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Abstract 

Background Emerging evidence suggests that Rho GTPases play a crucial role in tumorigenesis and metastasis, 
but their involvement in the tumor microenvironment (TME) and prognosis of hepatocellular carcinoma (HCC) 
is not well understood.

Methods We aim to develop a tumor prognosis prediction system called the Rho GTPases-related gene score 
(RGPRG score) using Rho GTPase signaling genes and further bioinformatic analyses.

Results Our work found that HCC patients with a high RGPRG score had significantly worse survival and increased 
immunosuppressive cell fractions compared to those with a low RGPRG score. Single-cell cohort analysis revealed 
an immune-active TME in patients with a low RGPRG score, with strengthened communication from T/NK cells 
to other cells through MIF signaling networks. Targeting these alterations in TME, the patients with high RGPRG 
score have worse immunotherapeutic outcomes and decreased survival time in the immunotherapy cohort. Moreo-
ver, the RGPRG score was found to be correlated with survival in 27 other cancers. In vitro experiments confirmed 
that knockdown of the key Rho GTPase-signaling biomarker SFN significantly inhibited HCC cell proliferation, invasion, 
and migration.

Conclusions This study provides new insight into the TME features and clinical use of Rho GTPase gene pattern 
at the bulk-seq and single-cell level, which may contribute to guiding personalized treatment and improving clinical 
outcome in HCC.
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Introduction
Primary liver cancer (PLC) is the sixth frequently diag-
nosed cancer and the third leading cause of cancer-
related mortality, seriously threatening human life and 
health [1]. As the most predominant type of PLC, hepato-
cellular carcinoma (HCC) is known to be a highly aggres-
sive and heterogeneous tumor with high recurrence 
rate and shorter 5-year survival rate of less than 20% 
[2]. One-third of HCC cases diagnosed at an advanced 
stage due to the absence of screening or follow-up [3], 
and thus local and systemic metastasis are the primary 
causes leading to a failure treatment and dismal progno-
sis of HCC [4]. Although the clinical benefits of immune 
checkpoint inhibitor (ICI) are emerging for patients with 
advanced HCC, the disappointing results of some phase 
2 and 3 trials for HCC immunotherapy represent con-
tinued challenges [5, 6]. In addition, it has been reported 
that tumor response to ICI associates with prognosis, 
which underscores the need for accurate biomarkers of 
the risk stratification and treatment response in the clini-
cal management of HCC.

Rho GTPases are crucial signal transducers regulat-
ing multiple biological processes involved in cell polar-
ity, adhesion, and migration, contributing to cancer cell 
invasiveness and metastasis [7]. The transformation pro-
cess of primary cancers to metastatic cancers has high 
relatedness with the activation of Rho GTPases path-
way, and this could be attributed to cooperative interac-
tion between Rho GTPases pathway and proto-oncogene 
(K-Ras and H-Ras) [8, 9]. For instance, activated Rho 
GTPase members facilitate bladder cancer [10], breast 
cancer [11], and colon cancer [12] metastasis. Some Rho 
GTPases pathway-relate genes such as RHOA, RAC1, 
PAK1, and ARHGEF38 have also been indicated to play 
critical roles in metastatic cancer at an advanced stage 
[13–16], which provides promising for cancer-specific 
treatments. Notably, emerging study has linked Rho 
GTPases to tumor immunity, such as a blockade of Rho-
kinase (ROCK), which could induce anti-tumor immu-
nity by increasing cancer cell phagocytosis and dendritic 
cell (DC)-mediated T cell priming [17]. In immunosup-
pressed environments, abnormal alterations of the Rho 
GTPases pathway have been reported to exert oncogenic 
role in lymphoma [18], whereas the immune infiltration 
and clinical significance of Rho GTPases pathway-related 
genes in HCC have not been fully elucidated.

Considering the significance of the role of Rho GTPases 
in metastatic cancers and tumor immunity, we put for-
ward the hypothesis that Rho GTPases gene expres-
sion pattern may affect the clinical outcome and tumor 
immune infiltration in HCC patients. In this study, we 
attempted to conduct a multi-level bioinformatic analysis 
on Rho GTPases signaling-related genes in HCC patients 

from 3 independent public datasets, which aim to pro-
vide a connection between Rho GTPases and immune 
infiltration, immunotherapy response, chemotherapeutic 
agent selection, and prognosis in HCC (see Fig. 1). This 
study may contribute to optimizing precision treatment 
and improving clinical outcome of HCC patients.

Material and methods
Data collection and processing
RNA-sequencing data and corresponding clinical infor-
mation of HCC patients were obtained from three differ-
ent cohorts: The Cancer Genome Atlas (TCGA, https:// 
portal. gdc. cancer. gov/) (TCGA-LIHC), International 
Cancer Genome Consortium (ICGC, https:// dcc. icgc. 
org/) (ICGC-LIRI-JP), and Gene Expression Omnibus 
(GEO, http:// www. ncbi. nlm. nih. gov/ geo) (GSE76427). 
The patient characteristics were displayed in Table  1. 
Immunotherapeutic response data (anti-PD-L1 therapy) 
were obtained from IMvigor210 database. A single-cell 
cohort of HCC samples was obtained from GEO data-
base (GSE149614). 428 Rho GTPase-signaling genes were 
collected from molecular signatures database (MSigDB) 
on Feb 21st, 2022, listed in Additional file 2: Table S1. The 
study design was in line with the REMARK criteria [19].

Screening candidate genes
Differentially expressed genes (DEGs) were identified 
between normal and HCC samples using the “limma” 
package of R, and “False discovery rate (FDR) < 0.05, and 
log2|Fold change|> 1” was set as a threshold. Univariate 
regression analysis was used for the analysis of progno-
sis-related genes, and P < 0.05 was set as a threshold for 
significance. The common candidate genes were obtained 
using the “VeenDiagram” package of R and then were vis-
ualized using “pheatmap” package of R. Protein–protein 
interaction (PPI) networks for candidate genes were ana-
lyzed using the STRING database (Version: 12.0, http:// 
string- db. org).

Consensus clustering analysis
To further discover molecular cancer subtype based on 
the expression of Rho GTPase-signaling genes, HCC 
samples were drawn for a repetitive test, and different 
clusters’ solutions (k = 2 to k = 6) was calculated using 
the “ConsensusClusterPlus” package of R to find the opti-
mal number of clusters. Clustering heatmaps and gene 
expression heatmap in subgroups were plotted using 
“pheatmap” package of R. Kaplan–Meier survival analy-
sis was performed to compare the survival difference 
between different subgroups.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://dcc.icgc.org/
http://www.ncbi.nlm.nih.gov/geo
http://string-db.org
http://string-db.org
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Rho GTPase‑signaling prognostic scoring system
Least absolute shrinkage and selection operator (LASSO) 
regression analysis was conducted on the candidate genes 
for the optimal feature genes selection and model con-
struction by a tenfold cross-validation method. Once the 
model is selected, use the coefficients or weights assigned 
to each gene in the model to calculate individual risk 
score for each HCC patients. We defined such a tumor 
prognosis prediction system called the Rho GTPases-
related gene score (RGPRG score). The RGPRG score 
could be calculated through the following formula:

where X represents risk coefficients and Y represents 
gene expression level. Based on the median RGPRG 
score, HCC samples could divide into high- and 

RGPRG score =

n∑

i=1

Xi × Yi,

low-RGPRG score groups. The Receiver Operating Char-
acteristic (ROC) curve analysis was applied to compare 
the predictive accuracy of the prognostic scoring system 
using the “timeROC” package of R. Two external cohorts 
(ICGC-LIRI-JP and GSE149614) were used to validate 
the predictive ability and reliability of the prognostic 
scoring system.

