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Abstract 

Background  Previous studies have shown that changes in the microbial community of the female urogenital tract 
are associated with Human papillomavirus (HPV) infection. However, research on this association was mostly focused 
on a single site, and there are currently few joint studies on HPV infection and multiple sites in the female urogenital 
tract.

Methods  We selected 102 healthy women from Yunnan Province as the research object, collected cervical exfoliation 
fluid, vaginal, urethral, and rectal swabs for microbial community analysis, and measured bacterial load, and related 
cytokine content. The link between HPV, microbiota, and inflammation was comprehensively evaluated using 
bioinformatics methods.

Findings  The impact of HPV infection on the microbial composition of different parts varies. We have identified 
several signature bacterial genera that respond to HPV infection in several detection sites, such as Corynebacterium, 
Lactobacillus, Campylobacter, and Cutibacterium have been detected in multiple sites, reflecting their potential 
significance in cross body sites HPV infection responses. There was a solid microbial interaction network 
between the cervix, vagina, and urethra. The interrelationships between inflammatory factors and different bacterial 
genera might also affect the immune system’s response to HPV infection.

Interpretation  It might be an effective strategy to prevent and treat HPV infection by simultaneously understanding 
the correlation between the microbial changes in multiple parts of the female urogenital tract and rectum and HPV 
infection, and controlling the microbial network related to HPV infection in different parts.
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Introduction
Human papillomavirus (HPV) is the most common 
sexually transmitted infection and a leading cause of 
genital warts and cervical cancer [1]. After the virus 
enters the human body, it integrates into the infected cells 
and initiate the transcriptional expression of oncoprotein 
(E6,E7), thus promoting the occurrence of cancer [2, 3]. 
Women’s lifetime risk of HPV infection is about 80%, 
while the risk of eventually developing cervical cancer is 
0.6% [4]. Most HPV will not cause disease on the human 
body after infection, though, most women will clear 
HPV within 12–24  months through the autoimmune 
mechanism, only a small part of these infections persist 
and may lead to precancerous lesions or cancer [5, 
6]. HPV infection in women is caused by a number of 
factors, including sexual behavior, age of first sexual 
intercourse, number of sexual partners, condom use, 
smoking, etc. [7–9]. The female genital tract is protected 
against infections by a complex system composed of the 
mucosal epithelial barrier, the immune system, and a 
healthy microorganism producing lactic acid, hydrogen 
peroxide, halides, and antimicrobial peptides [10].

Studies have shown that cervicovaginal microbes may 
be involved in human immune response to HPV infection 
[11]. The imbalance of cervicovaginal microorganisms 
may promote the production of inflammatory factors 
(IL6, IL8, IL17), recruit immune cells such as antigen-
presenting cells, change the cervicovaginal immune 
microenvironment, and establish the mechanism of 
viral infection. [12]. Compared to the gut microbiome, 
the female reproductive tract microbiome is relatively 
homogeneous [13, 14]. When vaginal Lactobacillus is 
absent and G. vaginalis and Mobiluncus spp. dominate, 
this is often accompanied by BV. [15]. HPV prevalence 
is influenced many factors, such as the composition and 
structure of vaginal microbiome and cytokines [16]. For 
example, Lactobacillus in cervicovaginal microbes have 
been reported to be associated with the clearance of high-
risk HPV, Gardnerella was the dominant biomarker for 
HR-HPV progression [17]. Vaginal microbiota dominated 
by non-Lactobacillus species or Lactobacillus iners were 
associated with three to five times higher odds of any 
prevalent HPV Lactobacillus crispatus [18]. It is plausible 
that Lactobacillus disturb microbiome composition 
may lead to a pro-inflammatory environment increase 
malignant cell proliferation and HPV E6 and E7 
oncogene expression [19]. Gut has a huge microbial 
system, which can interact with other organs, which is 
also one of the important factors affecting health outside 
the gut [20]. The anatomical proximity of the intestine 
and vagina allows for potential interaction between them 
[21]. Previous studies have found that specific patterns 
of intestinal bacteria are associated with reproductive 

tract lesions such as endometriosis and polycystic ovary 
syndrome [22, 23]. Therefore, changes in gut microbes 
may also be an important factor for affecting female 
reproductive tract health. The microbiome in the urinary 
tract is associated with the maintenance of health, and an 
unstable microbiome is associated with the development 
of urinary tract diseases, such as urinary tract infections 
(UTI) [24]. Studies have found common vaginal 
bacteria such as Lactobacillus, Sneathia, Prevotella, 
Gardnerella, Atopobium, Peptoniphilus, and Finegoldia 
are components of female urinary tract microbiota, 
and patients with urinary tract infection have higher 
Gardnerella and lower Lactobacillus load compared to 
non-urinary tract infected [25, 26]. At the same time, 
the female urethra is also the latent site of HPV [27]. 
Therefore, changes in the microenvironment of female 
urethra might also have effect on the reproductive 
tract, however at present, few studies have associated 
the female urethra microbiome with reproductive tract 
diseases [28, 29].

There is a microbiota continuum along the female 
reproductive tract, and the microorganisms in different 
parts may affect each other and even interfere with the 
occurrence and development of diseases [30]. In our 
previous study, common vaginal Lactobacillus and 
Gardnerella were detected in follicular fluid [31], and half 
of the placental microbial sequences in the environment 
where the fetus was conceived were detected in the 
mother’s vaginal and rectal samples [32]. Within 
individuals, the genital microbiota can interact with 
other body sites, both proximal (such as the urinary tract) 
and distal (such as the rectum or oral cavity) [33]. Study 
has found that bacteria in the vagina can rise to colonize 
the uterus, grow and cause inflammation [34]. Common 
vaginal bacteria (such as Lactobacillus, Sneathia, 
Prevotella, Gardnerella) are components of the urinary 
tract microbiota in women [35–37]. The composition 
of vaginal microbes may be influenced by the entire 
urogenital tract. Our previous studies detected different 
proportions and types of HPV infection in cervical, 
vaginal, and rectal swabs, with different sites exhibiting 
different microbial changes under HPV infection 
[38]. The microbial communication patterns between 
the urogenital tract and other sites and the microbial 
networks they form may also affect HPV infection.

