Esophageal cancer 65.8%, IHC; median sHLA-G plasma level 152.4 
U/ml, ELISA

Associated with advanced disease stage 
and poor survival, an independent prognostic 
factor

[126]

Gastric cancer 71%, IHC Associated with the tumor location, histological 
grade, depth of invasion, lymph nodal metasta-
sis, clinical stages of the disease, host immune 
response, and shorter OS, an independent 
prognostic factor

[249]

Gastric cancer 49.7%, IHC Associated with the number of tumor-infil-
trating Tregs, tumor invasion depth, invaded 
adjacent organs, clinical stages, and poorer 
prognosis (OS, DFS, and cancer-specific survival), 
an independent prognostic factor

[250]

Gastric cancer 30.8%, IHC Positively associated with the number of tumor-
infiltrating Tregs and negatively associated 
with the number of CD8 + T lymphocytes, 
an independent prognostic factor

[251]

Gastric cancer 25.5%, IHC Positively associated with shorter OS [117]

Gastric cancer Not mentioned HLA-G 14bp Del allele and the 14bp Del/ + 3142 
C variants are increased in patients with gastric 
cancer. The survival rate in patients bear-
ing the 14bp DelL/Del genotype is lower 
than in patients with either Ins/Del or Ins/Ins 
genotypes

[87]

Glioma 60.2%, IHC The absence of HLA-G expression is associated 
with a better long-term survival rate

[21]

Liver cancer 43% low expression, 57% high expression, IHC Positively associated with Tregs/CD8 + ratio 
and shorter OS

[101]

Liver cancer 50.2%, IHC; median sHLA-G plasma level 92.49 
U/ml, ELISA

Associated with advanced disease stage [104]
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Table 2 (continued)

Tumor HLA‑G expression, Method Clinical implication References

Liver cancer median sHLA-G plasma level 178.8 U/ml, ELISA Serum sHLA-G levels could be used as a diag-
nostic marker

[252]

Liver cancer Not mentioned HLA-G 14bp I/D polymorphism is significantly 
correlated with tumor development in HBV/
HCV( +) cases rather than in the HBV/HCV(-) 
subset

[82]

Lung cancer 75%, IHC Associated with lymph nodal metastasis, clinical 
stages of the disease, host immune response, 
and shorter OS, an independent prognostic 
factor

[123]

Lung cancer 41.6%, IHC; median sHLA-G plasma level 34 U/
ml, ELISA

HLA-G expression and plasma sHLA-G level 
are associated with disease stages and shorter 
survival

[99]

Lung cancer 34%, IHC; median sHLA-G plasma level 23.6 U/
ml, ELISA

sHLA-G expression is higher in adenocarci-
noma lesions than in squamous cell carcinoma 
and adenosquamous carcinoma lesions

[253]

Lung cancer 51.85%, IHC Co-expression of ILT4/HLA-G is associated 
with regional lymph node involvement, 
advanced stages, and shorter OS

[121]

Lung cancer Median sHLA-G plasma level 53.3 U/ml, ELISA Patients with the sHLA-G above median level 
(≥ 50 U/ml) have a significantly shorter survival 
time

[254]

Oral squamous cell carcinoma 50%, IHC Positively associated with shorter OS [255]

Oral squamous cell carcinoma 18.2% low expression, 81.8% high expression, 
IHC

Associated with clinical tumor stage and shorter 
OS

[118]

Ovarian cancer 72.4%, IHC Associated with disease recurrence [90]

Ovarian cancer 61%, IHC sHLA-G level is higher in malignant as com-
pared with benign ascites and could be used 
as a diagnostic marker

[91]

Ovarian cancer 79.7%, IHC HLA-G5/-G6 expression was detected in 75.7% 
ovarian serous cancer, 63.6% mucinous 
cystadenocarcinoma and 100% endometrioid 
adenocarcinoma, 85.7% clear cell carcinoma, 
100% sex cord-stromal tumor and 77.8% germ 
cell tumors

[92]

Ovarian cancer 35%, IHC Associated with high-grade histology [98]

Ovarian cancer 55% low expression, 20% median expression, 
25% high expression

Associated with CA125 elevation and shorter OS [113]

Pancreatic cancer 36.1% low expression, 63.9% high expression, 
IHC; median sHLA-G plasma levels 70.56 U/ml, 
ELISA

