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Abstract 

Background Spontaneous intracerebral hemorrhage (sICH) is associated with significant mortality and morbid-
ity. Predicting the prognosis of patients with sICH remains an important issue, which significantly affects treatment 
decisions. Utilizing readily available clinical parameters to anticipate the unfavorable prognosis of sICH patients holds 
notable clinical significance. This study employs five machine learning algorithms to establish a practical platform 
for the prediction of short-term prognostic outcomes in individuals afflicted with sICH.

Methods Within the framework of this retrospective analysis, the model underwent training utilizing data gleaned 
from 413 cases from the training center, with subsequent validation employing data from external validation center. 
Comprehensive clinical information, laboratory analysis results, and imaging features pertaining to sICH patients 
were harnessed as training features for machine learning. We developed and validated the model efficacy using 
all the selected features of the patients using five models: Support Vector Machine (SVM), Logistic Regression (LR), 
Random Forest (RF), XGboost and LightGBM, respectively. The process of Recursive Feature Elimination (RFE) was exe-
cuted for optimal feature screening. An internal five-fold cross-validation was employed to pinpoint the most suitable 
hyperparameters for the model, while an external five-fold cross-validation was implemented to discern the machine 
learning model demonstrating the superior average performance. Finally, the machine learning model with the best 
average performance is selected as our final model while using it for external validation. Evaluation of the machine 
learning model’s performance was comprehensively conducted through the utilization of the ROC curve, accuracy, 
and other relevant indicators. The SHAP diagram was utilized to elucidate the variable importance within the model, 
culminating in the amalgamation of the above metrics to discern the most succinct features and establish a practical 
prognostic prediction platform.
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Results A total of 413 patients with sICH patients were collected in the training center, of which 180 were patients 
with poor prognosis. A total of 74 patients with sICH were collected in the external validation center, of which 26 
were patients with poor prognosis. Within the training set, the test set AUC values for SVM, LR, RF, XGBoost, and Light-
GBM models were recorded as 0.87, 0.896, 0.916, 0.885, and 0.912, respectively. The best average performance 
of the machine learning models in the training set was the RF model (average AUC: 0.906 ± 0.029, P < 0.01). The model 
still maintains a good performance in the external validation center, with an AUC of 0.817 (95% CI 0.705–0.928). Per-
taining to feature importance for short-term prognostic attributes of sICH patients, the NIHSS score reigned supreme, 
succeeded by AST, Age, white blood cell, and hematoma volume, among others. In culmination, guided by the RF 
model’s variable importance weight and the model’s ROC curve insights, the NIHSS score, AST, Age, white blood 
cell, and hematoma volume were integrated to forge a short-term prognostic prediction platform tailored for sICH 
patients.

Conclusion We constructed a prediction model based on the results of the RF model incorporating five clinically 
accessible predictors with reliable predictive efficacy for the short-term prognosis of sICH patients. Meanwhile, 
the performance of the external validation set was also more stable, which can be used for accurate prediction 
of short-term prognosis of sICH patients.

Keywords Spontaneous intracerebral hemorrhage, Prognosis, Prediction model, Machine learning

Introduction
Spontaneous intracerebral hemorrhage (sICH) emanates 
from the unheralded rupture of cerebral arteries, veins, 
and capillaries of diverse dimensions, absent any trau-
matic influence [1]. sICH is one of the most disabling and 
deadly subtypes of stroke, accounting for approximately 
10% to 20% of all stroke types and is the second leading 
cause of death in the world population [2]. Therefore, it 
is particularly important to predict the prognosis and 
early intervention of patients with sICH. Extant research 
delineates a heightened sICH incidence in middle- and 
low-income nations compared to their affluent counter-
parts (117 per 100 000 and 94 per 100 000, respectively), 
with a notable global surge in Asia relative to other ethnic 
contingencies [3].The disease burden of sICH is largely 
attributable to neglect of the management of controlla-
ble risk factors[4, 5]. Consequently, establishing a practi-
cal risk prediction model for sICH prognosis is crucial, 
enabling enhanced, precise management and improved 
patient outcomes.