In this study, we hypothesized that microbial 
interactions between different urogenital tract sites in 
women may influence the colonization of HPV infection 
in the female body. At present, most studies only focused 
on the microenvironment changes of a single part of 
the female reproductive tract after HPV infection, while 
there was less research on the effect of solid microbial 
communication patterns between multiple parts of the 
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reproductive tract on the clearance or persistence of 
HPV on the asymptomatic female. Therefore, it might 
be more meaningful to explore the influence of the 
microbial network between female urogenital tract and 
rectum on HPV infection. We analyzed and compared 
the composition and differences of urogenital and rectal 
microbes in asymptomatic female without HPV infection, 
as well as the microbiota of potential communication 
between different sites, and identified the microbiota 
associated with HPV infection. We provided novel 
insights into the mechanisms of microbial changes in 
the urogenital tract and rectum during HPV infection 
in female by building the connection with inflammatory 
factors.

Materials and methods
Sample collection and study design
We collected all samples, which sourced from 102 
asymptomatic healthy women. This project was 
approved by the Ethics Committee of YAN’AN 
HOSPITAL of KUNMING CITY (2019-077-01). All 
subjects provided written informed consent without 
financial compensation. All samples were collected at 
the Obstetrics Department of YAN’AN HOSPITAL of 
KUNMING CITY in Yunnan Province, China. Women 
who met any of the following criteria were excluded: (1) 
They had used antibiotics or vaginal drugs in the past 
month; (2) Obvious cervical and vaginal symptoms; 
(3) Have a history of diabetes, autoimmune diseases, 
malignant tumors and other systemic diseases. Fourteen 
samples were collected per subject (3 repeated vaginal, 
urethral, and rectal swabs, 3 repeated cervical cell 
shedding fluid, and repeated blood samples). The survey 
included age, education, occupation, economic status, 
health habits, sexual activity, gynecological history, and 
knowledge of HPV. We collected cervical cell shedding 
fluid., which sourced from the subject’s cervix and swabs 
from the vagina, urethra and rectum of female by medical 
professionals in the female examination room, and 
ensured that Cytobrush does not touch the participant’s 
vaginal wall during the collection process for minimizing 
vaginal contamination. Intravenous blood collections 
followed. Specifically, swabs coated with sterile saline 
were placed into the posterior fornix of the vagina and 
2–3 cm inside the rectum and urethra, and gently rotated 
for about 10 s. Cell samples and secretions from the inner 
surface of the uterine neck were gently scraped with a 
medical brush, and samples from each part were stored 
in a sterile compartment tube. The blood samples were 
centrifuged at 8,000 rpm for 10 min in a 4 ℃ cryogenic 
centrifuge for separating the serum. All samples were 
stored in a −80 ℃ refrigerator and transported back to 
the laboratory with refrigerant for further processing.

Whole‑genomic DNA extraction from swabs and PCR 
amplification and sequencing
DNA extraction was carried out in a strictly controlled 
sterile environment. Due to the low micro-biomass in 
the urogenital tract, we set up three repeated negative 
controls in each batch treatment to avoid incorporating 
false positive results into subsequent experiments. 
Four ml of cervical cell shedding fluid was taken and 
centrifuged for 10  min at a rate of 12,000  r/min. The 
centrifuged particles were used to DNA extraction. The 
microbial DNA of all samples was extracted using the 
QIAGEN Pro Prower fecal DNA Kit (Hilden, Germany) 
according to the kit instructions. DNA yield was assessed 
using Nanodrop 2000 (Thermo Fisher, USA). Primers 
for PCR amplification were 515F [39] and 909R [40]. To 
differentiate the samples after sequencing, all primers 
were used to add Illumina adapter sequences and double-
indexed barcodes. Fifteen nanograms (ng) of DNA was 
used as the template in each PCR reaction, and the 
reaction conditions were as follows: pre-denaturation at 
95 ℃ for 15 s, followed by cycling at 95 ℃ for 3 min for 
30 cycles, annealing at 51 ℃ for 30 s, extension at 72 ℃ 
for 30  s, and a final extension step at 72 ℃ for 5  min. 
The same reagents and consumables were used during 
DNA extraction and PCR for each sample and the PCR 
amplification procedure was standardized for all DNA 
samples in the sequencing experiment, including the 
negative controls. No PCR bands were observed in 
the negative control samples. The PCR products were 
purified using the UltraClean PCR Cleaning up Kit 
(MOBIO, USA), and the equivalent PCR products were 
sequenced using the Illumina Miseq™ system (Illumina, 
USA).