Associated with advanced stage, extra-pan-
creatic infiltration, lymph node involvement, 
and poor differentiation, an independent 
predictor for OS

[115]

Pancreatic cancer 39.2%, IHC Positively associated with T stage and shorter OS [256]

Pancreatic cancer 66%, IHC Associated with advanced stages and grades [106]

Pancreatic cancer 36.7%, IHC Positively associated with shorter OS and DFS [64]

Thyroid cancer 3% low expression, 17% median expression, 80% 
high expression in papillary thyroid carcinoma

In papillary thyroid carcinoma, the percentage 
of tumor cells exhibiting strong HLA-G staining 
is higher in patients with tumor size > 1.0 cm 
when compared to lesions < 1 cm

[103]

Thyroid cancer Median sHLA-G plasma level 24.84 ng/mL, ELISA sHLA-G level is associated with tumor size, 
differentiation degree, capsule invasion, lymph 
node metastasis

[138]

Papillary thyroid carcinoma 44.3%, IHC Associated with lymph node metastasis 
and capsular invasion

[257]

Papillary thyroid carcinoma Median sHLA-G plasma level 42.9 ng/mL, ELISA sHLA-G level was higher in papillary thyroid 
carcinoma than that in healthy controls

[258]

IHC immunohistochemistry, OS overall survival, DFS disease-free survival, RFS relapse-free survival., EFS event free survival, NACT  neoadjuvant chemotherapy, ELISA 
enzyme linked immunosorbent assay, CIN cervical intraepithelial neoplasia, HPV human papilloma virus, HBV hepatitis B virus
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facilitating the immune evasion of target cells. Addition-
ally, the chemotaxis of T cells was affected by sHLA-G 
via different mechanisms. sHLA-G reduced CXCR3 
expression on  CD8+ T cells and γδΤ cells to dampen the 
response to CXCL10 and CXCL11-mediated chemot-
axis. The chemotaxis of  CD4+ T cells induced by CCL2, 
CCL8, CXCL10, and CXCL11 was severely impaired due 
to the downregulation of CCR2, CXCR3, and CXCR5, 
whereas the recruitment of follicular helper T cells  (TFH) 
to CXCL13-expressing regions was hindered on account 
of decreased CXCR5 expression [170]. To note, sHLA-G 
derived from macrophages or activated monocytes could 
drive the polarization of T helper 2 (Th2) cells and pro-
mote the secretion of IL-10, IL-4, and IL-3, which in turn 
further upregulated HLA-G expression. Such positive 

feedback disrupted the natural equilibrium between Th1 
and Th2, leading to a severe immunosuppressive state 
[171].

NK cells are blessed with powerful non-specific killing 
capacity and are integral to the innate immune system. 
In analogy to T cells, HLA-G is implicated in the sup-
pression of cytotoxic effects of NK cells [172–174] and is 
capable of reducing the secretion of IFN-γ substantially 
[175]. HLA-G, especially HLA-G1 and HLA-G3, could 
boost HLA-E expression [176, 177] and potently sup-
press NK cells function via HLA-E/NKG2A interaction 
[178]. Simultaneously, the inhibitory impact of HLA-G 
was amplified synergistically due to the mitigation of 
NK cell activation signal MICA/NKG2D [179]. It has 
been validated that HLA-G induced over-expression of 

Fig. 3 Roles of HLA-G in tumor immune microenvironment. HLA-G can inhibit the cytotoxicity and chemotaxis of T cells and foster 
the differentiation of the CD4 + T cells into Treg cells through direct binding, while sHLA-G can drive Th2 cells polarization and potentiate 
TIM-3 expression to indirectly exert suppressive effects on T cells. Similarly, HLA-G dampens NK cells cytotoxicity, chemotaxis, and migration, 
while inducing apoptosis and senescence. Moreover, the interaction between HLA-G and ILTs restrains the proliferation of neutrophils, impairs 
the proliferation, differentiation, chemotaxis, and antibody secretion of B cells, and triggers a shift in macrophage polarization toward M2. 
MDSC proliferation and accumulation are facilitated by HLA-G. Additionally, HLA-G impairs the activation and antigen-presenting function 
of DCs and promotes tolerogenic DCs induction. To note, tumor cells can transfer HLA-G to other tumor cells and effector immune cells, leading 
to the swift dissemination of immunosuppression. NK cells natural killer NK cells, MDSC myeloid-derived suppressor cell, DCs dendritic cells
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ILT2, ILT3, ILT4, and KIR2DL4 on NK cells independ-
ent of antigen stimulation, which might upregulate the 
threshold of NK cells activation, favoring the immune 
evasion of target cells [180]. Moreover, the trans-
endothelial migration of NK cells was hindered once 
HLA-G bound with ILT2 [181]. sHLA-G also decreased 
CXCR3, CCR2, and CX3CR1 expression on peripheral 
blood NK cells, impeding their chemotactic responses to 
CXCL10, CXCL11, CCL2, and CX3CL1 and restraining 
their recruitment to the lesion [182]. On the other hand, 
sHLA-G fostered FasL expression and secretion, which 
triggered apoptosis of  CD8+ NK cells [162].

