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Abstract 

Background  Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease whose pathophysiology 
involves the interplay between genetic and environmental factors, ultimately leading to dysfunction of the epider‑
mis. While several treatments are effective in symptom management, many existing therapies offer only temporary 
relief and often come with side effects. For this reason, the formulation of an effective therapeutic plan is challenging 
and there is a need for more effective and targeted treatments that address the root causes of the condition. Here, 
we hypothesise that modelling the complexity of the molecular buildup of the atopic dermatitis can be a concrete 
means to drive drug discovery.

Methods  We preprocessed, harmonised and integrated publicly available transcriptomics datasets of lesional 
and non-lesional skin from AD patients. We inferred co-expression network models of both AD lesional and non-
lesional skin and exploited their interactional properties by integrating them with a priori knowledge in order 
to extrapolate a robust AD disease module. Pharmacophore-based virtual screening was then utilised to build a tai‑
lored library of compounds potentially active for AD.

Results  In this study, we identified a core disease module for AD, pinpointing known and unknown molecular deter‑
minants underlying the skin lesions. We identified skin- and immune-cell type signatures expressed by the disease 
module, and characterised the impaired cellular functions underlying the complex phenotype of atopic dermatitis. 
Therefore, by investigating the connectivity of genes belonging to the AD module, we prioritised novel putative 
biomarkers of the disease. Finally, we defined a tailored compound library by characterising the therapeutic potential 
of drugs targeting genes within the disease module to facilitate and tailor future drug discovery efforts towards novel 
pharmacological strategies for AD.

Conclusions  Overall, our study reveals a core disease module providing unprecedented information about genetic, 
transcriptional and pharmacological relationships that foster drug discovery in atopic dermatitis.
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Background
Atopic dermatitis (AD) is one of the most common 
chronic inflammatory skin diseases characterised by 
extended skin lesions leading to significant discomfort 
and reduced quality of life. Its pathophysiology arises 
from the interplay between genetic and environmental 
factors, leading to a wide range of symptoms, includ-
ing skin inflammation, sensitisation, hyperkeratosis and 
pruritus. These manifestations are usually driven by an 
excessive T-cell activation and an increased production 
of inflammatory cytokines [1]. A definitive cure for AD 
does not exist and current treatments are aimed to ease 
the symptoms. The compounds employed in the clinical 
management of the disease are mainly represented by 
topical or systemic corticosteroids, which are known to 
have significant long-term side effects [2]. Other treat-
ments include pimecrolimus and tacrolimus for patients 
that are non-responsive to simpler treatments while anti-
histamines are employed in case of severe itching. In this 
setting, there is a need for more effective and targeted 
treatments that address the root causes of AD. Therefore, 
identifying additional compounds targeting the molecu-
lar vulnerabilities of AD can help to define more effective 
therapies for patients.

De novo drug development is a long and expensive 
process [3] while the failure rate is above 90% includ-
ing drug candidates in the preclinical stage [4]. While 
High-Throughput Screenings (HTS) represent the gold 
standard for modern drug development since they allow 
the parallel testing of thousands of compounds, they do 
not solve the problem of high costs in terms of time and 
resources. For these reasons, drug discovery is emerg-
ing as a viable solution to overcome these drawbacks 
[5]. At the same time, virtual screening is being increas-
ingly introduced in the drug development routines, given 
its ability to reduce a priori the number of compounds 
selected for testing, hence improving the success rate. 
In a previous effort, we showed how the construction 
of virtual libraries of compounds can aid the computa-
tional assessment of thousands of compounds against the 
desired targets, reducing the number of compounds to 
undergo pre-clinical testing [5].

In recent years, in order to leverage the construc-
tion of tailored compound libraries, considerable efforts 
have been made to identify the cutaneous molecular 
alterations associated with AD. Advancements in omics 
technologies and the massive amounts of data currently 
available revealed a large number of deregulated genes 
and pathways in AD, allowing the discovery of novel 
biomarkers, disease subtypes/endotypes and therapeu-
tic targets [6–9]. Manipulating and integrating these 
data into biologically meaningful results is still challeng-
ing especially in the light of the high disease and study 

heterogeneity. For these reasons, an exhaustive charac-
terization of the pathogenetic mechanisms and therapeu-
tic opportunities of AD have not been achieved yet [10, 
11].

Network science is at the forefront to meet this chal-
lenge and its potential has been widely demonstrated 
[12, 13]. Network modelling of biomolecular processes 
enables the full integration and exploitation of heteroge-
neous (multi-)omics datasets, uncovering key molecular 
mechanisms responsible for the onset of several human 
diseases and facilitating the design of new and more 
effective treatments. Although several effective and spe-
cific treatments with tolerable side-effects are available 
for patients with AD [14], challenges such as the high dis-
ease heterogeneity as well as the effect of multimorbid-
ity are demanding the development of further treatment 
solutions [15, 16]. To date, the potential of network sci-
ence has not been yet exploited to facilitate drug discov-
ery in AD.