Bioinformatic analysis of 16S rRNA gene sequences
All sequences were processed using Mothur v.1.48.0 
[41] according to the standard operating procedure 
described earlier. High quality sequences were obtained 
by removing sequences with ambiguous bases, with a 
low-quality read length, and chimeras identified using 
uchime [42]. Furthermore, we filtered mitochondria and 
chloroplasts. The obtained high-quality sequences were 
compared against the SILVA database (v138) [43] and the 
OTU was generated by using the cutoff value 0.03. We 
classified the sequence using the classify seqs command. 
In order to solve the problem of unequal sequencing 
depth, we have normalized the data for sampling depth 
of 10,000 sequences per sample for subsequent analysis. 
Alpha diversity (i.e., ACE, Chao1, Shannon, Invsimpson 
diversity) was calculated using the Mothur software. The 
between-samples beta difference was evaluated with the 
principal coordinates analysis (PCoA) using Mothur, 
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enabling the projection of each sample and the variable 
loadings of OTU onto individual principal components 
(PCs). Permutational multivariate analysis of variance 
(PERMANOVA) results were shown variation in the 
composition of microbial communities in different 
groups. Projection to latent structure discriminant 
analysis (PLS-DA) was used to differentiate the HPV 
positive (HPV-P) and HPV negative (HPV-N) [44]. The 
metabolites were screened by the variable importance in 
the project (VIP) > 1 in the PLS-DA model. The Spearman 
was performed to identify the correlation (correlation 
p < 0.05 and |rho|> 0.6). The generated co-occurrence 
network was visualized in Cytoscape (v3.9.1) and 
subnetworks were extracted using the MCODE plug-in. 
The potential sources of vaginal microbiota was predicted 
by SourceTracker (version0.9.5) [45]. The metagenomes 
predicted by PICRUSt2 and MetaCyc Metabolic Pathway 
Database (http://​metac​yc.​org/) revealed the microbial 
contribution to metabolites.

Statistical analysis of demographic data
Data analysis was performed using R software (version 
4.1.1). The chi-square test or Fisher’s exact test was 
utilized to compare categorical variables, and the results 
were presented as frequency and percentage. Continuous 
variables were expressed as mean ± standard error of 
mean. To assess significant differences in the α-diversity 
index within each group, the Wilcoxon rank sum test was 
employed to calculate diversity differences, followed by 
Dunn’s multiple comparison test. Functional pathways 
with significant differences were identified using the 
linear discriminant analysis effect size (LDA score > 2) 
algorithm [46]. The random forest model was obtained 
using an R package, and the ROC curve was plotted using 
the pROC package. Internal validation was conducted 
through tenfold cross-validation. Mantel correlations 
between microbial compositions and inflammatory 
factor data were calculated based on UniFrac distance 
using the R software package (9,999 permutations).

Quantification of bacteria and Lactobacillus
The copy numbers of the total 16S rRNA gene in bacteria 
[47] and the 16S rRNA gene of the genus Lactobacillus 
[48] were determined in each sample using qPCR 
according to the instructions. Standard curves were 
generated using serial tenfold dilutions of plasmid 
standard containing the target fragment. The range of 
amplification efficiency for the qPCR was from 90 to 
110%, and linearity values were all ≥ 0.99. The specificity 
of the amplification was performed by melting curve 
analysis and gel electrophoresis. The relative copy 
numbers of three replicates in each sample was evaluated 
for each target organism.

HPV genotyping
HPV testing wasperformed using nucleic acid typing 
(23 type) testing kit (fluorescence PCR method). Firstly, 
extracting DNA from the sample, then amplifying the 
amount of DNA by PCR amplification reaction. The 
fluorescence signal generated by the fluorescence probe 
continuously accumulates during the amplification 
reaction, and the results of each amplification cycle 
wasmonitored in real-time. After the amplification 
reaction completed, the results could be judged through 
the curve of fluorescence signal accumulation. The 
Ct value of globin in the Cy5 fluorescence detection 
channel in the sample is ≤ 40, while the Ct value of other 
fluorescence detection channels shows Undet, indicating 
a negative result. If the Ct value is ≤ 40, indicating a 
positive result. The reaction system is divided into 6 
reaction tubes, which use four fluorescence detection 
channels of the instrument for detecting the genotype 
of 23 human papillomavirus genotypes, as well as the 
intracellular control β-Global DNA testing. Intracellular 
control DNA was used to evaluate sample quality and 
PCR inhibitory factors.

Measurement of cytokine concentrations
The concentrations of interleukins (IL2, IL4, IL6, IL8, 
IL10, IL12P70, and IL23), INF-β, and TNF-α were 
detected using ELISA kit (Shanghai Enzyme-Linked 
Biotechnology Co., Ltd., China). The operation method 
was carried out according to the procedure provided by 
the manufacturer’s instruction with minor modification. 
The absorbance (OD value) was measured using an 
enzyme-linked immunosorbent assay (ELISA) at a 
wavelength of 450  nm. We calculated the content of 
various cytokines in the sample using a standard curve. 
Each serum sample should be tested for three times, and 
the intra batch and inter batch coefficients of variation 
should be less than 10% and 15%, respectively.

Result
Study participant characteristics: HPV positive and HPV 
negative
In this study, we collected cervical, vaginal, urethral, and 
rectal samples from 102 subjects, obtaining a total of 
408 DNA samples for microbial diversity detection, 17 
samples did not produce PCR bands, which did not meet 
the sequencing requirements. Finally, 391 samples were 
successfully sequenced. We tested all samples for HPV, 
and found that the cervical HPV infection rate was not 
the highest (15.5%), whereas the vaginal HPV infection 
rate was the highest (33.3%), followed by urethra (29.7%) 
and cervix, and the rectal HPV infection rate was the 
lowest (13.1%). Moreover, it was found that most subjects 
were infected with HPV in multiple sites simultaneously 
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(Additional file  1: Fig. S1A). Molecular typing results 
showed that the detection rates of HPV-18, HPV-44, 
HPV-81 and HPV-16 subtypes in the cervix were the 
highest, the detection rates of HPV16, HPV81 and 
HPV44 subtypes in the vagina were the highest, and the 
detection rates of HPV44 subtypes in the urethra were 
the highest, and the detection rates of HPV44, HPV53 
and HPV68 in the rectum were the highest. The detection 
rate of HPV52 subtype was the highest (Additional file 1: 
Fig. S1B). Table  1 showed the general characteristics of 
women with and without HPV infection. Basic variables 
such as age, BMI, pH and number of pregnancies were 
not significantly different among the groups. Most 
women in groups did not smoke (94.1% in the HPV-P 

group and 98% in the HPV-N group). Non-HPV-infected 
subjects had more menstrual cycle (68.6% HPV-P vs. 
72.5% HPV-N) and more frequent vaginal douching 
(62.7% HPV-P vs. 70.6% HPV-N).