Clinical significance
Clinical characteristics (including age, sex, Grade, Stage, 
T stage, M stage, N stage) and RGPRG score were ana-
lyzed to identify prognosis-related factors by univariate 
and multivariate regression analyses. The correlations 
between RGPRG score and clinical characteristics were 
further estimated using the Wilcoxon rank sum test. 
Decision curve analysis (DCA) was used to evaluate and 
compare multiple published clinical prediction models 

Fig. 1 Schematic design of Rho GTPases gene expression pattern to assess the connection between Rho GTPases and immune infiltration, 
immunotherapy response, chemotherapeutic agent selection, and prognosis in HCC
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[20–23]. None and ALL are two reference lines, and the 
closer the curves of other models are to these two lines, 
the less clinical utility they have.

Biofunction analyses
To further reveal the function of the Rho GTPase-sign-
aling gene signature, DEGs were identified between 
high- and low-RGPRG score groups of HCC patients 
from TCGA cohort. Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) datasets 
(“c5.go.v7.4.symbols.gmt” and c2.cp.kegg.v7.4.symbols.
gmt”) were downloaded from Gene Set Enrichment 
Analysis (GSEA) website and were conducted on DEGs 
for functional and pathway enrichment using "org.Hs.eg.
db", " enrichplot", and "clusterProfiler" packages of R.

Tumor immune landscape analysis
We obtained the CIBERSORT R source code and the 
LM22 matrix (22 immune cell gene signature) from the 
CIBERSORT web portal (http:// ciber sort. stanf ord. edu/) 
as previously described. Based on the HCC RNA-seq 
expression data from TCGA cohort, we used CIBER-
SORTR algorithm to calculate 22 tumor immune cell 
proportions, and histogram and boxplot diagrams were 
produced to visualize the abundance of immune infiltra-
tion. To explore the relationship between RGPRG score 
and the immune checkpoints, a boxplot of the distribu-
tion of the immune-checkpoint gene expression values in 
the high- and low-RGPRG score group was drawn using 
“ggplot2” packages of R.

Mutational landscape analysis
Masked somatic mutation data were downloaded from 
TCGA online database, and the mutation information 
was extracted and then grouped based on the RGPRG 
score. Waterfall plots were drawn to visualize mutational 
landscapes of HCC patients with different RGPRG score 
groups using the “maftools” package of R.

Single‑cell RNA‑seq data analysis
The “Seurat” package of R was used for single-cell quality 
control (QC) and cell clustering analysis, and the func-
tion “AddModuleScore” of the R package “Seurat” was 
performed to calculate RGPRG score. Different subclus-
ters and different RGPRG scores for each single cell were 
then displayed in the t-SNE plot. The intercellular com-
munication networks and differential ligand-receptor 
pairs were identified using the R package “CellChat”.

Therapeutic response prediction
Based on tumor mutation burden (TMB), Tumor 
Immune Dysfunction and Exclusion (TIDE) scores, and 
PD-L1 protein expression, the potential immunotherapy 
response prediction performance of HCC was assessed. 
The prediction of different RGPRG score groups to 
immunotherapeutic efficacy was evaluated using the 
clinical cohort IMvigor210. Kaplan–Meier method was 
used to compare the survival difference between two 
RGPRG score groups in the immunotherapeutic cohort. 
The Genomics of Drug Sensitivity in Cancer (GDSC), the 
largest public pharmacogenomic database, was used to 
predict drug sensitivity for every HCC sample. The top 

Table 1 Clinicopathologic characteristics HCC patients

NR not reported

TCGA‑LIHC ICGC‑LIRI‑JP GSE76427

No. of patients 365 243 115

Age (%)

 < 45 42 (11.5%) 5 (2.1%) 7 (6.08%)

 ≥ 45 323 (88.5%) 238 (97.9%) 108 (93.92%)

Gender (%)

 Female 119 (32.6%) 61 (25.1%) 22 (19.13%)

 Male 246 (67.4%) 182 (74.9%) 93 (80.87%)

Grade (%)

 Grade 1 55 (15.1%) 30 (12.3%) 50 (43.5%)

 Grade 2 175 (47.9%) 152 (62.3%)

 Grade 3 118 (32.3%) 20 (8.2%) 62 (53.9%)

 Grade 4 12 (3.3%) 1 (0.4%)

 Unknown 5 (1.4%) 40 (16.8%) 3 (2.6%)

Tumor stage (%)

 I 170 (46.6%) 36 (14.8%) 55 (47.83%)

 II 84 (23.0%) 110 (45.3%) 35 (30.43%)

 III 83 (22.7%) 76 (31.3%) 21 (18.26%)

 IV 4 (1.09%) 21 (8.6%) 3 (2.61%)

 Unknown 24 (6.6%) 1 (0.87%)

T stage (%)

 T1 180 (49.3%) NR NR

 T2 91 (24.9%) NR NR

 T3 78 (21.4%) NR NR

 T4 13 (3.6%) NR NR

 Tx 1 (0.3%) NR NR

 Unknown 2 (0.5%) NR NR

N stage (%)

 N0 248 (67.9%) NR NR

 N1 4 (1.09%) NR NR

 Nx 112 (30.7%) NR NR

 Unknown 1 (0.3%) NR NR

M stage (%)

 M0 263 (72.1%) NR NR

 M1 3 (0.8%) NR NR

 Mx 99 (27.1%) NR NR

Survival status

 OS days (median) 556 780 423.4

 Censored (%) 126 (34.5%) 44 (18.1%) 23 (20%)

http://cibersort.stanford.edu/
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10 chemotherapeutic agents optimal for each RGPRG 
score group were displayed by sorting the p-value.

Pan‑cancer prognosis analyses
Based on the optimal feature genes, we used multivari-
ate cox regression analysis to construct the prognostic 
model for 35 different cancers including 10,228 patients 
from TCGA database. The distribution of RGPRG score 
in pan-cancer patients was displayed in the boxplot. 
Kaplan–Meier curve was used to compare the prognosis 
difference in different RGPRG score groups of pan-can-
cer patients.

Cell culture
Human liver cell line L02 and six HCC cell lines includ-
ing Huh7, SK-hep1, Hep3B, SMMC7721, HCCLM3, and 
HepG2 were purchased from Zhongqiaoxinzhou (Shang-
hai, China). At 37  °C and 5%  CO2, all cell lines were 
cultivated in the Dulbecco’s Modified Eagle Medium 
(DMEM) with 10% fetal bovine serum (FBS) and 1% 
penicillin/streptomycin (Thermo Fisher Scientific, MA, 
USA).

