
Sun et al. Journal of Translational Medicine           (2024) 22:83  
https://doi.org/10.1186/s12967-024-04892-7

RESEARCH

Causal relationship between multiple 
sclerosis and cortical structure: a Mendelian 
randomization study
Dongren Sun1, Rui Wang1, Qin Du1, Ying Zhang1, Hongxi Chen1, Ziyan Shi1, Xiaofei Wang1*† and 
Hongyu Zhou1*†   

Abstract 

Background Observational studies have suggested an association between multiple sclerosis (MS) and cortical 
structure, but the results have been inconsistent.

Objective We used two-sample Mendelian randomization (MR) to assess the causal relationship between MS 
and cortical structure.

Methods MS data as the exposure trait, including 14,498 cases and 24,091 controls, were obtained from the Inter-
national Multiple Sclerosis Genetics Consortium. Genome-wide association study (GWAS) data for cortical surface 
area (SAw/nw) and thickness (THw/nw) in 51,665 individuals of European ancestry were obtained from the ENIGMA 
Consortium. The inverse-variance weighted (IVW) method was used as the primary analysis for MR. Sensitivity analy-
ses were conducted to evaluate heterogeneity and pleiotropy. Enrichment analysis was performed on MR analyses 
filtered by sensitivity analysis.

Results After IVW and sensitivity analysis filtering, only six surviving MR results provided suggestive evidence sup-
porting a causal relationship between MS and cortical structure, including lingual SAw (p = .0342, beta (se) = 5.7127 
(2.6969)), parahippocampal SAw (p = .0224, beta (se) = 1.5577 (0.6822)), rostral middle frontal SAw (p = .0154, beta 
(se) = − 9.0301 (3.7281)), cuneus THw (p = .0418, beta (se) =  − 0.0020 (0.0010)), lateral orbitofrontal THw (p = .0281, 
beta (se) = 0.0025 (0.0010)), and lateral orbitofrontal THnw (p = .0417, beta (se) = 0.0029 (0.0014)). Enrichment analysis 
suggested that leukocyte cell-related pathways, JAK-STAT signaling pathway, NF-kappa B signaling pathway, cytokine-
cytokine receptor interaction, and prolactin signaling pathway may be involved in the effect of MS on cortical 
morphology.

Conclusion Our results provide evidence supporting a causal relationship between MS and cortical structure. 
Enrichment analysis suggests that the pathways mediating brain morphology abnormalities in MS patients are mainly 
related to immune and inflammation-driven pathways.
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Introduction
Multiple sclerosis (MS) is a multifactorial central nervous 
system autoimmune disease that leads to demyelination 
and axonal loss, with a male-to-female ratio of 1:3 [1]. 
MS affects over 2 million people, imposing a significant 
global health burden [2]. Some studies have reported 
that approximately 40–70% of MS patients experience 
cognitive dysfunction [3, 4], and up to 60% have neu-
ropsychiatric symptoms [5, 6]. These neuropsychiatric 
abnormalities may be related to changes in brain con-
nectivity. Accumulating evidence suggests that gray mat-
ter structures are widely affected in MS patients [7–9]. 
A 1-year follow-up study of 75 relapsing–remitting MS 
(RRMS) and 11 progressive MS (PMS) patients showed 
that RRMS patients had thinning of the frontal and tem-
poral cortices, while PMS patients had a general decrease 
in cortical thickness (TH) [10]. Several other studies have 
confirmed that RRMS patients exhibit a decrease in aver-
age TH across the entire brain [11–13]. Nygaard et  al. 
found that RRMS patients had similar cortical surface 
area (SA) to healthy controls [14], but another study pro-
vided evidence supporting a decrease in central anterior 
SA in MS patients [15].