In this study, we exploited network modelling to 
extrapolate a robust, cohesive and interpretable AD dis-
ease module, pinpointing dysregulated genes and pro-
cesses underlying the eczematous lesions. We leveraged 
the potential of drugs targeting the AD module, via the 
identification of relevant pharmacophores and, through 
virtual screening, we prioritized drugs and drug targets 
to build a compound library to foster tailored and phar-
macologically meaningful drug discovery predictions. 
Moreover, our investigations provide a vocabulary of 
chemical substructures to facilitate the development of 
novel compounds with improved therapeutic and phar-
macokinetic properties and promote the shift from tra-
ditional drug development towards mechanistic drug 
design. The whole analytical pipeline implemented in this 
study is shown in Fig. 1.

Methods
Data collection and preprocessing
All the raw transcriptomics data collected and utilized in 
this manuscript are publicly available in the Gene Expres-
sion Omnibus (GEO) repository. The preprocessed data 
consist of 12 microarray-derived gene expression data-
sets of both lesional (337 samples) and non-lesional skin 
(542 samples) from patients with AD. GEO IDs of the 
collected datasets are reported in Table S1.

The preprocessing procedure was carried out as 
described in [17]. Differentially expressed genes for each 
dataset were identified through the use of the eUTOPIA 
software [18] by comparing the lesional skin samples 
with the non-lesional ones. For the analysis, eUTOPIA 
default parameters were used.

A priori information about AD were retrieved from 
several public repositories. GWAS hits were collected 
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from the GWAS catalog (https://​www.​ebi.​ac.​uk/​gwas/). 
Disease-gene associations and drug targets were 
retrieved from OpenTargets (https://​www.​opent​argets.​
org/).

Data scaling
All of the collected microarray datasets were combined 
for cross-platform normalization. In particular, the pamr 
R package (version 1.56.1) [19] was used to mean-adjust 
the combined microarray data based on a batch vari-
able representing the different datasets downloaded from 
GEO.

Network inference and analysis
Two distinct co-expression networks were inferred by 
using the gene expression profiles of the lesional and 
non-lesional skin samples from all the included stud-
ies and selecting the genes common to all the platforms.
The co-expression networks were inferred as already 
described in [20] through the use of the INfORM algo-
rithm [21]. We set up INfORM with the same param-
eters used in [20]. We used the clr [22], aracne [23] and 
mrnet [24] algorithms with the following correlation and 
mutual information measures: Pearson correlation, Ken-
dall correlation, Spearman correlation, empirical mutual 
information, Miller-Madow asymptotic bias corrected 
empirical estimator, Schurmann-Grassberger estimate 
of the entropy of a Dirichlet probability distribution 
and a shrinkage estimate of the entropy of a Dirichlet 
probability distribution, as implemented in the minet 
Bioconductor package [25]. In order to carry out a net-
work community detection we used the walktrap algo-
rithm [26], implemented in INfORM. All computations 
performed on the inferred networks were carried out 
through the use of the igraph Bioconductor package [27]. 
The rendering of co-expression networks was performed 
by employing the gephi software [28]. In this manuscript, 
we show a reduced representation of the networks (sub-
graph) in order to facilitate the visualisation.

AD gene rank construction
The ranked compendium constructed in this study 
encompasses genes whose association with AD was 

inferred in two ways: (1) data driven association, result-
ing from the meta-analysis of the collected transcrip-
tomic datasets, and the analysis of network connectivity, 
including differential centrality analysis and the analysis 
of the bridge genes; (2) association deriving from a priori 
knowledge, including genomic variants associated with 
AD, annotated disease-gene associations and drug-target 
associations.

Genes deriving from data‑driven association

1.	 Gene expression meta-analysis: Meta-analysis of 
the transcriptomic datasets was implemented as 
described in del Giudice et  al. [29] according to a 
consensus strategy previously reported to be suitable 
for gene signature retrieval from omics data [30, 31].

a.	 Briefly, the pipeline is based on the combination 
of effect-size, p-value based and rank-product 
methods. Fisher test is the standard meta-anal-
ysis approach to combine p-values. Effect-size 
strategies are considered the gold standard to 
assess within- and between-study variation, 
while accounting for small sample sizes. Finally, 
the Rank-product method allows combining 
individual studies according to the within-
study gene expression analysis. The interme-
diate individual ranks were obtained by using 
the “sumlog” function of the metap R package 
(Dewey, M. metap: meta-analysis of signifi-
cance values. CRAN (2022)), the “effect_sizes” 
function of the esc R package (Lüdecke, D. Esc: 
Effect Size Computation for Meta Analysis. 
CRAN (2019)), and the “RP-advance” function 
of the RankProd R package [32], respectively. 
The final consensus gene rank was generated 
through the Borda function of the TopKlists R 
package [33].