In addition, HLA-G suppressed B cells proliferation, 
differentiation, and antibody secretion after binding to 
ILT2, and decreased CXCR4 and CXCR5 expression on 
B cells in the germinal center to restrict the chemotaxis 
[183, 184]. Additionally, exposure to sHLA-G5 triggered 
macrophage polarization towards M2 as evidenced by 
an increase in CD163 expression and a decrease in CD86 
expression [185]. HLA-G modulated DCs differentia-
tion via IL-6/STAT3 signaling pathway [186], fostering 
the induction of tolerogenic DCs while impairing their 
activation and antigen-presentation functions [187, 188]. 
In particular, the tolerogenic subset DC-10 could over-
express HLA-G to induce the generation of Treg cells 
dependent on IL-10 and inhibit cytokine secretion of 
activated invariant natural killer T (iNKT) cells, contrib-
uting to immune response suppression. In this setting, 
it is plausible that HLA-G could amplify the immune 
escape effect with the help of the positive feedback loop 
formed by DCs [151, 189]. Moreover, the expansion and 
accumulation of MDSCs were also remarkably promoted 
in response to HLA-G [153, 190–192]. Collectively, 
HLA-G could impede the functions of effector cells while 
enhance the activities of suppressive and regulatory cells, 
supporting the remodeling of the immunosuppressive 
microenvironment. However, there is an ongoing need 
for studies regarding the clinical significance of the cross-
talk between HLA-G and immune cells, which will aid in 
the development of effective treatment schemes.

HLA‑G interaction with immune checkpoint molecules
Immune checkpoints are a group of immunosuppres-
sive molecules expressed on the surface of immune cells, 
which are dedicated to regulating immune response and 
essential for the maintenance of autoimmune tolerance 
and homeostasis. Nevertheless, immune checkpoint mol-
ecules are exploited by tumor cells to impede the tumor-
killing effects of immune cells with the goal of evading 
immune attack. As discussed above, growing evidence 
has demonstrated that HLA-G could potently blunt the 
cytotoxicity of immune cells including T cells and NK 
cells, thus its potential as a novel immune checkpoint 

is gaining increased attention. However, the discrepan-
cies and connections between HLA-G and other known 
immune checkpoint molecules remain obscure.

1. PD-L1

Programmed death-ligand 1 (PD-L1), is a 40 kDa trans-
membrane protein encoded by CD274 gene, represent-
ing a crucial suppressor of anti-tumor immunity [193]. 
HLA-G and PD-L1 exhibited consistent high-expression 
in pancreatic cancer [64], breast cancer [194], papil-
lary thyroid cancer [195], kidney cancer [12, 196, 197], 
colorectal cancer [102], oral osteosarcomas [198], and 
intraoral mucoepidermoid carcinoma [199]. In ovar-
ian and gastric cancer, differentiating agents rendered 
tumor cells more sensitive to chemotherapy drugs due 
to the loss of stemness and proliferation capacity. How-
ever, expression of HLA-G and PD-L1 was upregulated 
concomitantly, reshaping the suppressive tumor immune 
microenvironment, which might be a contributor to the 
poor efficacy of such drugs [200]. Trastuzumab-induced 
TGF-β and IFN-γ also facilitated HLA-G and PD-L1 
expression on HER2-positive breast cancer cells, con-
tributing to trastuzumab resistance [158]. In non-small 
cell lung cancer (NSCLC), HLA-G and PD-L1 expres-
sion were boosted in a dose-dependent manner by sev-
eral chemotherapeutic agents, among which pemetrexed 
promoted the glycosylation of HLA-G and PD-L1 con-
sistently as a belt-and-braces approach to the tumor cell 
immune escape [201]. Despite the sizable evidence impli-
cating a pronounced overlap in the expression patterns of 
HLA-G and PD-L1 across different tumors, there is het-
erogeneity in the areas of expression and levels of expres-
sion within the same tumor [196].