RNA extraction, reverse transcription, and quantitative 
reverse transcription polymerase chain reaction (qRT‑PCR)
Total RNA from cells was extracted by E.Z.N.A. Total 
RNA Isolation Kit (Omega, GA, USA). The generation of 
cDNAs from reverse transcription was performed by Pri-
meScript™ RT-PCR kit (TaKaRa, Otsu, Japan). Accord-
ing to manufacturer instructions of Biorad CFX Connect 
(Bio-Rad Laboratories, CA, USA), we conducted the 
qRT-PCR by using SYBR Premix Ex Taq (TaKaRa, Otsu, 
Japan). The specific operation steps of qRT-PCR were 
performed as described previously [24]. The primers of 
SFN and GAPDH are as follows: SFN Forward (5′-ACT 
TTT CCG TCT TCC ACT ACGA-3′), Reverse (5′-ACA 
GTG TCA GGT TGT CTC GC-3′); GAPDH Forward (5′-
GGA GCG AGA TCC CTC CAA AAT-3′), Reverse (5′-
GGC TGT TGT CAT ACT TCT CATGG-3′).

Western blot
The proteins of each cell line were lysed with radioimmu-
noprecipitation assay buffer (RIPA) cell lysis buffer, pro-
tease inhibitors, and phosphatase inhibitors, and then the 
total protein amount was determined by the Bicinchoninic 
Acid Assay (BCA) method. Protein samples were electro-
phoresed on 10% SDS-PAGE gels and then transferred 
to the polyvinylidene fluoride (PVDF) membrane. The 
membrane was blocked with 5% non-fat milk, and probed 
with primary antibodies overnight at 4 °C. Membrane was 
washed three times, followed immediately by incubation 
with the secondary antibody for 1 h. Detection of the bands 

was achieved by adding enhanced chemiluminescent (ECL) 
chromogenic substrate.

siRNA transfection
SFN siRNA was designed and synthesized by Jijie Bio-
logical Technology (Guangzhou, China). According to 
the manufacturer’s instructions, siRNA and RNAiMAX 
reagent (Thermo Fisher Scientific, Shanghai, China) were 
diluted with Opti-MEM medium (Thermo Fisher Scien-
tific, Shanghai, China). Before transfection, cells (1.5 ×  105) 
were seeded into a 6-well plate at 24 h, and then transfec-
tion was conducted when reaching 60–70% confluence.

CCK‑8 proliferation assay
Cell Counting Kit-8 (CCK-8) was purchased from Keygen 
Biotech (Jiangsu, China). Firstly, cells (1 ×  104) were seeded 
into a 96-well plate until reaching 80% confluence. Accord-
ing to the manufacturer’s instructions, 10 μl CCK-8 solu-
tion was added into cells followed by 2  h incubation. A 
microplate spectrophotometer was applied to measure the 
optical density at 450 nm.

Cell invasion and migration assays
The cell invasion assay was conducted using a 24-well 
plate and Transwell chambers. Transfected cells were 
uniformly seeded in the upper chamber without serum, 
while the lower chamber of the 24-well plate contained 
culture medium with 20% FBS as a chemoattractant to 
induce cell invasion. Crystal violet staining was employed 
to stain and count cells. For the cell migration assay, cells 
transfected with targeted siRNA were dispersed into six 
wells under serum-free conditions. A wound was created 
using a 100 mL plastic pipette tip. The migration ability was 
determined by measuring the migration distance after 24 h 
using the scratch assay method.

Statistical analysis
All analyses are performed by R software (version 4.1.0). 
FDR-adjusted p-values were determined for differen-
tial expression analyses using the Benjamini–Hochberg 
method. The difference between two comparisons was 
evaluated by the Wilcox rank sum test, and multiple com-
parisons were performed by ANOVA test. The relationship 
between metric variables was examined by the Spearman 
correlation. When P value correction for multiple compari-
sons was required, the Bonferroni method was used.

Results
Rho GTPase signaling‑related gene transcriptomic 
landscape and molecule subtype of HCC
A total of 365 HCC samples and 50 normal samples 
with RNA-seq expression data and clinical informa-
tion were collected from TCGA cohort as a training set 
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while ICGC-LIRI-JP containing 243 HCC patients and 
GSE76427 containing 115 HCC patients were employed 
for model validation. These three cohorts themselves 
demonstrate outcomes that correlate with conven-
tional/classic tumor prognostic factors (TCGA-LIHC, 
P = 1.1308 ×  10–7; ICGC-LIRI-JP, P = 5.1141 ×  10–6; 
GSE76427, P = 0.0191), allowing us to draw conclusions 
of prognostic significance (Additional file 1: Fig. S1). 43 
candidate Rho GTPase signaling-related genes were 
obtained by taking the intersection of 67 DEGs (Addi-
tional file  2: Table  S2) and 180 prognosis-related genes 
(Additional file  2: Table  S3, Additional file  1: Fig.  S2A). 
Compared to the normal samples, 39 Rho GTPase sign-
aling-related genes were up-regulated, and only 4 genes 
such as CYBB, SYDE2, ARHGEF26, and DEPDC7 were 
down-regulated in HCC samples (Additional file  1: 
Fig.  S2B). To further identify the hub gene, PPI analy-
sis was conducted on 43 candidate genes, and CENPE, 
BUB1B, AURKB, CDC20, CENPF, and CDCA8 were 
the top 6 hub genes ranked by degree (Additional file 1: 
Fig.  S2C). Furthermore, we sought to explore how the 
imbalanced expression of Rho GTPase signaling-related 
genes would affect clinical prognosis and the progres-
sion of HCC. Consensus Cumulative Distribution Func-
tion (CDF) Plot and CDF Delta area suggested that the 
optimal number of clusters was K = 2 (Fig. 2A, B). HCC 
patients could be divided into two molecule subtypes 
including 224 samples in Rho GTPase signaling-related 
cluster 1 and 146 samples in Rho GTPase signaling-
related cluster 2 (Fig.  2C). Principal component analy-
sis (PCA) analysis further confirmed a good separation 
between cluster 1 and cluster 2 (Fig.  2D). Then, we 
explore the clinical significance of Rho GTPase signaling-
related regulation pattern, and we found that patients of 
cluster 1 had better survival compared with patients of 
cluster 2 (P = 9.14e−05, Fig. 2E). The transcriptomic land-
scape of DEGs regulated by two Rho GTPase signaling-
related clusters was displayed in the heatmap (Fig.  2F). 
Moreover, we investigate the correlation between the two 
clusters and clinical characteristics. Patients of cluster 
1 had a higher proportion of tumor, nodes, metastasis-
classification (TNM) stage I, Grade 1–2, and a lower pro-
portion of TNM stage III, Grade 3 than cluster 2 (Fig. 2G, 
H), indicating that Rho GTPase signaling-related genes 
were strongly associated with the differentiation and pro-
gression of advanced HCC. Given the recent debate on 
whether cancer immunotherapy or chemotherapy effi-
cacy is different between male and female patients [25], 
we further explore whether the Rho GTPase-identified 
molecular subtypes signature is different between the 
male and female patients. Interestingly, we found that 
the proportion of males in cluster 1 was significantly 
higher than in cluster 2 (Chi-square value = 1.77, P < 0.05, 

Fig. 2I), suggesting that the immune and clinical signifi-
cance of Rho GTPase-identified molecular subtypes may 
differ between males and females.