However, these reports of the association between 
MS and brain structure are observational, and the con-
clusions are not consistent. Moreover, these studies are 
vulnerable to confounding factors and reverse causality, 
making causal inference difficult using traditional obser-
vational epidemiology. More importantly, the extent to 
which MS affects cortical structures and the underly-
ing mechanisms remain unclear. Therefore, a tailored 
approach to exploring the causal relationship between 
MS and the cortical brain structure is crucial.

Mendelian randomization (MR) is a widely used 
approach in the study of neurological disorders, which 
employs single nucleotide polymorphisms (SNPs) as 
instrumental variables (IVs) to explore causal relation-
ships between exposures and outcomes [16–19]. MR 
minimizes confounding and avoids reverse causation 
[17]. The fundamental principle in mitigating confound-
ing factors within MR studies is rooted in the random 
allocation of genetic variations during meiosis, ensur-
ing that one trait is typically unrelated to others. This 
method serves to avoid reverse causation, given that the 
genetic variations utilized to represent the impact of 
exposure remain unaltered by the occurrence and pro-
gression of outcomes [17]. There are three key assump-
tions in MR analysis. First, the genetic variation used as 
IVs should be associated with the risk factor of interest. 
Second, the genetic variation used should not be asso-
ciated with potential confounders. Third, the selected 
genetic variation should only affect the outcome through 
the risk factor [20]. Here, we conducted a two-sample 

MR study using publicly available genome-wide associa-
tion study (GWAS) data to determine the causal relation-
ship between MS and brain structure.

Methods
Data sources and genetic instruments
Participants
We obtained MS GWAS data from the International 
Multiple Sclerosis Genetics Consortium (IMSGC). The 
dataset comprises 38,589 individuals of European ances-
try, including 14,498 cases and 24,091 healthy controls. 
Disease diagnosis was conducted by neurologists famil-
iar with MS, following widely recognized diagnostic cri-
teria [21–23]. Disease severity was assessed using the 
Expanded Disability Status Score (EDSS) [24] and the 
Multiple Sclerosis Severity Score (MSSS) [25]. The over-
all age of onset for MS is 33.1 years. The study identified 
48 new susceptibility loci for MS, highlighting the role of 
NF-kappa B in the disease’s pathobiology. In addition, the 
overlap between MS and other autoimmune diseases was 
calculated using an immune chip analysis. Approximately 
22% of the MS signals overlapped with at least one other 
autoimmune disease, primarily including inflammatory 
bowel disease (~ 9.1%), primary biliary cirrhosis (~ 9.1%), 
Crohn’s disease (~ 9.1%), ulcerative colitis (~ 7.3%), celiac 
disease (~ 4.5%), rheumatoid arthritis (~ 4.5%), and auto-
immune thyroid disease (~ 2.7%) [26]. For further details 
on this study, please refer to the original publication [26].

Brain cortical structure
The summary-level data on the cortical structure is 
derived from the work of the Enhancing NeuroIm-
aging Genetics through Meta-Analysis Consortium 
(ENIGMA)-Genetics working group. Grasby et  al. uti-
lized magnetic resonance imaging data from 51,665 indi-
viduals to investigate the cortical SA and TH [27]. The 
GWAS meta-analysis identified loci that affect regional 
SA near genes involved in the Wnt signaling pathway. 
Specifically, the study divided cortical structures into 34 
functionally specialized regions based on the Desikan-
Killiany atlas, and regional SA and TH were analyzed 
with and without whole-brain weighting (w indicates 
weighted regions, while nw indicates unweighted 
regions) [27]. Additional details can be found in the origi-
nal research study [27]. Therefore, we utilized this GWAS 
data to analyze the causal effects of MS on both whole-
brain and the 34 functional regions’ cortical SA and TH, 
resulting in a total of 138 analyses.