Intriguingly, HLA-G and PD-L1 have been reported to 
share other similarities. Firstly, both could induce apop-
tosis, namely, sHLA-G binding to CD8 triggered apop-
tosis in T cells and NK cells through Fas/sFasL pathway 
[162], whilst PD-L1 expressed on lymphatic endothe-
lial cells (LECs) could elicit apoptosis in tumor-spe-
cific  CD8+ central memory T cells [202]. These results 
indicated that both HLA-G and PD-L1 could not only 
directly reduce the population of effector immune cells, 
but also restrain the lymphocytes functions by engaging 
with corresponding receptors, working along both lines 
to shield tumor cells from immune killing. Secondly, 
both PD-L1 and HLA-G exist in the form of exosomes 
to impede immune cell functions. Exosomes are nano-
vesicles released by normal or neoplastic cells, contain-
ing proteins, metabolites, and other bioactive molecules, 
participating in physiological processes such as tumor 
angiogenesis, immune evasion, and long-distance inter-
cellular communication [203]. Exosomal PD-L1 inhibited 
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the proliferation of  CD4+ and  CD8+ T cells, decreased 
the abundance of T cells in spleen and lymph nodes, 
and impaired the NK cells cytotoxicity characterized by 
reduced secretion of IL-2, IFN-γ, and Granzyme B [204]. 
Exosomal PD-L1 is more effective than soluble PD-L1 
in inducing systemic immunosuppression due to its rich 
circulating routes and robust inhibitory effect, contrib-
uting to the poor response rate to anti-PD-L1 therapy 
and development of drug resistance in most patients 
[203]. Indeed, PD-L1-targeted therapy in combination 
with the inhibition of exosome secretion using genetic 
means or small molecule drugs has shown promising 
therapeutic efficacy [205–207]. In 2003, Be´atrice Riteau 
et al. reported the existence of secretory exosomal form 
of HLA-G for the first time [208], whereas the exosomal 
HLA-G has not been identified in ascitic and pleural exu-
dates from cancer patients until 2013 [44]. To date, the 
origin of exosomal HLA-G remains inconclusive, but a 
previous study suggested it might be derived from stem 
cell-like cancer cells in renal cancer [209]. Differentia-
tion and maturation of peripheral blood mononuclear 
cell (PBMC)-derived DC cells were restrained by exoso-
mal HLA-G, as well as the T cells activation mediated 
by DC cells [209]. However, whether exosomal HLA-G 
has the exact same immunosuppressive functions as 
membrane-bound HLA-G remains to be appraised. In 
addition, higher level of exosomal HLA-G was coupled 
to the presence of stem cell-like circulating tumor cells 
and the resulting disease progression and poor progno-
sis, hinting that modalities targeting exosome inhibition 
might serve as amplifiers of existing neoadjuvant chem-
otherapy to benefit breast cancer patients [142]. Finally, 
both HLA-G and PD-L1 proteins could be transferred 
intercellularly. Trogocytosis was defined as the transfer of 
membranal molecules from one cell to another, typically 
through immune synapses [210].  CD8+ T cells acquired 
functionally active PD-L1 from neighboring mature DC 
cells or tumor cells via trogocytosis, rendering them 
into the fight with surrounding  PD1+ T cells and result-
ing in the diffusion of local immunosuppression [211]. 
The pattern of HLA-G trogocytosis was more diversi-
fied and characterized by rapid, transient, and intercellu-
lar contact-dependent. Tumor cells were able to deliver 
HLA-G to effector immune cells. NK cells that received 
HLA-G from melanoma cells lost their proliferation and 
tumor-killing capacity and suppressed other NK cells 
cytotoxicity locally and transiently [212], while the occur-
rence of  CD3+HLA-Gacq+T cells was significantly cor-
related with poor prognosis in multiple myeloma [213]. 
Some activated and resting T cells obtained HLA-G from 
antigen presenting cells (APCs) by trogocytosis and then 
transformed into Treg cells, acquiring immunosuppres-
sive functions comparable to those of natural Treg cells 