Machine Learning (ML) has evolved into a potent 
computer-assisted method for data mining and analysis, 
garnering extensive application as a predictive instru-
ment across diverse engineering and medical contexts 
[6, 7]. The predictive accuracy of ML proves superior to 
that of conventional statistical approaches [8, 9]. Previ-
ous studies indicate the linkage of patients with sICH 
prognosis to numerous elements, including demographic 
factors, hematoma volume, site of hemorrhage, inflam-
matory responses, and pharmaceutical impacts, cumu-
latively influencing the prognosis outcomes of sICH 
patients [10–13]. ML can analyze extensive data sets to 
uncover obscured predictive risk factors for enhanced 
clinical direction [14]. Previous studies have developed 

some predictive models for the short-term prognosis of 
patients with sICH using an imaging histology approach, 
which has high predictive efficacy but is not amenable to 
clinical practice [15, 16]. Furthermore, numerous stud-
ies fail to conduct external validation of their models, 
thereby constraining the model’s generalizability and 
its broader applicability [17, 18]. Meanwhile, the vast 
majority of studies have only conducted model training 
and testing for machine learning by dividing the dataset 
randomly at one time, which increases the selection bias 
of the dataset and ultimately leads to unstable or even 
inaccurate performance of the model [19]. Other stud-
ies, despite constructing predictive models, have not 
grounded them in a platform for feasible use, thereby 
curtailing their clinical utility [20, 21].

Therefore, our research endeavors to contrast diverse 
machine learning models to predict the short-term prog-
nostic outcome for sICH patients, based on various clini-
cal features. Our objective further extends to ascertaining 
the significance of disparate features in influencing the 
prognostic outcome of sICH. Ultimately, we establish a 
simplified and efficient prediction platform founded on 
the most efficacious machine learning model, enhancing 
clinical practice value.

Methods and materials
Patients
We retrospectively collected 413 consented sICH patients 
admitted in the Department of Neurology at the Second 
People’s Hospital of Hefei from January 2018 to March 
2022 and included them in the study sample. For the 
validation sample, 74 cases of consented sICH patients 
admitted in the Department of Neurology at the First 
Affiliated Hospital of Anhui Medical University from 
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December 2022 to May 2023 were composed for train-
ing, validating and testing the machine learning model. 
We included the patients with the following criteria: 
(1) age > 18 years; (2) meeting the diagnostic criteria for 
sICH established by the Cerebrovascular Disease Group 
of the Chinese Academy of Neurology, and the diagnosis 
was consistent with cranial CT scan; (3) time between the 
onset and first cranial CT examination < 24 h. Secondary 
cerebral hemorrhage, such as trauma, cerebral infarction 
with cerebral hemorrhage transformation, cerebrovas-
cular malformation, and brain tumor, was also excluded. 
Exclude subarachnoid hemorrhage. Exclude patients 
who have undergone surgery, intervention, or other sur-
gical instrumentation prior to the review of cranial CT. 
Exclude patients who have lost visits after sICH.

This study was approved by the Research Ethics Com-
mittees of the Hospital of Hefei Affiliated with Anhui 
Medical University (2023-yan-018) and the First Affili-
ated Hospital of Anhui Medical University (2021H048). 
All participants or their guardians agreed to the study 
and signed the informed consent forms.

Data acquisition
We collected characteristics such as general demographic 
characteristics, past medical history, laboratory tests and 
general imaging data of the patients. 1. demographic 
characteristics, including age, sex, smoking and drinking; 
2. past medical history, including history of hypertension, 
diabetes mellitus; 3. laboratory tests, including white 
blood cells, neutrophils, lymphocyte and so on; 4. general 
imaging, including hematoma volume, bleeding location 
and so on.

Statistical methods
Selection of candidate variables and predictors
This study encompasses clinically pertinent characteris-
tics of sICH patients, gathered at the point of admission. 
The attributes under consideration entail various dimen-
sions, including general demographic characteristics, 
past medical history, laboratory tests and general imag-
ing data. Continuous variables underwent standardized 
processing, while categorical variables were addressed 
with one-hot encoding methods.

Employing Recursive Feature Elimination (RFE), the 
study sifted for the superior subset to procure the most 
favorable combination of features. RFE is a mainstream 
screening method for machine learning feature screen-
ing. RFE removes features that are not important for 
the ending variables, and ultimately obtains the optimal 
combination of variables for the best performance of the 
model [22]. RFE helps to improve the performance of 
predictive models, especially in avoiding overfitting, and 
is beneficial in improving the generalization ability of the 

model. RFE reduces the number of features and makes 
the model simpler, easier to interpret, which is beneficial 
for clinical applications [23]. Following this, the refined 
optimal subset feature tables were integrated into our 
quintet of machine learning models for concurrent train-
ing and testing.