Selection of instrumental variables
Based on the basic assumptions of MR, we first extracted 
MS-related IVs with a threshold of P < 5E−8. Second, we 
clumped the IVs based on the European 1000 Genomes 



Page 3 of 10Sun et al. Journal of Translational Medicine           (2024) 22:83  

Project (clumped  R2 < 0.001, window size = 10 Mb). Third, 
proxy genetic variants were used when no correspond-
ing SNPs were available (LD  R2 threshold was set at 0.8). 
Fourth, we homogenized the SNPs and removed pal-
indromic SNPs. To ensure the IVs had strong statistical 
power, we selected SNPs with an F-statistic greater than 
10. We used the formula  R2 * (N−k−1)/[ (1−R2) * k] to 
calculate the F-statistic, where N is the sample size of 
MS, k is the number of SNPs, and  R2 is the proportion 
of MS variation explained by each SNP.  R2 was calculated 
by the formula: 2*  beta2* (1-eaf ) * eaf, where eaf is the 
allele frequency of the effect, and beta is the estimate of 
the genetic effect of the variant on MS [28, 29]. Our MR 
study followed the STROBE-MR Statement guidelines 
[30].

MR analysis and sensitivity analysis
The inverse-variance weighted (IVW) method with 
random effects is used as the main approach for MR 
analysis. The IVW approach combines the Wald ratio 
estimates of each SNP to obtain an overall estimate of 
the causal effect. Although IVW allows for heterogene-
ity [20, 31], it is susceptible to pleiotropic bias [32, 33]. 
MR-Egger, weighted median, simple mode, and weighted 
mode methods rely on assumptions different from those 
of IVW and are relatively robust to horizontal pleiotropy, 
which can complement IVW to make MR estimates more 
reliable [34]. Cochran’s Q test is used to detect heteroge-
neity. The MR-Egger intercept test generates a non-zero 
intercept, indicating the presence of directional pleiot-
ropy [35]. The MR Pleiotropy Residual Sum and Outlier 
(MR-PRESSO) test is used to detect potential outliers 
and provides corrected estimates of MR to account for 
horizontal pleiotropy after removing such outliers [36]. 
Leave-one-out analysis checks whether MR estimates are 
driven by individual SNPs. Additionally, we employed 
the Steiger test to mitigate the impact of reverse causa-
tion [37, 38]. For significant results determined by IVW 
(p < 0.05), we use the PhenoScanner online tool to search 
for the second phenotypes of genetic variants, includ-
ing body mass index, obesity, smoking, drinking, neu-
ropsychiatric disease, hypertension, and hyperlipemia, to 
evaluate whether these MR estimates are overturned by 
potential confounding factors [39, 40]. These tests have 
different assumptions but are useful for explaining other 
causal pathways apart from the hypothesized pathway 
[34]. Multiple comparisons are corrected by the Bonfer-
roni method. The meaningful and nominally significant 
thresholds were set at p < 0.05/138 = 0.0004 and p < 0.05, 
respectively, out of 138 tests conducted. The analysis was 
performed using the TwoSampleMR package (version 
0.5.6) in R software (version 4.2.1).

Causal genomic loci and enrichment analysis
To further explore the potential mechanisms underlying 
cortical structural changes mediated by MS, we exam-
ined gene sets with distinct causal effects (increasing or 
decreasing TH and SA) on cortical structure. These sets 
were identified through a series of sensitivity tests and 
filtered MR analysis results. We then performed Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis on these 
gene sets. The analysis was completed using the cluster-
Profiler package (version v4.4.4) and the biomaRt pack-
age (version 2.52.0) in R software (version 4.2.1).

Results
MR analysis and sensitivity analysis
Out of a total of 138 MR analyses, we used the IVW 
method to preliminarily establish nominal causal asso-
ciations between MS and cortical structure in 9 brain 
regions. These regions include lingual SAw, parahip-
pocampal SAw, postcentral SAw, rostral middle frontal 
SAw, lingual SAnw, cuneus THw, lateral orbitofrontal 
THw, superior temporal THw, and lateral orbitofrontal 
THnw (Figs. 1, 2).