[214]. Based on the above results, trogocytosis has been 
regarded as an emergency response to immune attack for 
HLA-G-expressing cells and tissues. The extensive immu-
nosuppression was orchestrated due to the rapid spread 
of HLA-G, which was originally restricted in expression, 
to more kinds of cells and larger areas, enhancing the 
capacity of the whole tumor to counteract the immune 
system. In general, HLA-G and PD-L1 shared some simi-
larities, including undergoing multifaceted and multilay-
ered regulation, being in a process of dynamic changes, 
having similar intercellular transfer pathways, and exert-
ing potent immunosuppressive functions. Hence, previ-
ous immunotherapy paradigms targeting PD-L1 may 
offer valuable insights for developing treatment options 
based on HLA-G, however, the characteristics of HLA-G 
still need to be taken into account.

Notably, a regulatory relationship between PD-L1 and 
HLA-G was also discovered. Activated  CD8+T cells pre-
treated with sHLA-G exhibited increased level of ILT-2 
protein, accompanied by a significant increase in the 
expression of CTLA-4, PD-1, and TIM3, suggesting a 
mutual regulation between HLA-G and other immune 
checkpoints which might be conducive to the immuno-
suppressive tumor microenvironment (TME) [215].

2. Other immune checkpoint molecules

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-
4) is one of the first immune checkpoint molecules stud-
ied, acting as a transmembrane receptor on T cells that 
impairs immune response by binding to the correspond-
ing ligands. In  BRAFV600E+ papillary thyroid cancer, 
HLA-G, CTLA-4, and PD-L1 expression were consist-
ently high and significantly inversely correlated with thy-
roid differentiation score [195], coinciding with the data 
in renal cell carcinoma [216].

T cell Ig and ITIM domain (TIGHT), another novel 
immune checkpoint that has gained growing attention, 
interact with CD155/CD122 ligands to participate in the 
complex immune regulatory network [217]. Limited bio-
informatics data suggested that, contrary to consensus, 
increased expression of HLA-G and TIGHT was linked 
to longer disease-free and overall survival in TNBC 
patients [218]. However, further validation is required to 
confirm this finding.

There is insufficient data to clarify the relationship 
between HLA-G and TIM-3, except for one report sug-
gesting that administration of sHLA-G or extracellular 
vesicles carrying HLA-G could potentiate TIM-3 expres-
sion [215]. Nevertheless, the upregulation of HLA-G 
and HMGB1, one of the identified TIM-3 ligands, was 
induced by IL-1β, and HLA-G could further increase 
HLA-G protein level in dependence on TLR4 in glioma 
[219]. Although the binding site of TIM-3 to HMGB1 
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and its potential impacts are poorly investigated, it is 
reasonable to conceive that drugs targeting TIM-3 could 
modulate HLA-G expression via TLR4-HMGB1 axis.

Collectively, there remains scarce information to date 
about the relationship between HLA-G and immune 
checkpoints. In-depth demonstration is fundamental 
for better targets selection in combination with HLA-G 
blockade strategies.

Therapeutics targeting HLA‑G in cancer
Immunotherapy represented by anti-PD-1/PD-L1 has 
revolutionized the paradigm of cancer therapy, how-
ever, only about 25% of patients with solid tumors ben-
efit effectively and persistently from anti-PD-1/PD-L1 
[7]. Elevated level of sHLA-G in plasma and increased 
expression of ILT-2 have been implicated as possible 
mechanisms underlying resistance to anti-PD-1 thera-
pies [220, 221]. In this setting, HLA-G-based therapeu-
tics have emerged, aiming to circumvent the issues. 

HLA-G highly expressed in renal cancer cells specifically 
impaired the anti-tumor function of  CD8+ILT2+PD1-T 
cells, rather than  CD8+ILT2−PBMC or  CD8+PD-1+T 
cells [222], hinting that blockade of HLA-G might be 
applicable to the patients who failed to respond to anti-
PD-1/PD-L1 therapy, as a complement to existing immu-
notherapy regimens. The absence of PD-L1 and CTLA-4 
and the enrichment of HLA-G in adenoid cystic carcino-
mas of salivary glands suggested that existing agents tar-
geting PD-L1 or CTLA-4 might be ineffective due to the 
lack of targets [223]. Instead, targeting HLA-G appears to 
be a promising therapeutic approach (Fig. 4).