Distinction in the structure of urogenital tract (cervix, 
vagina, urethra) and rectal microbial communities due 
to HPV infection
To study the relationship between the microbiota and 
HPV in different genital areas of women. Firstly, we 
measured the α diversity of Chao1, ACE, Invsimpson and 
Shannon indices at different sampling sites of females 
in the presence or absence of HPV infection. Results 
showed in Fig.  1, rectal swab had the highest microbial 
diversity, followed by cervix, urethra and vagina has the 
lowest diversity. There was no significant difference in 
α diversity between HPV-positive and HPV-negative 
groups. PCoA ordination of the microbiota in the 
four sites showed only a modest separation of the 95% 
confidence limits of HPV-N and HPV-P groups (Fig. 1B). 
The PERMANOVA analysis indicated that cervical 
HPV infection explain 10.06% of the variation in CF 
microbial community structure (R2 = 10.06% P = 0.468). 
HPV infection had the lowest effect on rectal microbiota 
compared to other sites, explaining only 0.75% of the 
microbiota community structure (P = 0.854) (Fig.  1B). 
We further analyzed the effects of infection with different 
HPV subtypes on the microbial community in women 
at different sampling sites, and found that there were 
certain differences in the interpretation of the microbial 
community structure by HPV subtypes in different 
sites, but most of the differences were not significant 
(Fig.  1C). In cervix, HPV81 had the greatest effect on 
microbiota with a PERMANOVA (R2 = 11.35%), followed 
by HPV44 (R2 = 3.75%) and HPV18 (R2 = 2.20%). 
HPV44 (R2 = 10.98%) had the greatest effect on the 
microbiota in the vagina. HPV58 (R2 = 2.44%, P < 0.05) 
and HPV81(R2 = 1.28%) had the greatest influence on 
the urethral microbial communities, and HPV58 had a 
significant effect on the urethral microbial community. 
It was found that HPV68 (R2 = 10.51%), HPV53 
(R2 = 0.96%) and HPV44 (R2 = 0.95%) had the greatest 
effect on rectal microbiota.

The composition of urogenital tract and gut microbiota 
shifts in participants with HPV
The relative abundance at the phylum level showed 
differences in the urogenital and rectal microbiota 
without HPV and HPV (Fig.  2A). Firmicute, 
Actinobacteriota and Proteobacteria were the main 
dominant bacteria in all the tested parts. In the cervix, 
vagina and rectum, compared with the HPV-N group, 
the relative abundance of Firmicutes in the HPV-P 

Table 1  Demographics of participants

Data are shown as mean ± SD. BMI Body Mass Index

Characteristics HPV-P (N = 51) HPV-N (N = 51) P values

Mean age (year) 40.9 ± 7.0 42.7 ± 10.3 0.248

BMI (kg/m2) 25.5 ± 4.0 24.9 ± 3.4 0.433

PH(Vagina) 4.3 ± 1.2 4.5 ± 1.4 0.488

Educational level (%) 0.946

 Non-educated 10 (19.6) 8 (15.7) –

 Primary school 3 (5.9) 3 (5.9) –

 Middle school 11 (21.6) 10 (19.6) –

 Bachelor 19 (37.3) 19 (37.3) –

  ≥ Master 8 (15.7) 11 (21.6) –

Monthly income (¥) (%) 0.367

  < 3000 16 (31.4) 13 (25.5) –

 3000–5000 14 (27.5) 10 (19.6) –

 5000–8000 11 (21.6) 19 (37.3) –

 8000–10000 10 (19.6) 9 (17.6) –

Occupation (%) 0.760

 Brainwork 18 (35.3) 18 (35.3) –

 Manual labour 19 (37.3) 16 (31.4) –

 Combination of both 14 (27.5) 17 (33.3) –

Smoking or not (%) 0.308

 Yes 3 (5.9) 1 (2.0) –

 No 48 (94.1) 50 (98) –

Number of pregnancies 2.7 ± 1.6 2.5 ± 1.3 0.67

Number of abortion (%) 0.443

 No 20 (39.2) 14 (27.5) –

 1 times 16 (31.4) 20 (39.2) –

  ≥ 2 times 15 (29.4) 17 (33.3) –

Menstrual period (%) 0.663

 Regularity 35 (68.6) 37 (72.5) –

 Irregularity 16 (31.4) 14 (27.5) –

Vaginal douching (%) 0.401

 Yes 32 (62.7) 36 (70.6) –

 No 19 (37.3) 15 (29.4) –
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group decreased, while the Actinobacteriota and 
Proteobacteria increased. However, this phenomenon 
showed an opposite trend in the urethra. Moreover, we 
further analyzed the composition of the microbiota at 
the genus level (Fig. 2B). Among the top 22 abundance 
genera, Lactobacillus was still the most dominant in the 
female urogenital tract, regardless of the HPV infection 
status, followed by Gardnerella and Atopobium. The 
abundance of Gardnerella in the reproductive tract 
was higher in the HPV-P group than in the HPV-N 
group, while the Lactobacillus showed a downward 
trend. Statistical tests showed that Fastidiosipila in 
cervix, Lactobacillus in vagina and Ruminococcus in 
rectum were significantly different in different groups 
(P < 0.05), and the bacteria genera in these different 
parts might be affected by or respond to HPV infection. 
We detected bacterial and Lactobacillus specific 16S 
rRNA genes at different sampling sites by real-time 
fluorescent quantitative PCR (Additional file  2: Fig. 