Sensitivity analysis showed that the MR-Egger intercept 
was removed in the lingual SAnw due to the detection 
of directional pleiotropy (intercept = −  2.51, se = 1.19, 
p = 0.04). Directional pleiotropy was not detected in 
the remaining MR estimates (MR-Egger intercept 
pvalue > 0.05, Additional file 1: Table S1). Although het-
erogeneity was detected in the superior temporal THw 
(Cochran’s Q = 68.52, p = 0.01), the random effects IVW 
method accepted the presence of heterogeneity. The 
MR-PRESSO analysis confirmed the presence of poten-
tial outliers in the superior temporal THw region, but 
their identification was not feasible (p = 0.004). However, 
no outliers were detected in the other MR results (MR-
PRESSO pvalue > 0.05, Additional file  1: Table  S1). The 
remaining four supplemental methods for MR estimation 
are shown in Table  S2. Leave-one-out analysis showed 
that none of the MR estimates were driven by a single 
SNP (Additional file  1: Figs. S1–S9). All MR estimates 
passed the Steiger test, maintaining consistency with the 
previous results.

In addition, we further conducted sensitivity analy-
ses using the PhenoScanner tool for the remaining MR 
estimates. We found that rs7923837 and rs11554159 
were associated with body mass index, rs8070345 with 
frequency of alcohol consumption, rs11154801 with 
schizophrenia, and rs2857700 with Parkinson’s disease, 
total cholesterol, and self-reported hypertension. After 
removing the SNPs associated with these risk factors, the 
MR estimates for postcentral SAw and superior temporal 
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THw were no longer consistent with the previous ones 
(pvalue > 0.05, Additional file 1: Table S3).

Therefore, after a series of sensitivity analyses, only 
six surviving MR results suggested a causal relationship 
between MS and cortical structure, including lingual SAw 
(p = 0.0342, beta (se) = 5.7127 (2.6969)), parahippocam-
pal SAw (p = 0.0224, beta (se) = 1.5577 (0.6822)), rostral 
middle frontal SAw (p = 0.0154, beta (se) =  −  9.0301 
(3.7281)), cuneus THw (p = 0.0418, beta (se) =  −  0.0020 
(0.0010)), lateral orbitofrontal THw (p = 0.0281, beta 
(se) = 0.0025 (0.0010)), and lateral orbitofrontal THnw 
(p = 0.0417, beta (se) = 0.0029 (0.0014)) (Fig. 2). It is note-
worthy that these MR estimates were limited to regional 
functional levels, and there was no evidence to support a 

potential causal relationship between MS and global cor-
tical TH or SA (Fig. 1).

Causal loci and enrichment analysis
Although MS has different effects on the TH and SA of 
the cerebral cortex, we found that the gene sets underly-
ing the causal relationship between MS and brain mor-
phology were completely overlapping. A total of 41 genes 
were implicated in the causal link between MS and corti-
cal structure (Additional file 1: Table S4). Notably, 13 key 
genes including ELMO1, SOCS1, STAT3, STAT4, IL7R, 
IL22RA2, TNFRSF1A, TNFSF14, IL2RA, TNFAIP3, 
BCL10, MAPK3, CD86, CXCR5, and LTBR were found 
to regulate the changes in cortical structure caused by 

Fig. 1 IVW estimates from multiple sclerosis on brain cortical structure. IVW the inverse-variance weighted method with random effects, TH 
thickness, SA surface area, w whole-brain weighted, nw whole-brain unweighted
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MS (Additional file 1: Fig. S10). GO analysis revealed that 
these pathways were mainly enriched in leukocyte prolif-
eration, positive regulation of T cell activation, positive 
regulation of leukocyte cell–cell adhesion, and receptor 
signaling pathways via STAT (Fig.  3A). KEGG analysis 
showed that these pathways were mainly involved in JAK-
STAT signaling, NF-kappa B signaling, cytokine-cytokine 
receptor interaction, and prolactin signaling pathways 
(Fig. 3B).