Machine learning models
In this study, five distinct machine learning models were 
employed for both training and testing, namely, Support 
Vector Machines (SVM), Logistic Regression (LR), Ran-
dom Forest (RF), LightGBM, and XGBoost.

SVM is a supervised machine learning algorithm that 
can be used for regression and classification problems. 
It functions by delineating data into decision boundaries 
for varied classes, concurrently maximizing the margin 
between these boundaries and the nearest data instances, 
thereby enhancing the model’s classification performance 
and generalization capability.

LR is a generalized linear regression model which is 
commonly used to solve classification problems, this 
model is easy to understand and explain.

RF is an integrated learning method based on decision 
trees. It operates on the logic of improving the accuracy 
and robustness of the model by constructing multiple 
decision trees based on random samples and random fea-
tures. This model is a powerful machine learning model 
and is a good choice for solving classification problems.

LightGBM is a high-performance gradient boosting 
decision tree based running framework commonly used 
to solve classification and regression problems. Its unique 
histogram gradient boosting method and leaf-wise learn-
ing strategy make it perform well in large datasets, and it 
is a powerful tool for solving classification problems.

XGboost is a mainstream machine learning model. It is 
an integrated learning method based on gradient boost-
ing tree, which further improves the accuracy of the 
model by constructing multiple decision trees to reduce 
the prediction error. At the same time, the model can 
support multiple loss functions and regularization fea-
tures, making XGboost known for its high performance 
and scalability in the field of machine learning.

In this study, every enlisted machine learning model 
was meticulously configured to utilize the aforemen-
tioned scrutinized features, with the aim to effectively 
differentiate between poor and good short-term progno-
ses for sICH patients.

Selection of machine learning models
The dataset within the training set is divided in a 7:3 ratio. 
This division allocated seven parts for model training, uti-
lizing the remaining three parts for testing model perfor-
mance. Internal fivefold cross-validation was employed 
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Table 1 Demographics and clinical characteristics of study in the training and validation cohorts

Group All data Train data Test data P-value

N 487 413 74

Age 0.460

  < 65 322 (66.12%) 209 (50.61%) 34 (45.95%)

  >  = 65 165 (33.88%) 204 (49.39%) 40 (54.05%)

Sex 0.176

 Male 322 (66.12%) 268 (64.89%) 54 (72.97%)

 Female 165 (33.88%) 145 (35.11%) 20 (27.03%)

Hypertension  < 0.001

 No 119 (24.44%) 113 (27.36%) 6 (8.11%)

 Yes 368 (75.56%) 300 (72.64%) 68 (91.89%)

Diabetes 0.942

 No 429 (88.09%) 364 (88.14%) 65 (87.84%)

 Yes 58 (11.91%) 49 (11.86%) 9 (12.16%)

Smoking 0.071

 No 375 (77.00%) 312 (75.54%) 63 (85.14%)

 Yes 112 (23.00%) 101 (24.46%) 11 (14.86%)

Drinking 0.007

 No 359 (73.72%) 295 (71.43%) 64 (86.49%)

 Yes 128 (26.28%) 118 (28.57%) 10 (13.51%)

Hematoma volume 0.160

  < 20 383 (78.64%) 322 (77.97%) 61 (82.43%)

 20–40 55 (11.29%) 45 (10.90%) 10 (13.51%)

  >  = 40 49 (10.06%) 46 (11.14%) 3 (4.05%)

Intraventricular hemorrhage 0.559

 No 355 (72.90%) 299 (72.40%) 56 (75.68%)

 Yes 132 (27.10%) 114 (27.60%) 18 (24.32%)

Infratentorial hemorrhage  < 0.001

 No 431 (88.50%) 375 (90.80%) 56 (75.68%)

 Yes 56 (11.50%) 38 (9.20%) 18 (24.32%)

Outcome 0.176

 Good outcome 281 (57.70%) 233 (56.42%) 48 (64.86%)

 Poor outcome 206 (42.30%) 180 (43.58%) 26 (35.14%)

