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To the editor,
Artificial intelligence (AI), with its ambition to emulate 

human intelligence within machines, has emerged as 
a transformative force across various domains. Within 
the realm of modern medicine, the digitization of 
practices such as electronic medical records has ushered 
in new opportunities for the integration of machine 
learning (ML) methodologies. These innovations 
find application in diverse contexts, from AI-assisted 
pathology assessments to the ML-driven analysis of 
qualitative interviews and medical records, unearthing 
intricate themes and underlying patterns. In the clinical 
sphere, ML frequently directs its focus toward enhancing 
predictive capabilities, harnessing the potential of 
commonplace and readily accessible variables to refine 
prognostic accuracy. It’s worth noting that while many 
ML analyses focus on classification issues and the 
creation of diagnostic models, in the medical field, the 
prevalent approach involves using survival analysis to 
develop prognostic models.

Survival analysis, an intricate statistical method, is 
designed to unravel the intricate correlations between 
covariates and the temporal occurrences of events. 

Unlike conventional classification paradigms, survival 
analysis confronts the intricacies engendered by partially 
observed data, often stemming from censoring. Within 
the realm of clinical inquiries, patient records manifest 
in distinct categories: those that remain uncensored, 
thereby divulging precise event timings, and those 
that exist as right-censored, withholding event timings 
beyond the study’s temporal scope. This distinctive 
attribute mandates the utilization of specialized models 
adept at accommodating the complexities inherent to 
such data structures, thus emerging as a pivotal facet 
within the realm of survival analysis methodology.

Regrettably, it is observed that many recently published 
articles have erred by simplistically transforming 
outcomes into categorical variables and utilizing ML 
classification techniques to formulate prognostic models 
[1, 2]. These endeavors have been undertaken without 
due consideration for the impact of censored data on 
the model’s fidelity. A systematic review uncovered 
that among 11 studies crafting 24 models for survival 
outcomes, merely ten models explicitly took into account 
censored observations, of which seven were built upon 
the framework of Cox regression [3]. This implies that 
only three ML models are considered censored data. 
These studies usually exclude patients who survive but 
for shorter than a specific date, after which several date-
specific models are built (e.g., 3-year, 5-year). To employ 
a straightforward analogy, where a traditional statistical 
model, specifically Cox proportional hazard regression, 
should have been adopted to construct prognostic 
models predicting survival at 3-year and 5-year intervals, 
logistic regression was employed to create two categorical 
models. As underscored by PROBAST (Prediction model 
risk of Bias ASsessment Tool), the exclusion of censored 
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participants through simplistic logistic regression 
models is deemed unsuitable [4]. The utilization of an 
erroneous logistic regression methodology results in a 
selected dataset containing fewer individuals lacking the 
outcome, thus introducing bias into predicted risks due 
to the overrepresentation of those with the outcome [4]. 
The time-to-event analysis provides an effective means 
of addressing these censored observations. Contrary to 
the notion that there are no ML algorithm packages for 
conducting survival analysis, there is indeed a Python 
module named “scikit-survival” designed for this 
purpose. It is developed on top of scikit-learn and can be 
found at https:// scikit- survi val. readt hedocs. io/ en/ latest/ 
index. html (accessed on October 30, 2023) [5]. This 
module enables the incorporation of survival analysis 
within the capabilities of scikit-learn. We highly advise 
employing “scikit-survival” for the development of ML 
prognostic models.

When developing ML prognostic models, it is strongly 
advised to employ survival analysis techniques such 
as “scikit-survival” to appropriately handle censored 
observations. Simply excluding or categorizing censored 
cases using logistic regression is inappropriate and 
introduces bias. Overall, ignoring censoring and using 
inaccurate evaluation metrics can severely compromise 
the validity of machine learning-based prognostic 
models. Careful consideration of censoring and time-to-
event analysis principles is warranted.
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