Rho GTPase signaling‑related gene signature 
for prediction of HCC prognosis
LASSO regression is a widely used method for feature 
selection in high-dimensional data analysis, which can 
effectively select important features and avoid overfitting. 
Based on 43 candidate Rho GTPase signaling-related 
genes, we used the LASSO algorithm to further narrow 
down gene numbers and construct an optimal predic-
tion model (Fig. 3A, B). 16 gene including ARHGAP11A, 
ARHGEF26, CDCA8, CENPA, CENPE, CENPM, 
CENPU, CYBB, DEPDC7, ECT2, IQGAP3, KIF18A, 
PRC1, SFN, SGO2, SYDE2 were eventually selected 
as signature genes. After multivariate analysis, ARH-
GAP11A, IQGAP3, KIF18A, and SFN were identified as 
independently prognosis-associated genes. As shown in 
the forest plot, the expression level of IQGAP3, KIF18A, 
and SFN had a significant correlation with poor survival, 
while ARHGAP11A played an opposite role (Fig. 3C). We 
defined such a tumor prognosis prediction system called 
the Rho GTPases-related gene score (RGPRG score). The 
RGPRG score was calculated with the following formula:

According to the median RGPRG score, HCC samples 
were divided into a high-RGPRG score group (n = 182) 
and a low-RGPRG score group (n = 183). HCC patients 
in the high-RGPRG score group had a short survival 
time and more death compared with patients in the low-
RGPRG score group (Additional file 1: Fig. S3A). As for 
survival analysis, high-RGPRG score patients had sig-
nificantly worse survival than low-RGPRG score patients 

RGPRG score = (−0.3803665364 ∗ ARHGAP11A)

+ (−0.0346771228 ∗ ARHGEF26)

+ (0.0743931047 ∗ CDCA8)

+ (0.0550284274 ∗ CENPA)

+ (0.4046724644 ∗ CENPE)

+ (−0.0078040620 ∗ CENPM)

+ (−0.0036923344 ∗ CENPU)

+ (0.0031554041 ∗ CYBB)

+ (−0.0171528676 ∗ DEPDC7)

+ (0.0001850116 ∗ ECT2)

+ (0.0590649975 ∗ IQGAP3)

+ (0.3867412470 ∗ KIF18A)

+ (−0.0412135681 ∗ PRC1)

+ (0.0033162272 ∗ SFN)

+ (0.4529556619 ∗ SGO2)

+ (0.4793704117 ∗ SYDE2).
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(P = 2.12e−09, Fig.  3D), showing a good prognostic 
stratification for HCC patients. ROC analysis demon-
strated that area under curve (AUC) values of 1-, 3-, and 
5-year survival were 0.787, 0.729, and 0.733, respectively 
(Fig. 3G), further confirming the predictive performance 
of Rho GTPase signaling-related gene signature. In the 
validation cohort of GSE76427 and ICGC-LIRI-JP, HCC 
patients could be divided into a high-RGPRG score 

group and a low-RGPRG score group as well based on 
the median RGPRG score (Additional file  1: Fig S3B). 
Patients with high RGPRG score had more death (Addi-
tional file 1: Fig. S3B), and worse survival compared with 
the patients with low RGPRG score (P = 0.00059, Fig. 3E; 
P = 2.231e−07, Fig. 3F). As for ROC analysis, AUC of 1-, 
2-, and 3-year survival in the GSE76427 cohort was 0.825, 
0.858, 0.794, respectively (Fig. 3H), while AUC of 1-, 2-, 

Fig. 2 Identifying molecular subtypes of HCC based on 44 candidate Rho GTPase-related genes. A Consensus clustering cumulative distribution 
function (CDF) for k = 2 to 6. B When K = 2, the relative change in area under the CDF curve was optimal. C consensus clustering identified two 
clusters. D Principal component analysis (PCA) of cluster 1 and cluster 2. E Kaplan–Meier (KM) survival analysis of cluster 1 and cluster 2, and cluster 
1 had better survival compared with cluster 2. F Heatmap of differential expression genes between two clusters. G Cluster 1 had a higher 
proportion of TNM stage I than cluster 2. H Cluster 1 had a higher proportion of Grade 1 and 2 than cluster 2. I Cluster 1 had a higher proportion 
of male than cluster 2. *P < 0.05 
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Fig. 3 Construction and validation of Rho GTPase-related gene signature in the HCC cohort. A The coefficients of selected features in the LSSSO 
regression model. B Partial likelihood deviance of selected features in the LSSSO regression model. C Multivariate logistic regression analysis shows 
that ARHGAP11A, IQGAP3, KIF18A, and SFN are independently associated with prognosis (P < 0.05). D–F K–M curve showing the low-RGPRG score 
group had better survival than the high-RGPRG score group in TCGA-LIHC, GSE76427, ICGC-LIRI-JP cohorts. G–I The receiver operation characteristic 
(ROC) curve of the Rho GTPase-related gene signature to predict 1-, 3-, and 5-year survival in TCGA-LIHC, GSE76427, ICGC-LIRI-JP cohorts
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and 3-year survival in ICGC-LIRI-JP cohort was 0.790, 
0.783, 0.770 respectively (Fig. 3I). These results indicated 
that our signature could produce an accurate and robust 
prediction for HCC prognosis.

Clinical significance of Rho GTPase signaling‑related gene 
signature
Considering that other clinical characteristics may affect 
Rho GTPase signaling-related gene signature, we sought 
to explore the relationship between other clinical char-
acteristics with RGPRG score. After univariate and 
multivariate analyses, RGPRG score were identified as 
an independent prognostic factor for HCC patients (all 
P < 0.001, Fig.  4A). As shown in Fig.  4B, RGPRG score 
was significantly correlated with sex, grade, stage and T 
stage. Patients in the high-RGPRG score group accounted 
for a high proportion of G3, G4, and stage II and III, 
while patients in the low-RGPRG score group had a high 
proportion of G1, G2, and stage I (Fig. 4B), suggesting a 
strong correlation of the RGPRG score and malignancy 
and advanced tumor of HCC. Compared with other clini-
cal factors, AUC of RGPRG score shows high predictive 
performance (AUC of 1-year survival = 0.801, AUC of 
2-year survival = 0.794, AUC of 3-year survival = 0.803, 
AUC of 5-year survival = 0.845, Fig.  4C). Furthermore, 
we used DCA curve to determine whether the model is 
superior to other strategies (Fig.  4D). Compared with 4 
published model, the vertical axis values of total survival 
rates at 1  year, 2  years, 3  years, and 5  years for the risk 
model 1 (Rho GTPase signaling-related gene signature) 
are higher than those for other models in a large thresh-
old range, suggesting that the risk model has better clini-
cal utility.