2.	 Differential centrality analysis: We performed dif-
ferential centrality analysis as already described in 
[20]. In detail, for each of the networks, their node 
betweenness, closeness and degree centralities were 
calculated with the Python’s NetworkX package 

Fig. 1  Overview of the analytical pipeline developed in this study. A Integration of publicly available transcriptomics datasets of lesional skin 
and non-lesional counterparts from atopic dermatitis patients. The data underwent meta-analysis and were utilised to infer co-expression 
network models for the lesional and non-lesional skin. Therefore, a gene rank was computed by exploiting information from data driven genes 
and genes with a priori knowledge of association with atopic dermatitis. B Identification of the atopic dermatitis disease module. C Characterisation 
of the disease module based on skin and immune cell transcriptional signatures, drug-target associations and intra-module connectivity. 
Druggability evaluation of the disease module, extrapolation of pharmacologically active pharmacophores and identification of novel compounds 
through virtual screening

(See figure on next page.)

https://www.ebi.ac.uk/gwas/
https://www.opentargets.org/
https://www.opentargets.org/
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Fig. 1  (See legend on previous page.)
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(Python 3.6, NetworkX 2.3). The nodes were ranked 
according to each of the centrality measures. For 
each network, the median rank of the nodes based 
on the rankings of the three centrality measures were 
calculated. To compare the network of the lesional 
skin with the non-lesional one, the absolute differ-
ence between the median ranks of the two networks 
was calculated and the genes were ranked accord-
ingly.

3.	 Bridge gene analysis: The identification of the bridge 
genes was conducted as reported in [20]. In our 
previous study, we hypothesized that, by study-
ing the connectivity patterns among known disease 
genes, it is possible to identify additional associ-
ated genes. Therefore, in this study, we identified all 
the genes connecting pairs of known AD-associated 
genes within each of the networks (lesional and non-
lesional, respectively), and hence acting as a bridge.

Genes deriving from a priori knowledge association

1.	 Genes mapped to genomic variants associated with 
AD were retrieved from the GWAS catalog [34], 
[https://​www.​ebi.​ac.​uk/​gwas/].

2.	 AD disease genes were retrieved from the DisGeNet 
repository [35].

3.	 Drug-target associations, retrieved from the Open-
Target database [36].

The compendium was ultimately built by merging 
genes from both categories and ranking them on the 
basis of the total number of evidence of association with 
AD.

Inference of the AD disease module
The AD disease module was inferred by using the DIA-
MOnD algorithm [37]. DIAMOnD works under the 
hypothesis that disease modules are not usually repre-
sented by highly cohesive subgraphs, differently from 
functional modules, which often overlap with topological 
communities. DIAMOnD identifies disease modules by 
making use of a set of genes that are already known to 
be associated with the disease of interest. The algorithm 
assesses whether a certain gene holds more connections 
to seed genes than expected, calculating a connectiv-
ity p-value. In our study, the genes of the compendium 
holding at least 3 pieces of evidence of association with 
AD were used as seed genes for the algorithm in both the 
lesional and the non-lesional network models. Genes that 
were identified by the DIAMOnD algorithm showing a 
p-value ≤ 0.05 in each network were considered for analy-
sis. We therefore selected genes that were significant in 

the lesional network but not in the non-lesional one. The 
AD disease module was eventually defined by merging 
such a set of genes with the seed genes.

Skin and immune cell type specific gene enrichment
The enrichment of skin and immune cell type-specific 
genes in the disease module has been evaluated by uti-
lizing the single-cell RNA-Sequencing derived signatures 
publicly available at the Human Protein Atlas (https://​
www.​prote​inatl​as.​org/). The skin cell types included 
in this analysis are the following: adipocytes, eccrine 
cells, endothelial cells, fibroblasts, hair, keratinocytes, 
Langerhans cells, macrophages, mast cells, melanocytes, 
mitotic, outer, plasma cells, sebaceous cells, smooth cells, 
skin T-cells. The selected pool of immune cell types com-
prise: T-cells, monocytes, macrophages, granulocytes, 
B-cells, basal cells, dendritic cells, erythroid cells, Langh-
erans cells, NK-cells, plasma and suprabasal cells.

One tail gene set enrichment analyses (GSEA) were 
performed through Kolmogorov–Smirnov statistics, as 
implemented in the stats R package. Overrepresentation 
tests were performed by using the bc3net CRAN package 
[38].

AD disease module druggability evaluation
To evaluate the druggability of the AD disease module, 
we combined drug-target, disease-medication and dis-
ease-disease similarity information retrieved from Drug-
Bank [39], STITCH [40], Open Targets [41], Pharos [42], 
and the GWAS catalog [34]. To integrate disease data 
from different data sources we annotated their disease 
names with NCBI MedGen concept IDs as a common 
vocabulary.