White blood cell 8.65 ± 3.80 8.69 ± 3.93 8.42 ± 2.98 0.577

Neutrophils 6.86 ± 4.87 6.72 ± 3.77 7.62 ± 8.79 0.389

Lymphocyte 1.39 ± 0.69 1.41 ± 0.69 1.33 ± 0.69 0.431

Urine nitrogen 5.73 ± 2.69 5.76 ± 2.74 5.59 ± 2.46 0.63

Creatinine 79.93 ± 54.24 80.70 ± 54.16 75.61 ± 54.85 0.458

Uric acid 338.18 ± 124.69 351.04 ± 123.55 266.43 ± 105.84 0.00

ALT 21.72 ± 11.64 21.37 ± 11.32 23.71 ± 13.22 0.155

AST 27.32 ± 14.04 26.42 ± 12.17 32.31 ± 21.13 0.022

Glucose 6.70 ± 2.45 6.69 ± 2.49 6.73 ± 2.20 0.925

Systolic pressure 162.71 ± 26.85 163.69 ± 27.29 157.23 ± 23.68 0.057

Diastolic pressure 93.31 ± 17.30 93.90 ± 17.30 89.99 ± 17.04 0.073

GCS scores 12.99 ± 3.38 12.86 ± 3.42 13.70 ± 3.08 0.047

NIHSS scores 9.70 ± 9.59 10.08 ± 9.73 7.59 ± 8.56 0.040
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to discern the most suitable hyperparameters for each 
distinct model, individually applied to each model for 
enhanced precision. Moreover, external fivefold cross-
validation facilitated the comparison of machine learning 
models, identifying the model with superior average per-
formance as the ultimate predictive model.

Evaluation metrics, including AUC and accuracy, 
served to assess each model’s performance. The SHAP 
method was employed to showcase the important weight 
of each variable, offering insights into their relative 
importance within the model. In conclusion, the optimal 
amalgamation of predictor variables was determined by 
integrating variable importance weight and combina-
tions, culminating in the establishment of a comprehen-
sive prediction platform.

Additional statistical techniques
Data analysis and visualization were conducted utilizing 
SPSS (version 24.0), Python (version 3.10.10), Scikit-learn 
(version 1.2.2) and Shiny (version 0.5.1). Categorical vari-
ables underwent evaluation with chi-square or Fisher’s 
test, with the findings outlined in percentage terms. Con-
tinuous variables adhering to normal distribution were 
depicted as mean ± standard deviation, and scrutinized 
using the t-test. Non-normally distributed data were 
characterized using quartiles and assessed with non-par-
ametric tests. A p-value under 0.05 (two-tailed) was con-
sidered indicative of statistical significance.

Results
Clinical characteristics
Table  1 provides a comparison of the baseline charac-
teristic between the training set and external testing set 
data. No substantial differences were observed between 
the training set and the external test set across the major-
ity of features. The proportion of patients with hyperten-
sion was notably higher in the external test set than in 
the training set (91.89% VS 72.64%, P < 0.001). Contrarily, 
the proportion of patients consuming alcohol was signifi-
cantly elevated in the training set compared to the exter-
nal test set (28.57% VS 13.51%, P = 0.007). Concurrently, 
the incidence of intraventricular hemorrhage was appre-
ciably higher in the training set than in the external test 
set (24.32% VS 9.2%, P < 0.001). Moreover, uric acid levels 
were markedly higher in the training set (351.04 ± 123.55 
VS 266.43 ± 105.84, P = 0.00). In the external test set, the 
AST was significantly elevated compared to the training 
set (32.31 ± 21.13 VS 26.42 ± 12.17, P = 0.022). Further-
more, in the training set, GCS scores were significantly 
lower (12.86 ± 3.42 VS 13.70 ± 3.08, P = 0.047), while 
NIHSS scores were considerably higher (10.08 ± 9.73 VS 
7.59 ± 8.56, P = 0.04) (Table 1).

Table  2 delineates the disparities between groups 
regarding the varied prognoses of sICH patients in the 
training set. Within the poor prognosis group, the ratio 
of elderly patients was significantly augmented compared 
to the good prognosis group (56.1% VS 44.2%, P = 0.016). 
The incidence of intraventricular hemorrhage was 

Table 2 ICH patients’ characteristics in the Training cohort

Characteristic Good outcome Poor outcome P-value

Age 0.016

  < 65 130(55.8%) 79(43.9%)

  >  = 65 103(44.2%) 101(56.1%)

Sex 0.228

 Male 157(67.4%) 111(61.7%)

 Female 76(32.6%) 69(38.3%)

Hypertension 0.867

 No 63(27.0%) 50(27.8%)

 Yes 170(73.0%) 130(72.2%)