High RGPRG score was correlated with cell cycle, primary 
immunodeficiency, and higher TP53 mutation
To determine the potential regulation pattern of the Rho 
GTPase signaling-related gene signature, we carried 
out a GSEA enrichment analysis and found that the two 
RGPRG score groups showed different biological path-
ways. In the biological process, patients with low RGPRG 
score were significantly enriched for the metabolic pro-
cess including “alpha amino acid catabolic process”, “alpha 
amino acid metabolic process”, “cellular amino acid cata-
bolic process”, and “cellular lipid catabolic process”, and 
“complement activation” process (Additional file  1: Fig. 

S4A), while high RGPRG score was significantly enriched 
for cell cycle process including “cell division”, “microtu-
bule cytoskeleton organization”, “mitotic nuclear divi-
sion”, and “organelle fission”, and immune cell migration 
process such as “leukocyte migration” (Additional file 1: 
Fig. S4B). In the KEGG enrichment results, the pathway 
downregulated in HCC patients with low RGPRG score 
were metabolism pathways including “drug metabolism 
cytochrome p450”, “fatty acid metabolism”, “glycine ser-
ine and threonine metabolism”, and “retinol metabolism”, 
and “complement and coagulation cascades” pathway 
(Additional file  1: Fig. S4C), while the pathway upregu-
lated in HCC patients with high RGPRG score were “cell 
cycle” pathway and immune-related pathways, including 
“cytokine-cytokine receptor interaction”, “hematopoietic 
cell lineage”, “neuroactive ligand receptor interaction”, 
and “primary immunodeficiency” (Additional file 1: Fig. 
S4D). These results demonstrated that low RGPRG score 
patients were mainly related to metabolism and comple-
ment and coagulation cascades, which may reflect a less 
aggressive tumor phenotype. In contrast, the upregulated 
pathways in HCC patients with high RGPRG score were 
primarily related to cell cycle and immune-related path-
ways, indicating an active tumor cell proliferation and 
higher immunosuppression state. Due to the strong cor-
relation between cell cycle and DNA alteration with HCC 
progression, we further explore the genomic features of 
RGPRG score in HCC. The somatic alteration occurred 
in about 84.57% of high RGPRG score patients (Addi-
tional file 1: Fig. S5A), whereas this percentage decreased 
to 73.03% for the patients with low RGPRG score (Addi-
tional file 1: Fig. S5B). In terms of gene mutation, TP53 
is the most frequently mutated gene in the high RGPRG 
score patients (37%) compared with low RGPRG score 
patients (20%), which may account for the reason for 
poor outcomes in HCC.

High RGPRG score patients showing higher 
immunosuppressive tumor microenvironment
Considering the close relationship between RGPRG score 
and immune activity, we sought to further explore the 
immune infiltrate landscape of two RGPRG score groups. 
The 22 immune cell composition of HCC patients from 
the TCGA cohort was shown in Fig.  5A. CD8 T cells, 
resting memory CD4 T cells, M0 Macrophages, M1 Mac-
rophages, and M2 Macrophages were the main immune 

(See figure on next page.)
Fig. 4 Association of RGPRG score and multiple clinical features. A Univariate Cox and Multivariate Cox analyses of the age, sex, grade, stage, T 
stage, N stage, M stage, and RGPRG score. B The relationship between RGPRG score and age, sex, grade, stage, T stage, N stage, M stage. C ROC 
analysis of age, sex, grade, stage, T stage, N stage, M stage, and RGPRG score. D The DCA curve for the overall survival rate at 1 year, 2 years, 3 years, 
and 5 years for the risk model 1 and other risk model. Model 1: Rho GTPase-related risk model; Model 2: pyroptosis-related risk model; Model 3: 
ferroptosis-related risk model; Model 4: Cuproptosis-related risk model; Model 5: immune-related risk model. *P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 4 (See legend on previous page.)
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cell composition of HCC patients. Many differential 
immune cell infiltrations could be observed between 
high- and low-RGPRG score groups (Fig.  5B). Patients 
with high RGPRG score was characterized by the high 
infiltration of resting memory CD4 T cells, M0 Mac-
rophages, T cells regulatory (Tregs), naïve B cells, mem-
ory B cells, Plasma cells, naive CD4 T cells, Eosinophils, 
indicating a status of immunosuppression in this groups. 
CD8 T cells, activated memory CD4 T cells, activated 
NK cells, M1 Macrophages, M2 Macrophages, follicular 
helper T cells, gamma delta T cells, Neutrophils, rest-
ing Dendritic cells, activated Dendritic cells, resting NK 
cells, Monocytes, resting Mast cells, and activated Mast 
cells were abundant in the patients with low RGPRG 
score (Fig. 5C), suggesting enhanced antitumor environ-
ment. In addition, the expression of 8 classical immune 
checkpoint genes between two RGPRG score groups was 
further estimated in the TCGA cohort, and we found 

that Patients with high RGPRG score had higher expres-
sion levels of CD274, CTLA4, LAG3, PDCD1, and TIGIT 
(Fig.  5D), which presented another characteristic of 
immunosuppression.

Single‑cell analysis revealed the correlation between Rho 
GTPase phenotypes and immune tumor microenvironment 
heterogeneity
We next sought to explore the effect of cell composition 
heterogeneity on Rho GTPase phenotypes at the single-
cell level. 10 HCC samples were obtained with a total of 
34,414 cells from the GSE149614 dataset. After quality 
control and standardization (Additional file  1: Fig. S6A, 
B), filtered cells were identified as 24 cell clusters (Addi-
tional file  1: Fig.  S6C) and then annotated into 6 major 
clusters, including T/NK cells, B cells, fibroblasts, hepat-
ocyte, myeloid cells, and endothelial cells with canoni-
cal marker genes as previously described [26] (Fig.  6A; 