Similarity of AD with other diseases was computed 
based on genes encompassing genetic variants associated 
with the disease as annotated in the GWAS catalog. We 
merged phenotypes representing AD in the GWAS cat-
alog (eczema and atopic dermatitis) by combining their 
associated genes. Diseases with fewer than 5 genes asso-
ciated were removed from the analysis. Using the gene 
lists of 611 diseases, we calculated pairwise disease simi-
larities by computing the Jaccard index, cosine similar-
ity, Sørensen–Dice coefficient, and overlap coefficient, as 
well as disease distances by the Euclidean and Hamming 
distance. Similarity metrics were inverted to measures 
of distance by subtraction from 1. Euclidean and Ham-
ming distances were scaled to a 0–1 range by division 
by the maximum. We computed the Ipsen-Mikhailov 
distance among the six distance measures using the net-
dist function from the R nettools package (https://​rdrr.​
io/​cran/​netto​ols/). A consensus distance was computed 
from the six distance measures by taking the mean in a 
hierarchical fashion based on hierarchical clustering of 

https://www.ebi.ac.uk/gwas/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://rdrr.io/cran/nettools/
https://rdrr.io/cran/nettools/


Page 6 of 13Federico et al. Journal of Translational Medicine  (2024) 22:64

Ipsen-Mikhailov distances. Based on the consensus dis-
tances, the diseases were ranked from the most similar to 
the least similar to AD.

Subsequently, we extracted disease-drug-target asso-
ciations from DrugBank, STITCH, Open Targets and 
Pharos and kept only the targets i.e., genes belonging to 
the AD disease module. We prioritised drug candidates 
based on their therapeutic application for diseases simi-
lar to AD.

Virtual screening was performed on an in-house library 
containing chemical compounds from Drugbank, Pharos 
and Open Targets.

2D and 3D structure representation for the investigated 
compounds
The 2D sketcher tool of Maestro molecular modeling 
suite was used to build the 2D structures from the smiles 
of the compounds.

The LigPrep module of the Maestro molecular mod-
eling suite was used for ligand preparation. Neutral pH 
was used in the ligand preparation with OPLS4 force field 
and determining chiralities from 3D structure options 
were selected [43, 44].

Pharmacophore identification and virtual screening
The Phase tool of Maestro was used to develop a com-
mon pharmacophore hypothesis for the active ligands 
and to use it for pharmacophore-based virtual screen-
ing. The virtual screening was performed on an in-house 
library containing chemical compounds from Drugbank, 
Pharos and Open Targets to identify compounds that 
share the selected pharmacophore and features [45].

ADME properties calculation
To identify the ADME (Absorption, Distribution, Metab-
olism, Excretion) properties for the ligands, the QikProp 
tool in Maestro was used. (QikProp, Schrödinger, LLC, 
New York, NY, 2021).

Results
An AD‑specific gene module represents relevant functions 
within the lesional network model
Complex diseases, including atopic dermatitis, often 
result from the impairment of complex cascades of inter-
actions between molecular effectors. In this context, 
the construction of disease network models has been 
shown to be a valid method in order to disentangle such 
complex interactions, and identify key players in the 
pathophenotype of diseases [37]. Here, we inferred two 
transcriptome-wide gene co-expression networks model-
ling both the lesional and the non-lesional skin molecular 
buildup of AD patients, respectively. Since the networks 
were inferred from all the genes common to all the 

collected transcriptomics datasets, both networks were 
composed of 17,903 nodes, while the number of edges 
was 1,649,569 and 1,924,001 for the lesional and the non-
lesional, respectively.

Next, we exploited such networks to define a disease 
module for AD in order to identify a core set of genes 
that might play a role in the disease and might function 
as therapeutic targets. To do so, we compiled a ranked 
compendium of genes whose association with AD is 
based on (1) a priori knowledge about their involvement 
in AD and (2) data-driven analyses of the transcriptom-
ics datasets and co-expression networks (see Methods). 
Subsequently, we selected 1234 genes (here named “seed 
genes”) having at least three supporting evidence of their 
association with AD as reference genes for the identifica-
tion of the AD disease module. We carried out this analy-
sis on both the lesional and the non-lesional network by 
utilising the same set of seed genes. We therefore iden-
tified 1218 genes that are significantly more connected 
with the seed genes in the lesional network but not in the 
non-lesional one. In this way, we defined the atopic der-
matitis module, encompassing 2452 genes.

We characterised the functional processes represented 
by such genes by performing an overrepresentation anal-
ysis by Fisher’s exact test (Fig. 2).