Diabetes 0.303

 No 31(13.3%) 162(90.0%)

 Yes 202(86.7%) 18(10.0%)

Smoking 0.105

 No 169(72.5%) 143(79.4%)

 Yes 64(27.5%) 37(20.6%)

Drinking 0.233

 No 161(69.1%) 134(74.4%)

 Yes 72(30.9%) 46(25.6%)

Intraventricular hemor-
rhage

0.000

 No 207(88.8%) 92(51.1%)

 Yes 26(11.2%) 88(48.9%)

Infratentorial hemorrhage 0.379

 No 209(89.7%) 166(92.2%)

 Yes 24(10.3%) 14(7.8%)

Hematoma volume 0.0000

  < 20 ml 217(93.1%) 105(58.3%)

 20–40 ml 14(6.0%) 31(17.2%)

  >  = 40 ml 2(0.9%) 44(24.4%)

White blood cell 7.47 ± 2.26 10.27 ± 4.96 0.000

Neutrophils 5.46 ± 2.05 8.35 ± 4.74 0.000

Lymphocyte 1.47 ± 0.70 1.33 ± 0.68 0.043

Urine nitrogen 5.40 ± 2.22 6.21 ± 3.24 0.005

Creatinine 80.49 ± 64.55 80.96 ± 36.78 0.931

Uric acid 348.82 ± 113.15 353.91 ± 136.11 0.686

ALT 21.26 ± 12.17 21.50 ± 10.14 0.829

AST 24.13 ± 8.41 29.38 ± 15.28 0.000

Glucose 6.13 ± 1.86 7.43 ± 2.99 0.000

Systolic pressure 159.55 ± 25.37 169.04 ± 28.79 0.00

Diastolic pressure 92.66 ± 16.82 95.5 ± 17.82 0.099

GCS scores 14.53 ± 1.20 10.69 ± 4.07 0.000

NIHSS scores 4.60 ± 4.44 17.16 ± 10.13 0.000
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markedly elevated in the poor prognosis group compared 
to the good prognosis group (48.9% VS 11.2%, P = 0.000). 
Additionally, a significant distinction in hematoma vol-
ume was noted between the two groups (P = 0.000) 
(Table 2).

Selection of predictors
We employ a RFE strategy for feature screening. The 
amalgamation of optimal subsets ascertained accord-
ing to the recursive feature elimination method includes: 
NIHSS score, AST, Age, White Blood Cell, Hematoma 
volume, Urine nitrogen, Neutrophils, Glucose, Creati-
nine, Systolic Pressure, ALT, Lymphocyte, Diastolic Pres-
sure, Uric acid, GCS score.

Multiple machine learning model performance
We based our model training and testing on the afore-
mentioned selected features. The AUC of all models on 
the internal test set ranged between 0.85 and 0.95, with 
the RF model emerging as the most efficacious [AUC: 
0.916, 95% CI (0.859–0.972)] (Fig.  1). During the exter-
nal fivefold cross-validation, the mean performance of 
the RF persistently ranked superior (AUC: 0.906 ± 0.029) 
(Fig. 2). Table 3 illustrates a comparison of common per-
formance metrics among diverse machine learning pre-
diction models. Based on these outcomes, we select the 
RF model as our concluding risk prediction model.

The performance of the RF model, trained as described, 
remains stable in the external test set (AUC: 0.817, 95% 
CI (0.705–0.928)) (Fig. 3).

Fig. 1 ROC curve analysis of the five machine learning alorithms for predicting short-term prognosis of ICH patients in the test data
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Variable importance and variable interpretation
We visualize the impact of predictor variables on out-
comes based on SHAP plots. Specifically, the influence 
of a variable on the outcome can be visually interpreted 
through the magnitude of the SHAP value (indicated by 
a change in color) and the trend on the horizontal axis of 

the variable (probability of developing a poor outcome). 
For instance, in the scenario of NIHSS scores, individuals 
with elevated scores (represented in red) are more prone 
to have an adverse prognosis (on the right-hand side) 
compared to those with lower NIHSS scores (depicted 
in blue). Similarly, for individuals with augmented AST 

Fig. 2 The average AUC performance of five machine learning models subjected to fivefold external cross-validation

Table 3 Comparative analysis of the performance outcomes across various machine learning models

LR logistic regression; RF, random forest; XGBoost, extreme gradient boosting; LightGBM light gradient boosting machine; SVM support vector machine; AUC  area 
under the curve