Discussion
To our knowledge, this is the first MR study investigat-
ing the causal relationship between MS and brain struc-
ture. We implemented a large-scale GWAS summary 
data analysis on MS and brain structure, ultimately dis-
covering nominal associations between MS and 6 cor-
tical structures, including decreased rostral middle 
frontal SAw, cuneus THw, and increased lingual SAw, 
parahippocampal SAw, lateral orbitofrontal THw, and 
lateral orbitofrontal THnw. Sensitivity analysis strength-
ened the robustness of our MR estimates.

Our MR analysis suggested that MS primarily affects 
cortical structures concentrated in the frontal and 

temporal lobes, partially overlapping with previous 
observational studies, although the effects were not 
entirely consistent. Previous studies have demonstrated 
atrophy in the precuneus and cuneus regions in MS 
patients [41, 42], and our findings indicated comparable 
declines in the TH of the cuneus region. Furthermore, we 
identified a causal association between MS and increased 
lingual SA. While most visual impairments in MS are 
due to optic neuritis [43], these regions are located in 
the occipital lobe and are closely related to vision, which 
may explain some of the mechanisms underlying visual 
impairments in MS patients. Unfortunately, the brain 
structure GWAS by Grasby et al. did not include the optic 
nerve [27], so we were unable to determine the causal 
effect of MS on the optic nerve in the current study.

Furthermore, we presented compelling evidence sup-
porting a causal association between MS and increased 
SA in the parahippocampal gyrus, elevated TH in the lat-
eral orbitofrontal cortex, and decreased SA in the rostral 
middle frontal region. Accumulating evidence has sug-
gested a close association between the parahippocampal 
gyrus and olfactory and cognitive impairments [44–46], 
with reports of 20 to 45% of MS patients experiencing 

Fig. 2 MR estimation of positive primary screening for IVW. MR Mendelian randomization, IVW the inverse-variance weighted method with random 
effects, p P-value derived from the inverse-variance weighted (IVW) method, TH thickness, SA surface area, w whole-brain weighted, nw whole-brain 
unweighted, CI confidence interval
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olfactory dysfunction [47]. Moreover, the parahippocam-
pal gyrus is directly connected to multiple regions of the 
prefrontal cortex [44], and olfactory dysfunction may 

be associated with damage to the subfrontal and tem-
poral lobes [48]. Steenwijk et  al. observed that the pat-
tern of cortical thickness changes in individuals with MS 

Fig. 3 Enrichment analysis of causal SNPs. A SNPs: single nucleotide polymorphisms; Gene Ontology (GO) analysis results; B Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis results
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primarily involves bilateral temporal poles and insular 
cortex [9]. Several observational studies have reported 
cortical thinning in the frontal and temporal lobes of 
MS patients [10, 49–51]. Our MR estimates similarly 
suggest damage to the temporal and frontal lobes, espe-
cially a decrease in rostral middle frontal SA. Therefore, 
it is reasonable to speculate that damage to the olfac-
tory pathway from the temporal lobe to the frontal cor-
tex, especially the orbitofrontal cortex, may contribute to 
the olfactory decline in MS patients [46, 47]. It is worth 
noting that the parahippocampal cortex is associated 
with various cognitive processes, including visual spatial 
processing and episodic memory [44, 45]. Although our 
results suggest an association between MS and the para-
hippocampal cortex, further research is needed to deter-
mine whether MS patients experience neurobehavioral 
symptoms through the impact on the parahippocampal 
gyrus.