Owing to the heterogeneity and diversity of the cancer, 
a multitude of clinical trials have focused on combination 
treatments in order to develop preferable therapeutic 
regimens with improved efficacy. However, the existing 
combination strategies, including anti-CTLA-4, chemo-
therapy, and targeted therapy, have yielded unsatisfactory 
synergistic effects and severe side effects [7]. Therefore, 

Fig. 4 Harnessing HLA-G in cancer immunotherapy. Numerous HLA-G-based therapeutics currently in preclinical or clinical stages could 
potentially be leveraged to target human cancers. Monoclonal antibodies and CAR-NK cells against HLA-G can restrain tumor growth. Anti-HLA-G 
antibody also serve as a favorable partner for chemotherapy, ICB, and targeted therapies, including CDKi, ERKi, AKTi, and angiogenesis inhibitors. 
Moreover, small-molecule inhibitors, miRNA mimics, and PROTACs may provide new opportunities for future applications of HLA-G. CAR-NK 
cells chimeric antigen receptor NK cells, ICB immune checkpoint blockade, CDKi CDK inhibitors, ERKi ERK inhibitors, AKTi AKT inhibitors, PROTACs 
proteolysis-targeting chimeras
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further studies on the feasibility and clinical application 
potential of combining anti-PD-1/PD-L1 with HLA-G 
blockade would be valuable. According to a recent study, 
aberrantly activated cytokine signaling boosted HLA-G 
and PD-L1 expression to impair NK cells cytotoxicity, 
leading to trastuzumab resistance, whereby the immense 
therapeutic potential of HLA-G-blocking antibody com-
bined with anti-PD-1/PD-L1 antibody in trastuzumab-
resistant breast cancer patients was indicated [158].

In addition to the preclinical researches above, clini-
cal trials in small groups are also in progress, summa-
rized in Table  3. A prospective observational cohort 
study (NCT04300088) explored the impact of HLA-G 
expression level on the efficacy of tumor immunothera-
pies (anti-PD-1/PD-L1 therapy and/or anti-CTLA-4 
therapy), providing a strong rationale for demonstrating 
the relationship between HLA-G and tumor resistance 
to immunotherapy. In another clinical trial for advanced 
solid tumors (NCT04991740), the effectiveness of a novel 
bispecific antibody JNJ-78306358 that binds to CD3 and 
HLA-G has been evaluated, as well as its safety, immu-
nogenicity, and pharmacokinetic properties. BND-22, a 
monoclonal antibody targeting ILT-2, has been proven 
to significantly improve the efficacy of anti-PD-1 mono-
therapy in vitro, and the related phase I/II clinical trials 
are currently recruiting patients (NCT04717375) [221]. 
To note, an open-label, dose-escalation/expansion, and 
multi-center clinical trial (NCT04485013) is enroll-
ing patients with advanced refractory or resistant solid 
tumors, including head and neck squamous cell carci-
noma, colorectal cancer, non-small cell lung cancer, and 
triple-negative breast cancer, to be given single-agent 
TTX-080 (anti-HLA-G antibody), or in combination with 
the PD-1 inhibitor pembrolizumab or the EGFR inhibi-
tor cetuximab. The study aims to determine the safety 
and tolerability of TTX-080 and illustrate the feasibility 
and preliminary efficacy of combining TTX-080 with 
pembrolizumab or cetuximab. This will provide further 
insight into the future clinical applications of HLA-G 
inhibition for the benefit of more cancer patients.

Chemotherapeutic agents retard tumor growth chiefly 
by arresting cell cycle, inhibiting DNA replication, and 
disturbing cell metabolism [224], but they could also 
serve as immunomodulators to induce immunogenic 
death, eliminate immunosuppressive cells, and activate 
immune effector cells [225, 226]. In NSCLC, pemetrexed, 
a multi-targeted chemotherapeutic agent interfering with 
folate metabolic processes, strengthened the expres-
sion of HLA-G and PD-L1 by promoting glycosylation. 
Therefore, simultaneous targeting of PD-L1 and HLA-G 
could amplify the efficacy of pemetrexed in  vitro [201], 
having implications for designing rational combination 
treatments for clinical trials in NSCLC. In metastatic 