Interestingly, 181 genes of the disease module are 
annotated in the “Signaling by Interleukins” path-
way, which is the most overrepresented in our analy-
sis (adj. p-value = 2.78e-37). Similarly, other pathways 
related to interleukin signalling and extracellular matrix 
remodelling were found to be overrepresented, includ-
ing “Interleukin-4 and Interleukin-13 signaling” (adj. 
p-value = 3.97e-29), “Degradation of the extracellular 
matrix” (adj. p-value = 1.45e-07), “Interleukin-1 family 
signaling” (adj. p-value = 1.33e-06), “TNFR2 non-canon-
ical NF-kB pathway” (adj. p-value = 1.3e-08), “Inter-
leukin-10 signaling” (adj. p-value = 1.78e-21), “collagen 
formation” (adj. p-value = 3.18e-08), “collagen degrada-
tion” (adj. p-value = 9.8e-08), among others.

The manifestation of AD lesions arises from a dysregu-
lated cutaneous immune response and an impairment of 
the skin barrier, which is normally composed by a wide 
range of cell types contributing to its homeostasis. AD 
lesional skin is characterised by a chronic inflammatory 
milieu due to several cellular dysfunctions including a 
disturbed epidermal barrier integrity, increased immune 
cell infiltration, abnormal secretion from sebaceous cells 
and eccrine gland cells. Therefore, we further charac-
terised the genes within the AD module, by considering 
the known patterns of expression in multiple skin and 
immune cell types. Our analysis supports the functional 
annotation reported above and identifies cell types that 
underlie relevant functions. We, then, exploited publicly 
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available gene expression signatures from several skin 
cell types from the Human Protein Atlas database by 
performing a Gene Set Enrichment Analysis (GSEA) to 
assess the enrichment of cell type-specific genes within 
the AD disease module (Fig.  3). Our analysis high-
lighted a significant enrichment of genes specifically 
expressed in keratinocytes (different stages of differen-
tiation, adj. p-value = 1.64e-12), eccrine gland cells (adj. 
p-value = 3.29e-15), skin fibroblasts (adj. p-value = 1.64e-
12), skin endothelial cells (adj. p-value = 1.91e-10), skin 
adipocytes (adj. p-value = 4.30e-07), skin mitotic cells 
(adj. p-value = 9.56e-03), and granular keratinocytes 
(adj. p-value = 2.72e-02). Similarly, since the dysregula-
tion of immune cells and their crosstalk plays a crucial 
role in the development and maintenance of atopic der-
matitis, we also assessed the presence of cell signatures 
related to the immune compartment within the AD 
disease module. As a result, we obtained a significant 
enrichment for the following immune cells: macrophages 
(adj. p-value = 1.04e-21), monocytes (adj. p-value = 3.2e-
25), T-cells (adj. p-value = 1.04e-21), granulocytes (adj. 
p-value = 5.2e-19), Langerhans cells (adj. p-value = 7.89e-
13), dendritic cells (adj. p-value = 6.71e-14), B-cells (adj. 
p-value = 2.23e-14), NK-cells (adj. p-value = 2.69e-09). 
The entire list of skin and immune cell types included in 
this analysis is described in the Methods section.

Co‑expression patterns underlying AD lesional skin drives 
biomarker discovery
We here propose that investigating connectivity patterns 
within the disease module could serve as an alternative 

and effective method for biomarker prioritisation. Tradi-
tionally, biomarkers have been understood as disrupted 
expression profiles of single genes occurring in skin 
lesions. However, network medicine suggests that spe-
cific connectivity patterns involving interactions between 
two or more genes could be utilized as biomarkers for 
these lesions.

Therefore, to fully exploit the informative power of the 
AD disease module, we characterised the edges (repre-
senting co-expression relationships between two genes) 
connecting genes within the module.

We evaluated the relevance of each gene within the 
AD module by collecting multiple data-driven aspects 
(transcriptome meta-analysis, differential centrality, and 
bridge gene analysis) as well as prior-knowledge (GWAS, 
drug targets, disease genes) (Fig.  1A). We used data-
driven and prior evidence to rank the edges connecting 
genes within the module (Fig. 4).

Based on these criteria, TNFRSF8–IL13, IL22–IL13 
and IL4R–IL22 are the top 3 ranked edges suggesting 
the high relevance of these genes and their co-expres-
sion for AD. The top 100 edges connecting relevant 
genes are reported in Additional file 2. Next, we divided 
the edges in two sets: the first group includes edges 
connecting pairs of seed genes (used to infer the AD 
disease module), while in the second, edges for which 
only one of the genes is a seed gene were included. In 
this way, we characterised functional processes involv-
ing only seed genes, and non-seed genes within the dis-
ease module via direct connection to seed genes. The 
set of edges connecting seed genes with each other 

Fig. 2  Pathways enriched by genes belonging to the AD disease module
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enriched several signalling by interleukins pathways, 
extracellular matrix organisation and degradation, and 
cell cycle related pathways, such as mitotic G1/S transi-
tion and several pathways related with collagen depo-
sition and modification, such as Collagen formation, 
collagen degradation, collagen biosynthesis and modify-
ing enzymes, collagen chain trimerization. On the other 

hand, the set of edges connecting seed genes with other 
genes enriched Processing of capped intron-containing 
pre-mRNA, mRNA splicing pathways and Rho-GTPase 
cycle. This analysis allows us to enrich the information 
contained in the module by interactional properties of 
data-driven and prior knowledge-driven genes con-
tained into it.