Our findings of increased cortical SA or TH in some 
regions, though unexpected, are supported by limited 
observational studies. A magnetic resonance imaging 
study of patients with clinically isolated syndrome sug-
gestive of MS within 2 years of onset showed increased 
volume in frontal, parietal, temporal, and cerebellar gray 
matter regions at 3 months [52]. Another study focusing 
on mildly disabled patients with RRMS showed increased 
TH in two visual cortical areas, the left hemisphere’s infe-
rior occipital gyrus and the right hemisphere’s cuneus 
[53]. The researchers speculated that cortical reorganiza-
tion in adjacent brain regions and compensatory mecha-
nisms recruited by increased cortical networks could 
reduce disease activity and even result in compensatory 
hypertrophy or brain edema, leading to increased corti-
cal volume [40, 53]. Furthermore, unconventional corti-
cal changes have been observed in other neurological 
diseases, such as larger cortical SA in early-stage Par-
kinson’s disease patients compared to controls [54]. An 
ENIGMA study showed a correlation between smoking 
and increased brain structural changes [55]. Thus, MS 
may not be limited to the pattern of gray matter atrophy 
alone. However, the underlying mechanisms are not fully 
understood and require further clarification. Addition-
ally, we noted inconsistent trends in cortical SA and TH 
morphology, which may be attributed to their different 
anatomical developmental patterns [40].

Research has confirmed that alterations in the func-
tion of regulatory T cells and/or effector B cells and 
T cells disrupt peripheral tolerance mechanisms in 
patients with MS, thereby promoting the generation 
of pro-inflammatory mediators such as cytokines. The 
communication between the peripheral immune system 
and the central nervous system, facilitated by messenger 
molecules like cytokines, leads to neuroinflammation 

and immune responses in the brain and spinal cord 
regions [56]. Through causal gene enrichment analy-
sis, we identified pathways mediating cortical changes 
in MS that predominantly cluster in leukocyte cell-
related pathways, cytokine-cytokine receptor inter-
action, JAK-STAT signaling pathway, and NF-kappa 
B signaling pathway. These pathways are intricately 
linked to various immune and inflammatory processes 
[56–59]. Simultaneously, gray matter damage is closely 
associated with peripheral-induced neuroinflammation 
and immune responses [60–62]. Given these findings, 
we speculate that the structural abnormalities in the 
brains of MS patients are primarily driven by immune 
and inflammatory pathways. Our findings suggest that 
the current disease-modifying treatment strategy [56], 
primarily focused on anti-inflammatory approaches, 
is well-founded. This is further supported by certain 
drugs, such as selective sphingosine 1-phosphate recep-
tor subtype 1 [61]. Additionally, considering the suc-
cessful application of Janus kinase inhibitors (Jakinibs) 
in the treatment of rheumatic diseases [59], we propose 
that Jakinibs could serve as candidate drugs for treat-
ing cortical changes in MS, pending further research to 
confirm this hypothesis.

The present study should be considered in light of 
its strengths and limitations. Our study has several 
strengths. Firstly, we employed a two-sample MR design, 
which minimizes confounding factors and reverses cau-
sation that is inevitable in observational studies. Sec-
ondly, we strengthened the statistical power by using a 
stringent P-value threshold and F-statistics. Thirdly, sen-
sitivity analyses provided no evidence of horizontal plei-
otropy, reinforcing the robustness of our MR estimates. 
However, our study has several limitations. Firstly, our 
study population was limited to individuals of European 
ancestry, which restricts the generalizability of our results 
to other populations. Future studies in other populations 
are warranted. Secondly, a large body of research has 
focused on RRMS and PMS patients, whereas our MR 
estimates were based on summary-level data and do not 
provide more specific subtype information. This implies 
that stratified analyses may lead to inconsistent conclu-
sions. However, researchers have increasingly recognized 
that different phenotypes of MS may represent different 
courses of the same disease [63], making our MR analysis 
appropriate from that perspective. Thirdly, although the 
causality between MS and cortical structure is suggestive, 
Bonferroni correction is considered conservative [64].

In summary, we provide robust evidence support-
ing a causal relationship between genetic proxies of MS 
and cortical structure. Enrichment analysis suggests 
that the pathways mediating brain morphology abnor-
malities in MS patients are mainly related to immune 
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and inflammation-driven pathways. Further research is 
needed to validate these findings.
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