Fig. 5 Correlation between immune infiltration level and Rho GTPase-related gene signature. A Immune cell composition in the Tumor 
microenvironment of HCC patients from TCGA cohort. B Immune cell composition profiling between high- and low-RGPRG score HCC 
patients. C Boxplot of immune cell composition between high- and low-RGPRG score HCC patients. D Immune checkpoint gene expression 
between high- and low-RGPRG score HCC patients. *P < 0.05, **P < 0.01, ***P <0.001, ****P < 0.0001
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Additional file  1: Fig. S6D, E). Using 16 Rho GTPase-
signaling genes, the RGPRG score of each cell was pre-
sented in a t-Distributed Stochastic Neighbor Embedding 
(tSNE) plot, and we noticed that myeloid cells, the immu-
nosuppression cells, showed higher RGPRG score than 
other cells, which may contribute to the generation of 
immunosuppressive tumor microenvironment (Fig.  6B; 
Additional file  1: Fig. S6F). Based on the distribution 
of RGPRG score, we could divide 10 HCC samples into 
high and low RGPRG score groups (Fig.  6C). Consist-
ent with previous results [27], higher T cytotoxic scores 
were observed in HCC samples with low RGPRG score, 
but there was no significant difference between high- 
and low RGPRG score groups (P = 0.0767, Additional 
file 1: Fig. S7A). To further investigate the key players in 
the immune tumor microenvironment that contributed 
to Rho GTPase subtypes, we analyzed the cell-to-cell 
interactions and strength (Fig.  6D). Although the num-
ber of inferred interactions of the high RGPRG score 
group was slightly increased than the low RGPRG score 
group, enhanced interaction strength could be observed 
in the low RGPRG score group (Fig. 6E; Additional file 1: 
Fig. S7B). Interestingly, we noticed that T/NK cells dis-
played strong interaction strength with other cell types 
especially B cells and myeloid cells in low RGPRG score 
group (Fig.  6F), while in the high RGPRG score group, 
B cells had widespread communication with other cell 
types such as fibroblasts, hepatocyte, and endothe-
lial cells except for T/NK cells (Fig.  6G). Additionally, 
we found that T/NK cells enhanced their communica-
tion with other cell types through MIF and MK signal-
ing pathways in the low RGPRG score group (Fig.  6H, 
I). Ligand-Receptor Pairs analysis further displayed that 
enhanced communication between T/K cells and mye-
loid cells though MIF pathway (CD74-CXCR4), and MIF 
pathway (CD74 + CD44) in the patients with low RGPRG 
score, which identifying the increased recruitment of T/
NK cell by macrophages in the low RGPRG score (Addi-
tional file 1: Fig. S7C). Collectively, these results further 
confirmed the immune tumor microenvironment hetero-
geneity between Rho GTPase subtypes and indicated that 
the low RGPRG score group had an immune-active state 
tumor microenvironment.

The RGPRG score model can predict the efficacy 
of immunotherapy
Considering the core role of Rho GTPase phenotypes in 
the immune tumor microenvironment, we applied the 
TIDE database to further predict the immune escape of 
tumor cells. Tumor mutation burden (TMB) (Fig.  7A), 
Exclusion (Fig. 7B), and TIDE (Fig. 7D) scores were sig-
nificantly high in the high RGPRG score group, whereas 
Dysfunction scores (Fig.  7C) were opposite, suggesting 
that a lower response rate to immunotherapy in high 
RGPRG score group. Furthermore, we selected an anti-
PD-L1 treated cohort (IMvigor210) and an anti-PD-1 
treated cohort (GSE78220) to assess the response rate 
to immune checkpoint inhibitor (ICI) treatment. We 
observed that PD-L1 expression in the low RGPRG score 
group from IMvigor210 was significantly higher than 
that of the high RGPRG score group (P < 0.01, Fig.  7E), 
while there was no difference between PD-1 expression 
and RGPRG score group in GSE78220 (Fig. 7I). Patients 
with low RGPRG score exhibited significant clinical ben-
efits (Fig.  7F, G, J, K) and markedly prolong their sur-
vival compared with those patients with high RGPRG 
score (Fig. 7H, L). These analyses result indicates that the 
RGPRG score model had potential predictive value for 
anti-PD-L1 and anti-PD-1 immunotherapy and guide ICI 
treatment option.

The RGPRG score model predicts potential targeted drugs 
for HCC patients
To further explore the correlation between drug resist-
ance and Rho GTPase phenotypes, we applied the GDSC 
database to assess the response of Rho GTPase subtypes 
on various drugs. The IC50 values of 91 potential drugs 
exhibit differences between high and low RGPRG score 
groups, suggesting a potential relationship between 
RGPRG scores and drug sensitivity or resistance (Addi-
tional file  1: Fig. S8). According to P value, the top 10 
ranked drugs including A.443654, BI.2536, JNK Inhibi-
tor VIII, ABT.888, Rapamycin, GW843682X, QS11, 
PD.173074, Etoposide, and Gemcitabine displayed 
more drug sensitivity to high RGPRG score patients 
(Fig. 8A), whereas another top 10 ranked drugs including 
BMS.708163, CCT007093, LFM.A13, WO2009093972, 

(See figure on next page.)
Fig. 6 Single-cell cohort of HCC patients showing low-RGPRG score HCC patients possess an immune-active state. A t-SNE plot of the seven 
cell clusters derived from HCC samples. B t-SNE plot showing the distribution of RGPRG score in seven cell clusters. C Boxplot of RGPRG score 
in ten HCC samples. D Differential number of interactions (left) and strength (right) of seven cell clusters between high- and low-RGPRG score. E 
Number of inferred interactions (left) and strength (right) of seven cell clusters between high- and low-RGPRG score. F Circos plots of the putative 
ligand-receptor interactions between TNK cell and other cell clusters. Each brand points to interacting cell cluster. G Circos plots of the putative 
ligand-receptor interactions between B cell and other cell clusters. Each brand points to an interacting cell cluster. H Signaling pathway circle plots 
and network showing MIF signaling pathway between high- and low-RGPRG score groups. I Signaling pathway circle plots and network showing 
MK signaling pathway between high- and low-RGPRG score groups
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Fig. 6 (See legend on previous page.)
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AMG.706, Imatinib, KIN001.135, Erlotinib, CEP.701, and 
AZD.0530 showed more sensitivity to low RGPRG score 
patients (Fig. 8B). These results confirmed the strong cor-
relation between drug resistance and Rho GTPase phe-
notypes, which further guide tumor therapeutic drug 
selection. **P < 0.01, ***P < 0.001

The RGPRG score model has extensive prognostic value 
in pan‑cancer
Based on the pan-cancer cohorts from TCGA database, we 
conducted a pan-cancer survival analysis to further evalu-
ate the extensive prognostic value of Rho GTPase phe-
notypes. The distribution of RGPRG score in 35 different 
cancers was presented in Additional file 1: Fig. S9A, and we 
noticed that Cervical Adenosquamous (CSAC), esophageal 

squamous cell carcinoma (ESCC), Testicular Germ Cell 
Tumors (TGCT), and Kidney Chromophobe (KICH) had 
higher RGPRG score, while uterine carcinosarcoma (USC) 
and Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 
(DLBC) had lower RGPRG score than other cancer types. 
Significant survival differences between high and low 
RGPRG score groups could be observed in almost 27 can-
cer types (Additional file 1: Fig. S9B). Notably, patients with 
low RGPRG score always exhibited better clinical outcome 
than those patients with high RGPRG score in pan-cancer, 
and this result further confirmed the excellent prognostic 
robustness and extensive prognostic value of the RGPRG 
score model.