Fig. 3  Results of the enrichment analysis of skin and immune cell type-specific genes within the AD disease module

Fig. 4  Selection process to retrieve AD-relevant edges
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Definition of a custom library of compounds for drug 
discovery in AD
Subsequently, we constructed a custom library of com-
pounds to foster drug discovery for the definition of 
efficient therapeutic compounds. We extracted drug-dis-
eases and drug-target relationships from public reposi-
tories, including DrugBank [39], STITCH [40], Open 
Targets [41], Pharos [42]. Notably, we retrieved 285 drugs 
targeting 635 genes of the AD disease module. To pro-
vide further relevance to the drugs within the module, we 
prioritised compounds that are used to treat diseases that 
share a similar genetic background with AD. Therefore, 
we computed a disease-disease similarity and prioritised 
diseases showing the highest similarity with AD based on 
genes with genomic variants. We extracted drug-disease 
relationships and obtained a list of disease-drug-target 
relationships (Fig.  5A) by merging them with the drug-
target relationships. We ranked the list based on the AD-
similarity of the disease in the disease-drug-target triplets 
including AD itself (i.e., drug-target entities linked to AD 
would always have the highest rank). Afterwards, we fil-
tered such a rank on the drug target genes belonging to 
the AD disease module (Fig. 5B).

The 285 drugs included in the rank are employed in 
the treatment of 66 diseases. The most similar disease 
to AD was autoimmune hepatitis, followed by neuromy-
elitis optica, asthma, nephrotic syndrome and allergic 
rhinitis. Drugs used to treat AD such as prednisolone, 
cyclosporine, tacrolimus, and dupilumab ranked at the 
top. Moreover, drugs used to treat diseases similar to AD 
ranked at lower positions. Abatacept and mycophenolate 
mofetil are used to treat autoimmune hepatitis, the dis-
ease with the highest similarity to AD based on genetic 
susceptibility (Additional file  3). We here hypothesised 
that potentially effective drugs for AD share relevant 
structural properties, namely pharmacophores.

Therefore, we extrapolated relevant pharmacophores 
of such drugs in order to identify the minimal active 
substructure of such compounds (Additional file  1: 
Table S2).

In order to extrapolate more accurate pharmacophores, 
we selected 6 features responsible for desired effects.

Among all the drugs included in the disease-drug-
target rank computed in the previous step, 19 share the 
highest ranked pharmacophore hypothesis including 
prednisolone, tacrolimus, and pimecrolimus, which are 
approved for treatment of AD. We further tested the 
hypothesis that additional drugs, not initially included 
in our list, could be proposed for AD treatment if rel-
evant pharmacophores are included in their molecular 
structure. To this end, we performed a virtual screening, 
which consists in screening large libraries of compounds 
in search of specific structural properties of interest.

As a result, we identified 1,505 compounds that share 
the selected pharmacophore and other relevant struc-
tural features (Additional file 4). Corticosteroids are the 
most represented class of drugs at the top of the rank, 
such as fluocinonide and halopredone acetate. NCX1022, 
a NO-releasing derivative of hydrocortisone, placed at 
the 3rd position of the rank, has been investigated in a 
murine model of AD and showed anti-inflammatory 
effects [46]. Given the relevance of this investigational 
compound in the library, we assessed whether such a 
compound shares molecular targets with drugs that are 
approved for inflammation management. Interestingly, 
our prediction shows that NCX1022 shares 21 molecular 
targets with abrocitinib and upadacitinib.

Desoximetasone, which is a glucocorticoid used for 
the treatment of inflammatory conditions, skin allergies 
and dermatoses, also ranked 12th among the drugs.

We finally computed the Adsorption, Distribu-
tion, Metabolism and Excretion (ADME) values of 

Fig. 5  Prioritisation of drug targets
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the identified library of compounds (Additional file  5, 
Additional file 1: Figure S1).

​​The ADME analysis reveals that NCX1022 shows 
higher metabolism rate compared with the other drugs. 
Moreover, NCX1022 shows medium oral absorption, 
while the other drugs from the top 10 showed high oral 
absorption. These findings show that the top 10 ranked 
drugs have medium to high ADME values, which is a 
predictive factor for the bioavailability and for the maxi-
mum therapeutic efficacy.

Discussion
Network models provide a powerful framework for inte-
grating heterogeneous datasets and are at the forefront 
of multi-omics data analysis and interpretation, ena-
bling the discovery of hidden patterns, relationships, and 
insights that would otherwise be difficult to detect using 
traditional approaches. By leveraging the interconnect-
edness and interdependencies within a co-expression 
network, such as nodes representing genes and edges 
representing relationships between them, network mod-
els offer a holistic view of complex systems, such as 
human diseases.