S2). As expected, the number of 16S rRNA genes in 
total bacteria was higher than in Lactobacillus, and the 
number of 16S rRNA genes in vaginal and rectal swabs 
was relatively higher. At the same time, HPV infection 
might affect the bacterial load in different genital 
tract sites, and increase the number of bacteria and 
Lactobacillus in urethral samples, while no significant 
differences were observed in cervical, vaginal, and 
rectal samples (Additional file 2: Fig. S2A, B).

We then used PLS-DA analysis to further identify 
microbial markers (VIP > 1) between the HPV-P and 
HPV-N groups (Fig.  3). The genus levels of 7 (cervix), 
4 (vagina), 9 (urethra) and 17 (rectum) OTUs were 
found in the four sampling sites, respectively, which 
can differentiate the HPV-P and HPV-N groups. The 
VIP genera such as Corynebacterium, Lactobacillus, 
Campylobacter, Cutibacterium have been detected at 
multiple sites, reflecting their possible significance in 
response to HPV infection across body sites.

Fig. 1  Shifts of microbiota diversity in urogenital tract (cervix, vagina, urethra) and rectal of participants with HPV. A ACE, Chao1, Shannon 
and Invsimpson index of urogenital tract (cervix, vagina, urethra) microbiota and rectal microbiota in participants with or without HPV. B 
PCoA of urogenital tract and rectal microbiota in participants with or without HPV. C The effect sizes (R2) of HPV types with PERMANOVA tests, 
the numbers on the bar chart represent P-values
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Associations between urogenital tract/rectal microbiota 
and blood cytokines
We measured serum inflammatory factors, including 
interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-4 
(IL-4), interleukin-6 (IL-6), interleukin-8 (IL-8), 
interleukin-10 (IL-10), interleukin-12p70 (IL-12p70), 
interleukin-23 (IL-23), tumor necrosis factor (TNF)-α, 
and interferon (IFN)–β using ELISA (Additional file 3: 
Fig. S3). Overall, leukocyte factor levels increased in 
the HPV-infected group, among which the levels of IL8 
and IL10 in the subjects with cervical HPV infection 
were significantly increased (P < 0.05), the levels of 
IL23 in the subjects with urinary tract HPV infection 
were significantly increased (P < 0.05), and the levels of 
IFN-β were decreased in the HPV-positive group. The 
levels of TNF-α in the HPV-P group of CF and RS were 
higher than those in the HPV-N group.

To assess the effect of changes in the lower urogenital 
tract and rectal microbiota of HPV infection on 
inflammatory responses, we used Spearman correlation 
analysis to assess the relationship between serum 
cytokines and the relative abundance of the top 50 
genera in the urogenital tract and rectum (Fig.  4). 
Levels of IL12p70 in subjects infected with HPV 
were significantly negatively correlated with most 
genera, with IL10 associated with Clostridium_
sensu_stricto_1, Corynebacterium showed a significant 
negative correlation, and it was also found that 
IL23 had a significant negative correlation with 
Lactobacillus and a significant positive correlation 
with Gardnerella (Fig.  4A). The levels of IL8 in VS 
HPV-infected subjects were significantly negatively 
correlated with Bifidobacterium, Atopobium, Moryella 
and Peptococcus. IL23 and IL2 were significantly 

Fig. 2  The microbial composition and difference between HPV-P and HPV-N groups. A Stacked bar plot of mean proportions of urogenital tract 
(cervix, vagina, urethra) and rectal derived taxonomic composition between HPV-P and HPV-N groups at phylum level. B Statistically differential 
genera of urogenital tract (cervix, vagina, urethra) and rectal microbiota were evaluated with box plots
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positively correlated with Stenotrophomonas, 
Comamonadaceae_unclassified and Enterobact
erales_unclassified. At the same time, IL23 was 
also correlated with Campylobacter, There was a 
significant positive correlation between Clostridium_
sensu_stricto_1 (Fig.  4B). The Lactobacillus, 
Alloscardovia, Megasphaera in urethra were 
significantly negatively correlated with IFN − β. 
Gardnerella was significantly positively correlated 
with TNF − α. Haemophilus, Actinomyces, Howardella, 
and Clostridiaceae_unclassified was significantly 
positively correlated with IL23 (Fig.  4C). In terms of 
rectum, most of the microbiota in the rectum were 
significantly positively correlated with inflammatory 
factors. However, we found that Corynebacterium was 
negatively correlated with most inflammatory factors, 
and its negative correlation with IL12p70, IL2 and 
TNF − α was statistically significant (Fig. 4D).

We had built association inflammatory factors with 
VIP genera identified at various sites to further explore 
the potential association. In the cervical part Halomonas 
and Sphingomonas most belongs to the inflammatory 
cytokines (IL2, IL4, IL6, IL8, IL10, and IL12p70) has 
significant correlation, IL23 was associated with a 
significant Halomonas only, at the same time, it is 
interesting to note that there was a significant positive 
correlation between the two genera (Additional file  4: 
Fig. S4A). However, the VIP genus in the vagina had 
no significant association with inflammatory factors 
(Additional file 4: Fig. S4B). The Varibaculum in urethra 
was significantly associated with IL8 (Additional file  4: 
Fig. S4C). Meanwhile, it was noted that Howardella and 
Sutcliffiella in rectum were significantly correlated with 
most inflammatory factors, and TNF-α was significantly 
correlated with Staphylococcus (Additional file  4: Fig. 
S4D).
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Communications between cervix, vagina, urethra 
and rectal microbiota in HPV infection
Due to the unique anatomical location of the female 
reproductive tract, the importance of potential 
translocation/transmission of microorganisms in 
disease needs to pay attention. Next, we expanded the 
analysis to look at potential communication between 
the subjects’ cervix, vagina, urethra, and rectum 
microbiota. PCoA showed no significant separation 
between women’s cervical, vaginal, and urethral 
samples, and no differences in microbiome regardless of 
HPV infection. The 95% confidence ellipse shows that 
the rectum has a distinct microbiota from the urogenital 
tract (Fig. 5A). We compared the microbiota of different 
types of samples and found 833 common OTUs that 
co-exist in the cervix, vagina, urethra, and rectum by a 