Model F1 score (%) Accuracy (%) Recall (%) Precision (%) AUC (%) Sensitivity (%) Specificity (%)

LR model 80.8 84.7 80.0 81.6 89.6 80.0 87.8

RF model 78.5 81.5 84.0 73.7 91.6 84.0 79.7

XGBoost model 81.1 83.9 86.0 76.8 88.5 86.0 82.4

LightGBM model 79.6 82.3 86.0 74.1 91.2 86.0 79.7

SVM model 78.0 82.3 78.0 78.0 87.0 78.0 85.1
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levels (in red), the prognosis for sICH patients is likely 
to be unfavorable (right side). The prognosis for patients 
with sICH may be unfavorable for those individuals 
whose hematoma volume is not hematoma volume_1 
(hematoma volume > 20 ml, indicated in blue) (located on 
the right) (Fig. 4).

Implementation of web calculator
We additionally plotted the combined AUC and variable 
importance line graphs, utilizing model prediction data 
constituted by variable importance and variable combi-
nations from RF model. As per the figure, it is evident 
that the amalgamation of variables including NIHSS 
score, AST level, Age, White blood cell, and Hema-
toma volume is capable of attaining the optimized and 
streamlined predictive efficacy (Fig. 5). A web calculator 
was constructed based on these five indicators, facilitat-
ing individualized prediction of prognostic risk in sICH 
patients (https:// surge- ustc. shiny apps. io/ hemor rhage_ 
progn osis/) (Fig.  6).

Discussion
The dangers of sICH cannot be underestimated. Research 
data indicates that the disability rate of sICH soars 
between 40 and 80%, and almost half of the affected indi-
viduals succumb within one-month post-onset of the ail-
ment [24, 25]. When cerebral hemorrhage occurs, blood 
permeates into the brain parenchyma from a burst cer-
ebral vessel, potentially escalating intracranial pressure 

and inflicting damage to adjacent brain cells [26]. This 
cascade can lead to pronounced neurological dysfunc-
tion. A severe cerebral hemorrhage may precipitate limb 
paralysis, aphasia, coma, and in dire circumstances, death 
[27]. Prognosticating the outcome of sICH enhances our 
understanding of patient conditions and potential risks, 
enabling the administration of more tailored therapeutic 
interventions. Solely considering the condition, numer-
ous factors influence the prognosis of sICH, chiefly 
among them being the site and volume of bleeding. Nev-
ertheless, the prognosis is not rigid, and factors such as 
patient age and preceding health status exert significant 
influence [28]. Consequently, even seasoned neurologists 
find it challenging to predict the short-term outcome 
of sICH. Therefore, establishing a systematic prediction 
platform for short-term prognosis of sICH patients and 
realizing online calculation of individual risks has impor-
tant clinical practice value.

In this individual-level analysis of a retrospective study 
cohort, a newly devised machine-learning-based tool 
was developed for the prediction of short-term progno-
sis in patients with sICH. From a relatively large num-
ber of health- and prognostic-related variables, a series 
of data-driven selection approaches were utilized, and 
the five most pivotal predictors were identified. The RF 
model predicted the short-term prognosis in sICH with 
an AUC of 0.916, indicating a high predictive perfor-
mance. Enhanced performance was also observed upon 
its application to the prediction of an external validation 
dataset. Our proposed clinical prognostic prediction tool 
is effortless to implement in clinical settings, enabling a 
swift prognosis of clinical outcomes, contributing signifi-
cantly to clinical decision making.

Amidst the progression of machine learning, random 
forest models emerge as a superior methodology for 
constructing relevant medical predictive models. Previ-
ous studies by Huang et  al. have shown that RF models 
can improve the prediction capability of prognosis in 
acute respiratory distress syndrome [29]. In the present 
study, the RF model identified NIHSS score, AST level, 
age, white blood cell counts and hematoma volume as the 
top 5 risk factors for short-term prognosis of sICH. This 
model uses the simplest combination of variables while 
achieving the best predictive performance. To reduce 
the risk of dataset selection bias due to random dataset 
splitting, we performed external fivefold cross-validation 
of all machine learning models to obtain the average 
performance of each machine learning model based on 
five predictions. Results from external cross-validation 
reveal that RF model (AUC: 0.906 ± 0.029) outperform 
other machine learning models in terms of average pre-
dictive performance. The findings indicate that the AUC 
of the RF model in the testing set stands at 0.916(95% CI 