In this study, we provide a network-based modelling 
approach integrating the biggest number of cutaneous 
transcriptomic datasets of AD, to date. We computed 
gene co-expression networks of lesional and non-
lesional skin, both consisting of 17,903 genes. Notably, 
the lesional network contained substantially fewer edges 
(1,649,569) than the non-lesional network (1,924,001) 
highlighting disrupted patterns of co-expression in AD 
skin lesions and indicating dysfunctional gene regulatory 
mechanisms.

In recent years, the advancement of analysis strategies 
of disease-related networks, led to the identification of 
so-called “disease modules”. Disease modules are subsets 
of genes highly interconnected within a disease network 
from which we can gain insights into the pathophysiology 
of the disease under study. Genes belonging to a disease 
module often work together in specific pathways or func-
tional units, shedding light on how impaired molecular 
mechanisms contribute to the disease development or 
progression [47, 48]. By combining data-driven evidence 
with prior knowledge, we here identified a robust disease 
module of the AD skin lesion encompassing 2452 genes.

As this community of genes related to the atopic lesion 
was derived by several features including gene deregula-
tion, gene–gene co-expression relationships, and genetic 
variation associated with the disease, the computation of 
the disease module overperforms the computation of dif-
ferentially expressed genes as usually identified and used 
for downstream analysis in single-dataset transcriptomic 
studies [37].

While gene sets derived from the analysis of differential 
expression often reveal a variety of pathways related to 
inflammation and innate immune responses, the disease 
module identified in this study exhibits the most signifi-
cant enrichment for pathways targeted by state-of-the-art 
therapeutic solutions for AD, such as biologics target-
ing IL4-IL13 signalling (dupilumab and tralokinumab), 
and drugs targeting genes such as JAK1, JAK2, JAK3 and 
TYK2, which are pivotal actors in the Jak-Stat signalling 
pathway (barticitinib, upadacitinib and abrocitinib).

However, the lack of efficacy in some patients high-
lights the need for other effective molecules, and under-
lines the importance of developing targeted medicine 
tailored to patients characteristics. Further enriched 
pathways reveal the relevance of TNF, NF-kB, and 
chemokine signalling as well as a strong signature of epi-
dermal barrier dysfunction. Here, we also identified a 
group of genes that is overrepresented in a high number 
of known dysregulated pathways in the AD lesion. Such 
genes, including MMP9, MMP3 and COL1A2 among 
others, might represent key players in the molecular 
impairment underlying the aberrant immune response 
and the dysfunctional barrier as characteristic for AD. In 
fact, keratinocytes express MMP9 as an important factor 
in the maintenance of the epithelial barrier function [49].

The analysis of the disease module revealed transcrip-
tomic signatures from abundant cell types in the skin 
such as keratinocytes, eccrine gland cells, fibroblasts, and 
endothelial cells as well as immune cells such as lympho-
cytes and innate immune cells indicating that a complex 
dysregulated multi-cellular system sustains the pheno-
type under study. Understanding such complex multi-
cellular interactions is crucial for advancing disease 
modelling and therapeutic interventions. In this perspec-
tive, it emerges the need for more sophisticated disease 
modelling procedures that incorporate the interactions 
and crosstalk among different cell types, which can lead 
to more precise and effective treatments.

Importantly, the characterisation of the gene connec-
tivity within the disease module leveraged fundamen-
tal insights in the gene deregulation underlying the skin 
lesion. In fact, while relationships between known AD-
associated genes are overrepresented in pathways that 
are typically disrupted in immune-mediated dermatolog-
ical diseases, such as interleukin signalling, extracellular 
matrix organisation, collagen formation and degrada-
tion, connection between AD-associated and non-asso-
ciated genes underlined mRNA processing indicating 
that the gene regulation machinery is tightly intertwined 
with known AD biomarkers such as interleukins and 
chemokines to sustain the AD pathological phenotype.

In this study, we investigated the interactional proper-
ties of genes belonging to the disease module, so as to 
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give further insights into its functional characterisation. 
We demonstrated that, ranking the edges based on data-
driven and prior knowledge-driven evidence of associa-
tion with AD, is a valid approach to fully exploit network 
medicine principles to prioritise putative biomarkers of 
disease.

In fact, we hypothesise that exploiting properties of 
connectivity patterns within the disease network model 
can be an alternative and efficient tool for biomarker 
identification. The paradigm is that, while traditionally a 
biomarker is intended as a disrupted expression profile 
of a single gene specifically occurring in the skin lesion, 
network medicine suggests that certain patterns of con-
nectivity involving two or more interacting genes could 
be exploited as biomarkers of lesions.