Venn diagram (Fig.  5B). The relative abundance of the 
top 30 shared OTUs showed the distribution of major 
microorganisms between urogenital and rectal samples 
(Fig. 5C). Lactobacillus and Gardnerella were the most 
common bacteria genera in the female cervix, vagina, 
and urethra, but there was no significant change in 
the abundance of HPV infection, while the abundance 
of microorganisms in the rectum was more well-
distributed. Then, we conducted correlation analysis for 
the top 30 shared genera among the 4 different sample 
sites of females. Overall, cervix, vagina, and urethra 
had a solid association network, with obvious positive 
OTU interactions among each other, while rectal 
microbes communicated less with the other three sites 
(Fig. 5D). We further analyzed the influence of vaginal 
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Fig. 4  Correlation of microbiota with inflammatory factors. Correlation analysis between the levels of the top 50 genera in the urogenital tract 
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microbiome on different adjacent parts (cervix, urethra, 
rectum) by using SourceTracker. We found these data 
was consistent with the correlation analysis, cervix 
was the main potential source of vaginal microbiome, 
while rectal microbiome had little influence on vagina. 
Moreover, HPV infection tended to decrease the 
proportion of different site sources (Additional file  5: 
Fig. S5). We extracted the first three primary different 
subclusters by clustering methods, and further viewed 
a group of OTUs with high correlation (Additional 
file  6: Fig. S6A). Cluster 1 consists of eight OTUs, six 
from the cervix (Megasphaera, Mobiluncus, Atopobium, 
Fastidiosipila, DNF00809, and Gardnerella_2), One 
Gardnerella_2 from the vagina and one Gardnerella_2 
from the urethra were composed. Among them, 
Gardnerella_2 in the cervix interacts with most OTUs, 
and was associated with Gardnerella_2 in the vagina 
and urethra. Cluster 2 consists mainly of seven vaginal 
OTUs and one Escherichia-Shigella from the cervix. 
Cluster 3 contains 4 vaginal OTUs and 3 urethral 
OTUs. Fastidiosipila form vagina was positively 
correlated with other OTUs. The OTUs of all clusters 
were grouped together in positive correlation, and the 
same OTUs of different sites interact with each other. 
In the correlation network, we further found that the 

same OTU, including Lactobacillus_4 (Additional 
file  6: Fig. S6B), Gardnerella_1 (Additional file  6: Fig. 
S6C) and Lactobacillus_2 (Additional file  6: Fig. S6D) 
in cervix, vagina and urethra, was correlated with 
each other in three different parts. It indicated that 
the translocation/transmission of microorganisms 
in the female urogenital tract is universal, and their 
interaction may affect the microbial composition of 
different ecological niches, which may have an impact 
on the infection and clearance of HPV in the female 
genital tract.

Microbiota discriminate between HPV‑P and HPV‑N 
with high accuracy
We explored whether microorganisms could be used to 
distinguish between HPV-N and HPV-P at different sites 
by using random forest analysis. We identified several 
of the most important species that can be considered 
potential biomarkers to distinguish HPV infection 
(Fig.  6). We also calculated the predictive value of the 
combined markers at different sites for the presence or 
absence of HPV infection, and the receiver operating 
characteristic (ROC) curve of the optimized microbial 
marker combination could significantly differentiate the 
cervix (AUC, 1) (Fig. 6A) from the vagina (AUC, 0.887) 
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(Fig.  6B). HPV-N group and HPV-P group in different 
parts of urethra (AUC, 0.851) (Fig.  6C) and rectum 
(AUC, 0.879) (Fig. 6D).

Pathway analysis
We predicted the microbial metabolic pathways of all 
samples by picrust2 based on the MetaCyc database. We 
found the metabolic potential changes in the urogenital 
tract and intestinal microbiome of women infected 
with HPV by LEfSe analysis. Three metabolic pathways 
in the cervix were significantly enriched in HPV-P 
group (LDA > 2), namely, PENTOSE_P_PWY: pentose 
phosphate pathway, PWY0_1415: super-pathway of heme 
biosynthesis from uroporphyrinogen-III, PWY0_1533: 
methyl-phosphonate degradation I (Additional file  7: 
Fig. S7A). There were 12 metabolic pathways in the 
vagina that are significantly different between the 
HPV-P and HPV-N groups, such as: PWY_6163: 
chorismate biosynthesis from 3-dehydroquinate, 
ARO_PWY:chorismate biosynthesis I, COMPLETE_
ARO_PWY: super-pathway of aromatic amino acid 
biosynthesis, PWY0_1061: super-pathway of L-alanine 
biosynthesis were enriched in HPV-P group. PWY4FS_7: 
phosphatidylglycerol biosynthesis I (plastidic), 
PWY4FS_8: phosphatidylglycerol biosynthesis II (non-
plastidic), COA_PWY: coenzyme A biosynthesis I, 
PHOSLIPSYN_PWY: superpathway of phospholipid 
biosynthesis I (bacteria) were found to be enriched in the 
HPV-N group (Additional file 7: Fig S7B). Enrichment of 
PWY_6572: chondroitin sulfate degradation I (bacterial) 
was found in the urethra of the HPV-P group, while 
enrichment of multiple isoleucine synthesis pathways in 
the urethra microflora was detected in the HPV-N group 
(Additional file  7: Fig. S7C). HEXITOLDEGSUPER_
pwy: super-pathway of hexitol degradation (bacteria) 
and PRPP_PWY: super-pathway of histidine, purine, 
and pyrimidine biosynthesis were detected to be 
enriched in the intestinal flora of the HPV-P group, 
while PWY0_1319: CDP-diacylglycerol biosynthesis 
II, PWY_5667:CDP-diacylglycerol biosynthesis I, 
GLYCOGENSYNTH_pwy: glycogen biosynthesis 
I (from ADP-D-Glucose), PYRIDNUCSYN_pwy: 
NAD biosynthesis I (from aspartate) were enriched in 
HPV-N group (Additional file 7: Fig. S7D). These results 
suggested that HPV infection may indirectly lead to 
significant differences in the production of precursor 
metabolites and the biosynthesis of amino acids in the 
female reproductive tract and rectum.