colorectal cancer, irinotecan could be captured by 
HLA-G proteins, resulting in changes in pharmacokinet-
ics and interference with the interaction between HLA-G 
and its receptor, but it remains ambiguous whether 
anti-HLA-G therapies could potentiate or attenuate the 
efficacy of irinotecan [140]. Most patients would suffer 
chemo-resistance due to the generation of cancer stem 
cells, while the differentiation strategies attempted to 
reverse the resistance by converting the rapidly prolifer-
ating malignant tumor cells to benign types [227]. How-
ever, ovarian cancer cells treated with differentiation 
agents showed a decrease in stemness and an increase in 
HLA-G and PD-L1 expression as a defense against anti-
tumor immunity, indicating that the efficacy of combin-
ing differentiating drugs with chemotherapeutics might 
be unsatisfactory and the impact of immunosuppressive 
TME should be further explored [200]. On this basis, 
blockade of HLA-G may be a superior partner to chemo-
therapy for long-term effective cancer control and rever-
sal of drug-resistant tumors.

Derangement of normal cell cycle often occurs in can-
cer, triggering aberrant activation of cell-cycle proteins, 
making targeting cyclin-dependent kinases (CDKs), 
or adjusting the cell cycle a beneficial approach to halt 
tumor growth [228]. CDK-1 is a key regulator of cell 
cycle progression, which interacts with Cyclin B to 
activate cells into M-phase and ensure normal mito-
sis [229]. Lovastatin synchronizes cancer cells in the G1 
phase as with CDK4/6 inhibitor [230]. Nocodazole, on 
the other hand, prevents mitosis and induces apoptosis 
in tumor cells [231]. It has been shown that nocodazole 
and CDK1 inhibitors, but not lovastatin, could cause cell 
cycle blockade accompanied by increased expression of 
HLA-G and PD-L1, which impaired the killing effect of 
immune cells against tumor cells [232]. This finding may 
partially explain why CDK4/6 inhibitors have a better 
anti-tumor effect compared to other CDKs. It also sug-
gests that blockade of HLA-G may enhance the efficacy 
of CDK1 inhibitors and nocodazole.

Hyperactive metabolism and disproportionate blood 
supplies render the tumor microenvironment hypoxic, 
leading to the accumulation of vascular endothelial 
growth factor (VEGF), which fosters angiogenesis and 
concomitantly arouses the upregulation of multiple 
immune checkpoints, including HLA-G [29, 233]. Hyper-
proliferation of disorganized vessels hinders immune cell 
infiltration to drive the development of immunosuppres-
sive TME [234], whereas angiogenesis inhibitors exerts 
antitumor effects through vascular normalization and 
TME remodeling [235, 236]. HLA-G/ILT-4 signaling was 
crucial to tumor angiogenesis, documented with that the 
interplay between HLA-G and ILT4 boosted the expres-
sion of VEGF-C in clear cell renal cell carcinoma and 
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NSCLC, thereby facilitating the tumor growth and lym-
phatic metastasis [105, 237, 238]. Thus, a combination 
of HLA-G blockade and angiogenesis inhibitor has been 
proposed, yet more compelling evidence is required to 
assess its efficacy.

Beyond the targeted therapies mentioned above, inhi-
bition of AKT or ERK might coordinate with HLA-G-
based therapies, as HLA-G/ILT-4 has been shown to 
promote tumor cell proliferation, migration, and invasion 
through the activation of AKT/ERK signaling in CRC 
[105].

Currently, therapies targeting HLA-G centered on 
developing specific antibodies to block the conjugation 
of HLA-G and its receptor, featuring the advantages 
of high affinity and high selectivity, yet having many 
shortcomings in terms of stability, immunogenicity, and 
production costs. In this context, orally-bioavailable 
small-molecule inhibitors with high drug concentration, 
minor rejection, and low cost are nominated as more 
desirable antitumor therapies [239, 240]. However, due 
to the complex spatial interactions between HLA-G and 
its ligands, competitive binding sites have not yet been 
well-characterized, leaving the development of small-
molecule inhibitors lagging behind that of antibodies. 
The proteolysis-targeting chimeras (PROTACs) have rev-
olutionized the development of small molecule drugs by 
harnessing the natural protein degradation system in the 
body to reduce protein levels [241]. Given that HLA-G 
could be ubiquitinated, designing suitable PROTACs 
linking HLA-G and E3 ligase to form a ternary complex 
that facilitates recognition and degradation of ubiquit-
inated HLA-G by the proteasome might be a novel tactic 
to decrease HLA-G expression. In addition to this, abla-
tion of HLA-G using RNAi or CRISPR/Cas9 gene edit-
ing may also potentiate the anti-tumor response. In renal 
cell carcinoma or choriocarcinoma cells, stronger killing 
capacity of NK cells against tumor cells was evoked after 
silencing of HLA-G with the CRISPR/Cas9 system [242]. 
Interference with HLA-G expression using miRNA mim-
ics diminished the viability, migration, and invasion of 
OSCC cells [119]. However, these two approaches are still 
preliminary and their application in the clinic remains to 
be elucidated.