While the use of precompiled drug libraries is the state 
of the art in drug discovery, the principles by which the 
drugs are included are usually not evaluated. However, 
a rational inclusion process of drugs in libraries for drug 
discovery would enable a more effective process with a 
sensible improvement of the predictions, as we recently 
demonstrated in a case study on COVID-19 drug reposi-
tioning [5].

Since disease modules provide a formal perspec-
tive over the complexity of disease mechanisms, net-
work pharmacology approaches can take advantage of 
this knowledge by considering the dependencies among 
genes belonging to the disease module. Given the high 
reliability of disease modules identified by integrating 
data-driven and a priori knowledge about the disease 
under study, compound libraries can be, in turn, designed 
in order to target multiple components belonging to the 
disease module, aiming to optimize the identification of 
compounds putatively effective for the disease. The defi-
nition of tailored compound libraries based on disease 
modules can leverage the identification of compounds 
that can have a broader impact on the disease pheno-
type and offer potential synergistic effects. Although the 
employment of network pharmacology approaches to 
identify candidate drugs and targets is well established, 
the possibility of using such principles to suggest desired 
structural properties to be considered in the discovery 
of drug candidates is less explored. Indeed, while cur-
rent network pharmacology approaches are centered on 
molecular biology aspects, here we establish the para-
digm that intimately integrates molecular biology with 
computational chemistry in order to construct tailored 
compound libraries.

We here demonstrate how the disease module can 
assist in building a custom compound library for drug 
discovery in AD. To do so, we prioritised common phar-
macophores of drugs employed in the treatment of AD 
or other similar phenotypes whose target genes belong to 

the disease module. We identified a substructure shared 
among the investigated drugs. Afterwards, we performed 
a virtual screening on multiple high-dimensional repos-
itories and defined a custom drug library to tailor drug 
discovery efforts towards the treatment of atopic der-
matitis. Our results show that, although drugs that are 
employed in the treatment of AD dominate the ranked 
library, other categories of drugs, employed in diseases 
other than AD, are included in the rank. This aspect gives 
value to our data-driven approach for the construction 
of custom compound libraries and validates the ability 
to identify putative novel compounds that can be taken 
into consideration in future drug discovery predictions. 
On the other hand, our results do not mean to give any 
therapeutic indication for atopic dermatitis patients.

In this study, we built upon our previous manuscript 
focused on network analysis of transcriptomics data from 
lesional and non-lesional skin of psoriasis patients. In the 
present study we report the following advancements: (1) 
we implemented an ensemble meta-analysis method to 
extract robust gene expression signatures from transcrip-
tomics data, which includes based on the combination 
of effect-size, p-value based and rank-product methods; 
(2) we identified an AD disease module by investigating 
the pattern of connectivity of AD-associated genes to 
enlarge the set of known AD biomarkers and focus the 
pharmacological investigations on novel putative drug 
targets; (3) we performed a more extensive druggabil-
ity evaluation compared to our previous manuscript. 
In particular, we enlarged the set of drugs employed for 
AD treatment by prioritising drugs that are employed 
in the treatment of diseases that have a similar genetic 
background to AD in terms of genomic variants. There-
fore, we compiled a compound library by carrying out a 
pharmacophore analysis to include drugs that encompass 
relevant structural units in their molecular structure, and 
that therefore could be used to focus future drug discov-
ery efforts; (4) we envisioned that investigating connec-
tivity patterns within the disease module could serve as 
an alternative and effective method for biomarker prior-
itization. In fact, we hypothesise that disease biomarkers 
could be represented by gene–gene interactions, sus-
tained by multi-layer evidence of data-driven and a pri-
ori relevance, rather than the expression deregulation of 
single genes; (5) we extend the search in drug discovery 
by providing a vocabulary of chemical substructures that 
have the potential to mediate specific therapeutic effects 
on certain regions of the network and facilitating a shift 
from traditional drug development towards mechanistic 
drug design.

This study suffers from certain limitations due to the 
limited amount of clinical data available along with the 
transcriptional profiles obtained from public repositories. 
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The absence of detailed clinical information prevents us 
from establishing meaningful associations between the 
disease module and relevant clinical parameters, such as 
disease severity and elapsed time since initial diagnosis. 
Furthermore, the lack of information on whether patients 
underwent active pharmacological therapy precludes us 
from discerning any potential influence of ongoing or ter-
minated pharmacological treatments on the druggability 
profile of the disease module, which resulted, eventually, 
in the tailored compound library.

Conclusions
In conclusion, our investigation significantly enhances 
our understanding of the molecular basis of AD by pro-
viding novel and unprecedented insights into the mecha-
nistic and pharmacological relationships driving the AD 
phenotype. These results hold promise in identifying 
novel molecular targets and drug candidates, thereby 
propelling drug discovery research towards the develop-
ment of effective therapeutic interventions for AD.
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