Discussion
HPV infection is the most common sexually transmitted 
infection in women, which is an important factor 
leading to the occurrence and development of cervical 

cancer and may also affect female fertility [49, 50]. 
Women’s biological susceptibility HPV and ability to 
clear HPV might be affected by their own reproductive 
tract microorganisms. HPV infection might also affect 
the balance of female reproductive tract microbial 
communities [51, 52]. it suggested that reproductive 
tract ecological disorders and/or specific bacteria and 
cytokines may play a role in HPV infection and the 
occurrence and/or progression of cervical intraepithelial 
neoplasia (CIN), and affect the occurrence and 
development of cervical cancer [53, 54]. However, 
few studies have conducted a conjoint analysis on the 
dynamic changes of microorganisms in multiple parts 
of a female urogenital tract and rectum after HPV 
infection. In this study, we comprehensively analyze 
the cervical, vaginal, urinary and rectal microbiota of 
HPV infected and uninfected female by using 16S rRNA 
gene sequencing method. Due to the characteristics 
of women’s physiological structure, contamination 
problems could not be completely avoided. We have 
regulated sampling operations to the maximum extent 
possible to minimize the potential for contamination. 
Although the bacterial interference between original sites 
due to sampling contamination cannot be completely 
avoided, we still got exciting and scientifically relevant 
conclusions. Our data reveals differences in microbial 
diversity and composition between HPV infection and 
non-infection in the asymptomatic female reproductive 
tract and rectum. We built potential connection between 
microorganisms in different parts and inflammatory 
factors.

About 5% of all cervical  cancer in the worldwide are 
attributable mainly to those known as high-risk, including 
HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 
59 [55]. In this study, in addition to the common high-
risk types such as HPV16, HPV18 and HPV58 detected, 
we also found that low-risk types such as HPV44 and 
HPV81 present in multiple sites with high infection rates, 
it may have a certain impact on the composition of the 
microbial community in the female urogenital tract. In 
one of our previous studies, we found that HPV detected 
in cervical swabs is high-risk, while low-risk HPV is 
mainly found in vaginal and rectal swabs, and multiple 
subtypes of infection are common [38]. Some studies 
have found that HPV44 is one of the common types in 
tumor tissues of cervical cancer patients [56], frequently 
detected in human intestines [57, 58]. Studies have shown 
that HPV81 is detected in the majority of women with 
cervical cytological abnormalities and is associated with 
precancerous and cancerous lesions [59, 60]. This study 
found that HPV subtypes such as HPV44 and HPV81 
have significant effects on the microbial communities 
in different sites, and they may induce the occurrence 
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of female reproductive tract diseases by disrupting the 
composition of the female reproductive tract microbiota. 
However, research on the interaction between different 
HPV subtypes and the reproductive tract microbiota is 
currently limited, and more experimental exploration 
is needed to elucidate the mechanisms underlying the 
interaction between microorganisms and different HPV 
subtypes.

HPV infection in women have focused on the vagina 
and cervix, two susceptible sites in ecological studies. 
Due to the physiological structure of cervix and vagina, 
vaginal microecological imbalance directly increases the 
chance of HPV infection and accelerates the process of 
cervical precancerous lesions [61]. The imbalance of the 
vaginal microbiota will reduce the stability of the vaginal 
environment and the resistance to external interference 
factors, thus affecting the biological susceptibility to 
HPV acquisition and the immune ability to clear HPV 
infection [52, 62]. It has been reported that the increase 
of vaginal microbiota diversity is associated with 
persistent HPV infection and cervical disease progression 
[63, 64]. Among the spectrum of microbial species, the 
female genital tract is mainly dominated by Lactobacillus 
species, which are considered to be one of the simplest 
yet most important [65]. Lactobacillus plays an important 
role in maintaining environmental health, preventing 
reproductive tract infections by controlling vaginal pH, 
reducing glycogen to lactic acid, and stimulating bacterin 
and hydrogen peroxide [66, 67]. In our study, we found a 
decrease in the abundance of Lactobacillus in female who 
infected with HPV in reproductive tract, especially the 
vagina, might respond to HPV infection. Gardnerella is 
a major pathogen involved in the disease process in the 
female reproductive tract [68], and a major biomarker of 
persistent HPV infection [17]. Highly diverse bacterial 
communities dominated by Gardnerella associated with 
host epithelial barrier disruption and enhanced immune 
activation [69]. Abnormal changes in Gardnerella may 
promote the colonization of HPV in the epithelium of 
the cervix. We detected more Gardnerella sequences 
in different parts of female infected with HPV, and 
Gardnerella might have a positive interaction with HPV 
infection. In addition to the common Lactobacillus and 
Gardnerella in the reproductive tract, we also found 
that Corynebacterium, Campylobacter, Cutibacterium 
and other bacteria genera associated with HPV infection 
in multiple parts of the female urogenital tract. As 
a common pathogen in human urogenital tract, 
Corynebacterium is mostly associated with urinary tract 
infection [70, 71]. Meanwhile, previous studies have 
found that HPV infection is accompanied by the change 
of the abundance of Corynebacterium [72, 73]. Some 
studies have listed Campylobacter as a marker bacterium 