Fig. 3 ROC curve analysis of the RF alorithms for predicting 
short-term prognosis of ICH patients in the external test set

https://surge-ustc.shinyapps.io/hemorrhage_prognosis/
https://surge-ustc.shinyapps.io/hemorrhage_prognosis/
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Fig. 4 SHAP analyses of the RF model for predicting poor prognosis of ICH patients

Fig. 5 Comparison of the performance derived from RF model constructed with various variable combinations based on variable importance
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0.827–1.005), surpassing other models. Concurrently, 
within the external validation dataset, the AUC of the RF 
model reached 0.817, signaling the robust generalization 
capability of the RF model, affirming its applicability in 
clinically predicting sICH short-term prognosis.

The NIHSS score has garnered extensive utilization in 
clinical trials concerning acute ischemic stroke for the 
assessment of stroke severity [30]. A research endeavor 
spearheaded by UK academics sought to authenticate the 
association between NIHSS scale score items and prog-
nosis in hyperacute-phase stroke patients undergoing 
thrombolysis treatment. The study outcomes unveiled a 
significant association between NIHSS score items, func-
tional prognosis, and mortality in patients enduring acute 
ischemic stroke under thrombolysis [31]. In patients with 
hemorrhagic stroke, NIHSS scores have garnered escalat-
ing attention recently [32]. Our study echoes this by dem-
onstrating a correlation between elevated NIHSS scores 
and a dismal short-term prognosis, aligning with prior 
research [21, 33]. Our study also found that patients with 
higher AST would have poorer prognosis. This is consist-
ent with the findings of Tan et al. [34]. This may be due to 
the fact that AST is a glutamate-regulating enzyme, and 
higher AST levels lead to higher glutamate levels, and 
the neurotoxicity of glutamate leads to a poorer progno-
sis for patients [35, 36]. Moreover, our findings also indi-
cate that age is a significant factor of poor prognoses in 
patients with sICH. The results show an increased risk 
of poor prognosis in sICH patients with advancing age. 
As patients age, their physiological reserves decline and 

they are less able to recover from a cerebral hemorrhage 
event. Previous studies have also revealed that the effects 
of ageing on hematoma volume and neuroinflamma-
tion exacerbate the poor prognosis of sICH patients [37, 
38]. Our results also show that as white blood cell levels 
increase, the risk of poor prognosis in sICH patients also 
increases significantly. An augmented white blood cell 
count typically signifies the manifestation of an inflam-
matory response within the organism. sICH precipitates 
both localized and systemic inflammatory reactions, 
which, in the context of sICH, can induce collateral dam-
age to the adjacent cerebral tissue and potentiate the 
severity of cerebral edema [39]. Concurrently, post-hem-
orrhagic immune cell aggregation, encompassing white 
blood cell, at the hemorrhage locus could amplify neu-
ronal injury through the secretion of pro-inflammatory 
cytokines and proteolytic enzymes [40]. We also found 
that patients with smaller hematoma volumes (< 20  ml) 
had a better prognosis relative to those with larger hema-
toma volumes, which is consistent with many previous 
studies [41].

The strength of this study is the comparison of differ-
ent ML models to predict the short-term prognosis of 
sICH. The external validation performance and com-
parison with other models also demonstrated that the 
RF model has a good predictive value for short-term 
prognosis of sICH. For further application, we built a 
user-friendly online prediction platform for neurolo-
gists and patients worldwide.

Fig. 6 A web-based calculator for predicting short-term prognosis in patients with ICH
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Certainly, our study has some limitations. Firstly, 
leukocyte counts may be influenced by a number of 
factors, such as the use of medication. Secondly, the 
present study is a retrospective paired-cohort study 
and there may be some bias in the results of the study. 
Furthermore, the limited number of cases in external 
validation centers may limit the reliability of the pre-
sent results. Future research endeavors should engage 
in multi-center validation and embark on large-scale 
prospective studies to enhance the robustness of our 
findings.

In conclusion, a predictive model has been established, 
leveraging the outcomes of the RF model and integrating 
four clinically attainable predictors. This model exhibits 
dependable predictive efficacy for the short-term prog-
nosis of sICH patients. Meanwhile, the performance of 
the external validation set was also more stable, which 
can be used for accurate prediction of short-term prog-
nosis of sICH patients.
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