Fig. 7 Rho GTPase-related gene signature can predict efficacy of immunotherapy. A Scatterplots displaying the correlation of RGPRG score 
and tumor mutation burden. B The relationship of Exclusion between high- and low-RGPRG score HCC patients. C The relationship of Dysfunction 
between high- and low-RGPRG score HCC patients. D The relationship of TIDE between high- and low-RGPRG score HCC patients. E, I The boxplot 
shows the correlation of PDL1 expression and RGPRG score groups in IMvigor210, and the differences in PD1 expression between RGPRG score 
groups in GSE78220. F, J Distinct clinical outcomes of anti-PDL1 and PD-1 blockade immunotherapy between high- and low-RGPRG score groups 
in IMvigor210 and GSE78220. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. G, K The proportion of distinct 
clinical outcomes between high- and low-RGPRG score groups in IMvigor210 and GSE78220. H, L Kaplan–Meier survival curve showing the survival 
difference between high- and low-RGPRG score groups in IMvigor210 and GSE78220
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Key Rho GTPase‑signaling gene SFN may become 
the potential target for the treatment of HCC
Among 16 Rho GTPase-signaling signature genes, ARH-
GAP11A, IQGAP3 KIF18A, and SFN were independent 
prognostic genes based on the above multivariate logistic 
regression result. To further retain biologically significant 
and potentially functional differentially expressed genes, 
we identified key Rho GTPase-signaling genes based on 
higher |log2FC| values (|log2FC|> 1) and lower p values 
(p < 0.01) in the Gene Expression Profiling Interactive 

Analysis (GEPIA) database. The result displayed that 
only SFN was significantly overexpressed in HCC sam-
ples (from TCGA database) than normal samples (match 
TCGA normal and Genotype-Tissue Expression (GTEx) 
data) (Additional file 1: Fig. S10A), and thus we selected 
SFN for further analysis. We observed the expression 
level of SFN in pan-cancer and found that SFN were 
highly expressed in 12 cancer types (Fig.  9A). In three 
different cohorts from TCGA database, GSE112790, 
and GSE76427 cohorts, SFN also exhibited significantly 

Fig. 8 Rho GTPase-related gene signature can guide the selection of chemotherapeutic Agents. A Top 10 drugs are more sensitive for high-RGPRG 
score patients. B Top 10 drugs are more sensitive for low-RGPRG score patients

Fig. 9 SFN could be the potential target in the treatment of HCC. A SFN expression level in pan-cancer. B–D SFN was significantly highly expressed 
in HCC samples than that of the normal samples based on (B) TCGA database, (C) GSE112790 cohort, and (D) GSE76427 cohort. E SFN expression 
was associated with the TNM stage of patients with HCC, and HCC patients with T1 had better survival than those patients with T2, T3, and T4. F 
The relative expression of SFN in seven HCC cell lines at mRNA level. G The relative expression of SFN in seven HCC cell lines at the protein level. H 
Knockdown efficiency of SFN in Huh7 cell line. I Knockdown efficiency of SFN in Sk-Hep-1 cell line. J Knockdown of SFN could significantly inhibit 
cell proliferation in the Huh7 cell line and Sk-Hep-1 cell line. K, L Downregulation of SFN in Huh7 and SK-Hep-1 cell lines inhibited cell invasion 
and migration. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001

(See figure on next page.)
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Fig. 9 (See legend on previous page.)
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higher expression in HCC samples than in normal sam-
ples (Fig. 9B–D). In addition, there was a significant dif-
ference between SFN expression level and different T 
stage of HCC patients, and early T-stages (T1 and T2) 
had better survival than advanced T stages (T3 and T4) 
(Fig.  9E). To explore the function of SFN expression in 
HCC, we first compared the expression level of SFN in 
7 HCC cell lines and the results showed that SFN mRNA 
(Fig. 9F) and protein level (Fig. 9G) in Huh7, Sk-Hep-1, 
and Hep3B cell lines were the highest compared with the 
L02 cells. We selected Huh7, Sk-Hep-1 cell line for fur-
ther function analysis, and the siRNA plasmid was con-
structed to knock down SFN expression in these two 
cell lines. The result of the western blot implied that 
SFN expression in the Huh7 cell and Sk-Hep-1 cell could 
be both significantly downregulated in the Si-3 group 
(Fig.  9H–I). CCK-8 assay demonstrated that knocking 
down SFN could significantly inhibit Huh7 and Sk-Hep-1 
cells’ proliferation rate (Fig. 9J), suggesting that SFN may 
play a vital role in the progression of HCC cells. In addi-
tion, transwell assay and wound healing assay proved that 
down-regulated SFN could suppress the migratory and 
invasive capability in Huh7 and SK-Hep-1 cells (Fig. 9K–
L). Furthermore, we conducted GSEA analysis on SFN 
expression, and we noticed that metabolism-related 
pathways such as metabolism cytochrome p450, fatty 
acid metabolism, glycine serine, and threonine metabo-
lism, retinol metabolism, and PPAR signaling pathway 
(Additional file  1: Fig. S10B), which contributed to Rho 
GTPase activities.

Discussion
Comprehensive transcriptomic analysis of Rho GTPase 
signaling-related DEGs in HCC may broaden our knowl-
edge of the molecular events relevant to this highly 
aggressive malignancy [28–30]. Herein, we classified 
HCC patients into two clusters including cluster 1 and 
cluster 2 based on DEGs of the Rho GTPase patterns, 
which were correlated with the prognosis and progres-
sion of advanced HCC. A high-sensitivity prognostic 
model named RGPRG score system was then proposed, 
and this model enables evaluation of pan-cancer prog-
nosis including HCC with higher accuracy, implying its 
wide application. Furthermore, a high RGPRG score was 
found to be significantly associated with poor prognosis, 
high TMB, and increased immunosuppressive cell infil-
tration, while a low RGPRG score was correlated with 
the immune-active state and clinical benefit of immu-
notherapy. Previous studies have linked Rho GTPase 
to chemoresistance [31], while our work also found the 
91 potential targeted drugs for HCC patients with high 
and low RGPRG score, assisting in the guidance of per-
sonalized medication. Therefore, Rho GTPase in fatal 

malignancy, especially in HCC, progression, and progno-
sis still need more attention.

There are several important findings in our work, 
Firstly, our work performed the first transcriptomic char-
acterization of Rho GTPase signaling-related genes in 
HCC, and new HCC molecular subtypes were identified. 
Based on the expression of 67 identified Rho GTPase 
signaling-related DEGs, HCC patients were obviously 
divided into two subtypes. Patients in cluster 2 were 
characterized by the higher expression of Rho GTPase-
related genes (denoted as Rho GTPase activation sub-
group), while cluster 1 was featured by lower expression 
of Rho GTPase-related genes (denoted as Rho GTPase 
inactivation subgroup). Rho GTPase activation subgroup 
had poor overall survival probability, which may attribute 
to the ability of Rho GTPase activation to promote can-
cer cell invasiveness [30]. Further clinical characteristics 
analysis demonstrated that there was a higher propor-
tion of TNM stage III, Grade 3 in cluster 2, suggesting a 
strong correlation between Rho GTPase subtypes with 
advanced malignant HCC and poor prognosis. Therefore, 
the Rho GTPase subtypes can be used as a novel prog-
nostic subtype to evaluate the progression of HCC. Of 
note, previous studies also led to a similar 2-subgroup 
allocation based on the biological function [32, 33], 
which supports the reliable molecular subtype procedure 
in our study.