of cervical cancer [74], and Campylobacter is associated 
with HPV infection. Some studies have detected a high 
abundance of Campylobacter in the oral cavity infected 
with HPV [75], suggesting that Campylobacter might be 
involved in the colonization of HPV in the oral cavity. 
As a kind of skin-borne bacteria, the abundance of 
Cutibacterium in reproductive tract is correlated with 
HPV infection. Studies have found that the concentration 
of Cutibacterium in reproductive tract of patients treated 
with HPV has decreased [76]. It also indicated that 
Cutibacterium might have a positive correlation on HPV 
infection.

Microbial migration and translocation between 
different parts of the reproductive tract have been 
proposed, and increasing infection is the main mode of 
transmission of pathogenic microorganisms in the female 
reproductive tract [77, 78]. In a study of reproductive 
tract microbes of women with CIN, it was found that 
the microorganisms with the most significant changes 
under the influence of CIN, which had a good agreement 
between cervix and vagina [79]. Firstly, significant 
associations between vaginal and urinary microbiomes 
were also demonstrated, with Lactobacillus being 
predominant in both urine and vagina [80]. Secondly, 
rectal microbes have extensive microbes communication 
in female reproductive tract. study have suggested that 
fecal transplantation may also be an innovative treatment 
option for female reproductive tract diseases based on 
specific gut bacterial patterns [21]. In this study, we have 
found a solid co-occurrence network between the cervix, 
vagina and urethra, in which the vaginal microbiome was 
the most interactive with the rest of the site in female and 
was most influenced by the cervical microbiome. This 
was consistent with previous studies, cervix and vagina 
have certain similarities in their microbial composition 
[30, 38]. At the same time, we found that Lactobacillus 
and Gardnerella, the two most common probiotics 
and pathogenic bacteria in the reproductive tract, have 
positive correlations in three parts of cervix, vagina 
and urethra, and these two common bacteria genera in 
the reproductive tract may have cross-site interactions. 
Therefore, we believed that translocation communication 
between different sites might be another mechanism 
for the stability of female urogenital microbiota and 
resistance to infection by external factors, such as HPV.

The microbiome plays a crucial role in the regulation 
of the host inflammatory response. To investigate the 
interaction between the microbiome and inflammatory 
response in the female reproductive tract and rectum, 
we performed an integration analysis between bacterial 
genera and inflammatory factors which were significantly 
affected by HPV infection. Previous studies have found 
that cytokine responses are associated with human HPV 
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infection and clearance [81]. Our study also found that 
HPV infection might affect cytokine content, including 
IL8, IL10 and IL23 respond strongly to HPV infection. 
IL8 levels had related to the progression of HPV 
infection [82], and IL23 expression is associated with 
the progression of cervical cancer [83]. Our study found 
that the expression of IL23 is related to Lactobacillus and 
Gardnerella, so it might play a role in HPV infection. 
Inflammatory factors were also associated with several 
VIP genera under different sites of a female. We found 
that two VIP bacteria, Halomonas and Sphingomonas, 
present in the cervix, which were associated with 
multiple inflammatory factors. Sphingomonas found to 
be associated with the progression of HPV infection [84], 
and interaction with inflammatory factors may be one 
way that Sphingomonas is involved in HPV infection. 
However, there are few reports on the role of Halomonas 
in the female reproductive tract and HPV infection, and 
its interaction with inflammatory factors and response to 
HPV infection need further study.

At present, machine learning such as random forest 
analysis is increasingly applied in the field of medical 
diagnosis. We found that several microbial combinations 
of markers can effectively distinguish between HPV-P 
individuals and HPV-N individuals at different sites by 
using random forest. These findings suggest that using 
different microbial species as a combined biomarker 
group has the potential to diagnose HPV infection. 
Because all individuals in this study were recruited from 
the same region, more clinical studies using a larger 
multi-center sample should be conducted to verify this 
diagnostic performance before further clinical progress 
can be made.

Our research has several limitations. Firstly, the size 
of the small sample might limit our statistical ability 
for analysis. Secondly, although sample collection was 
carried out by professional medical personnel, potential 
contamination could not be completely avoided due to 
the proximity of sampling sites. Even if we tried to avoid 
this issue during the sampling process, caution should 
be exercised when explaining the possibility of microbial 
translocation between different sites.

In conclusion, the study revealed the microbial 
changes in the female urogenital tract and rectum under 
HPV infection, as well as the microbial communication 
network between different parts of females. The 
microbial translocation transmission between different 
parts might affect HPV infection, and the correlation 
between microorganisms and cytokines in different 
parts of females might also affect the colonization of 
HPV infection. The combined analysis of multiple 

sites might be able to more comprehensively reveal 
the coping strategies of human microorganisms under 
HPV infection. Using human microbiota for preventing 
or even intervening in human diseases might need the 
microbiome of non-diseased parts, and by intervening 
in the microbiome of multiple related parts of females, 
establish a healthy and stable microbiome to cope with 
the occurrence and development of diseases.
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