Chimeric antigen receptors (CARs) are artificial recep-
tor molecules created by genetic engineering technol-
ogy, which could confer specificity to immune effector 
cells (e.g., T lymphocytes, NK cells) against antigenic 
epitope of the target, thereby reinforcing the ability of 
immune cells in recognizing antigenic signals and acti-
vation [243]. Nevertheless, the poor clinical efficacy of 
CAR-T or CAR-NK therapies may be attributed to the 
presence of a plethora of immunosuppressive molecules 
in the TME, including HLA-G. It was demonstrated 

that the anti-HLA-G constructs convert inhibitory sig-
nals into activating signals, initiating robust cytotoxicity 
of engineered CAR-NK cells upon contact with tumor 
cells. Low-dose chemotherapy enhanced the sensitiv-
ity of tumor cells to CAR-NK cells by raising HLA-G 
expression on the surface of tumor cells [22]. CAR-NK 
cells were characterized by higher safety, easier accessi-
bility, and fewer side effects compared with CAR-T cells. 
Considering that HLA-G is limited to immune-privileged 
tissues and is almost undetectable in normal cells, chem-
otherapy-induced high expression of HLA-G in tumor 
cells would cause a further reduction in the damaging 
effects of HLA-G CAR-NK on normal tissues.

Therapies targeting HLA-G are emerging as a prom-
ising area of clinical research, with preliminary success 
in certain cancers. However, clinical trials with larger 
cohorts are needed to validate these early results and 
identify a safe and effective single-agent or combination 
modality based on HLA-G that can be widely used in 
clinical practice.

Conclusions
In this review, we propose that HLA-G, as a novel IC, 
constructs a complex immune regulatory network by 
impairing or potentiating the function of key immune 
cells. The expression pattern of HLA-G in cancers is 
highly heterogeneous, with an overall trend of increas-
ing with disease progression, suggesting that HLA-G 
plays an important role in the development of malig-
nancy tumors. Hence, a growing body of preclinical 
work attempts to unveil novel approaches to break the 
HLA-G-based shield adopted by tumors to restore the 
anti-tumor response of immune effector cells, advanc-
ing future clinical applications. However, new means or 
strategies for detecting HLA-G are urgently needed given 
the poor consistency of existing antibodies or kits, which 
is of vital importance to illustrate the function of HLA-G 
and its different transcript isoforms. Furthermore, there 
are still a number of issues to be resolved in the future. 
By which mechanisms does HLA-G specifically regulate 
immune cells or tumor cells to exert immunosuppres-
sive functions? What is the role of HLA-G signaling in 
the pathogenesis of oncology? What is the efficacy and 
safety of strategies targeting HLA-G as monotherapy or 
in combination with existing ICBs such as anti-PD-1/
PD-L1 antibodies in the treatment of cancer? Is it feasi-
ble to develop antibodies targeting both HLA-G and ILT? 
How can new potential small-molecule agents be discov-
ered to combat the limitations of monoclonal antibod-
ies by targeting the regulatory mechanisms of HLA-G? 
Can sHLA-G and exosomal HLA-G be used as reliable 
blood-based biomarkers for early diagnosis or prediction 
of responsiveness to chemotherapy and ICB therapies? 
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Despite the aforementioned issues have denoted the need 
for further evidence to pinpoint the intertwined role of 
HLA-G in cancers, HLA-G holds immense potential to 
be a promising biomarker for early diagnosis and prog-
nosis assessment, and constitutes an effective targetable 
strategy for postponing or halting tumor growth.
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