Second, compared to traditional TNM stage and other 
published prediction models [20–23, 34], we developed a 
16-gene prognostic model with a better and more robust 
predictive accuracy (most of AUC value > 0.8). These 
sixteen genes collectively contribute to HCC biology by 
either promoting cancer development or inhibiting tumor 
growth, depending on their specific functions. Among 
them, we select SFN (also known as 14–3-3 sigma) for 
further in vitro experiment. Both SFN and Rho GTPases 
regulate cell cytoskeleton remodeling and cell migration, 
which suggests a possible interaction between the signal-
ing pathways regulated by these two groups of proteins. 
Emerging evidence supports the notion of mutual regula-
tion between 14-3-3 sigma and Rho GTPases. The local-
ized activation of Rho family GTPases, stimulated by the 
cell microenvironment, leads to the formation of dis-
creet actin structures that either promote or inhibit cell 
migration [35–38]. 14-3-3σ was found to regulate actin 
dynamics of tumor cell in a ligand-binding mechanism, 
which provides a signaling switch bridging cytoskeletal 
dynamic equilibrium with cell motility [39]. In addition, 
a number of studies have highlighted different mecha-
nisms by which 14-3-3 family members regulate actin 
dynamics either through stabilizing cofilin phospho-
rylation or by inhibiting signals through the AKT-RhoA 
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pathway [40–43]. Our in vitro experiment also confirmed 
that down-regulated SFN could suppress the migratory 
and invasive capability in HCC cell lines, suggesting its 
potential link between Rho-GTPase signaling and SFN. 
Taken together, the collective evidence from these stud-
ies strongly supports the biological plausibility of the 
identified genes in HCC, underscoring their potential as 
valuable targets for further investigation in the quest for 
improved diagnostics and therapeutic strategies for this 
challenging disease.

Moreover, we applied DCA, a method that can assist 
physicians in selecting the most appropriate clinical pre-
diction model when comparing multiple models. 16-gene 
prognostic model show a better clinical utility com-
pared with other published model such as pyroptosis-
related risk model [20], ferroptosis-related risk model 
[21], cuproptosis-related risk model [23], and immune-
related risk model [22]. By evaluating the RGPRG score 
in HCC patients, clinicians and researchers can gain 
insights into the potential aggressiveness of the tumor 
and the likelihood of disease progression, which can help 
guide treatment decisions, prognosis assessment, and the 
development of targeted therapies in HCC. Furthermore, 
the 16-gene prognostic model can expand to predict 27 
cancer survival, showing an extensive prognostic value in 
multiple cancer types. Single and multiple Cox regression 
analyses identified that RGPRG score was an independ-
ent prognostic factor. Of note, the result of GSEA analysis 
indicated that the high RGPRG score group was mainly 
enriched in pathways related to cell primary immunode-
ficiency, which may attribute to the existence of several 
signature genes related to immune function (CYBB [44], 
ECT2 [45], PRC1 [46], SFN [47]).

Thirdly, we further found a strong connection between 
RGPRG score and TME features. Different immune cell 
has different roles. For instance, T cell regulatory (Tregs) 
is a key player in immune evasion and tumor growth, 
which can counteract T cell-mediated immune response 
[48]. Tumor-associated macrophages could be classified 
into three subtypes including M0 (undifferentiated), M1 
(anti-tumor), and M2 (tumor-promoting) by their tran-
scriptional signatures [49]. Of note, a previous study also 
demonstrated that M0 macrophages appear to promote 
cancer cell growth at high concentrations, while M1 
types are the opposite [50]. CD8 T cells and activated NK 
cells have long been reported to kill cancer cells directly 
and induce the activation of different immune cells [51, 
52]. T-follicular helper cells are a subset of CD4 + T cells 
that play a vital role in protective immunity helping B 
cells produce effective humoral immune responses [53]. 
Another immune-active cell named activated Dendritic 
cells leads to the activation of cytotoxic T cells, which 

could induce antigen-specific immune responses and kill 
cancer cells eventually [54]. In our study, the deconvolu-
tion algorithm CIBERSORT revealed that multiple tumor 
immunosuppression subsets are significantly increased in 
the high RGPRG score group, including T cells regulatory 
(Tregs) and M0 macrophages. On the other hand, anti-
tumor immunity subsets such as CD8 T cells, activated 
NK cells, T-follicular helper cells, and activated Dendritic 
cells were significantly enriched in the low RGPRG score 
group. Therefore, low RGPRG score group associates 
with immune activation while high RGPRG score group 
associates with immunosuppression, which accounts for 
their clinical outcome between different Rho GTPase 
phenotypes.

Fourthly, we using single-cell cohort to shed light on 
the phenomenon of immune tumor microenvironment 
heterogeneity between two Rho GTPase phenotypes. We 
observed that T/NK cells enhance intercellular commu-
nication, especially with myeloid cells through MIF path-
ways in the low RGPRG score group. T cells and NK cells 
have previously been reported to display robust cytotoxic 
activity and serve an immuno-regulatory role [55], and 
their activation associates with MIF pathway [56]. On 
the other hand, extracellular MIF is necessary for steady-
state activation of Rho GTPase members, resulting in 
tumor invasion and metastasis [57]. Altogether, Rho 
GTPase may bridge HCC and immunocytes infiltration 
to affect HCC invasion and metastasis.

Lastly, we explored the role of RGPRG score in pre-
dicting response to immunotherapy and chemotherapy. 
We showed that a high RGPRG score was correlated 
with higher TMB, increased TIDE score, lower PD-L1 
expression, and a low response to ICI treatment, which 
indirectly indicated that RGPRG score could help clini-
cians forecast the response to ICI, and match patients 
most likely to benefit from immunotherapy treatment. 
Apart from immunotherapy, potential chemotherapeutic 
drugs for patients with high RGPRG score are also pre-
dicted using the GDSC database. Rapamycin, an inhibitor 
of mTOR, can block HCC progression triggered by p53 
and Tsc1 insufficiency [58]. Etoposide and Gemcitabine 
are common chemotherapeutic agents for HCC that 
have been proven to exhibit their anti-tumoral effects by 
induction of cell cycle arrest in S or G2 [59, 60]. However, 
Others such as A.443654, BI.2536, JNK Inhibitor VIII, 
ABT.888, GW843682X, QS11, and PD.173074 have not 
been previously reported, requiring further explore their 
association with HCC progression or Rho GTPase.

Some limitations also exist in our study that is worth 
noting. Although we have used multiple cohorts to vali-
date the accuracy of RGPRG score model, prospective 
cohorts are still needed to prove the clinical reliability of 
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this prognostic model. In addition, we revealed that HCC 
immune infiltration might correlate with Rho GTPase 
phenotypes using transcriptomics and single-cell data, 
but the biological mechanisms behind these phenom-
enons remain clear investigation. More importantly, 
although we verify the expression and function of key 
Rho GTPase-related gene SFN in HCC cell lines, more 
research should focus on these 16 signature genes and 
their detailed mechanisms on Rho GTPase regulation 
and the progression of HCC.

In conclusion, our current work proposed a high-sen-
sitivity prognostic model named RGPRG score system, 
and revealed that a high RGPRG score is an independ-
ent prognostic factor of HCC that is associated with 
advanced disease stage, poor prognosis, increased immu-
nosuppressive cell infiltration, and a low response to 
immunotherapy. Our work may provide additional clini-
cal insights underlying biological features of Rho GTPase 
in HCC.
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