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Abstract 

Background Hepatocellular carcinoma (HCC) is a common liver malignancy with limited treatment options. Pre‑
vious studies expressed the potential synergy of sorafenib and NK cell immunotherapy as a promising approach 
against HCC. MRI is commonly used to assess response of HCC to therapy. However, traditional MRI‑based metrics 
for treatment efficacy are inadequate for capturing complex changes in the tumor microenvironment, especially 
with immunotherapy. In this study, we investigated potent MRI radiomics analysis to non‑invasively assess early 
responses to combined sorafenib and NK cell therapy in a HCC rat model, aiming to predict multiple treatment out‑
comes and optimize HCC treatment evaluations.

Methods Sprague Dawley (SD) rats underwent tumor implantation with the N1‑S1 cell line. Tumor progression 
and treatment efficacy were assessed using MRI following NK cell immunotherapy and sorafenib administration. Radi‑
omics features were extracted, processed, and selected from both T1w and T2w MRI images. The quantitative models 
were developed to predict treatment outcomes and their performances were evaluated with area under the receiver 
operating characteristic (AUROC) curve. Additionally, multivariable linear regression models were constructed 
to determine the correlation between MRI radiomics and histology, aiming for a noninvasive evaluation of tumor 
biomarkers. These models were evaluated using root‑mean‑squared‑error (RMSE) and the Spearman correlation 
coefficient.

Results A total of 743 radiomics features were extracted from T1w and T2w MRI data separately. Subsequently, 
a feature selection process was conducted to identify a subset of five features for modeling. For therapeutic predic‑
tion, four classification models were developed. Support vector machine (SVM) model, utilizing combined T1w + T2w 
MRI data, achieved 96% accuracy and an AUROC of 1.00 in differentiating the control and treatment groups. For multi‑
class treatment outcome prediction, Linear regression model attained 85% accuracy and an AUC of 0.93. Histological 
analysis showed that combination therapy of NK cell and sorafenib had the lowest tumor cell viability and the highest 
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Background
Hepatocellular carcinoma (HCC) is the most common 
primary liver malignancy and the third leading cause of 
cancer-related deaths worldwide [1]. Surgical resection 
and liver transplantation serve as potentially curative 
treatments. However, only a small percentage of patients 
are eligible for surgery [2]. For patients with unresect-
able HCC, loco-regional therapies and systemic treat-
ments are the primary therapeutic options, with limited 
success in improving overall survival [3]. Sorafenib, a 
multi-targeted kinase inhibitor targeting various protein 
kinases, is an FDA-approved systemic treatment option 
for hepatocellular carcinoma (HCC) [4]. It serves as a 
crucial therapeutic option, working by inhibiting serine-
threonine kinases Raf-1 and B-Raf, as well as the receptor 
tyrosine kinases of VEGFR 1, 2, 3 and PDGFR-β, thereby 
preventing tumor cell proliferation and angiogenesis [5]. 
However, sorafenib is associated with various side effects, 
which may require dose reductions or treatment discon-
tinuation [6].

In the current therapeutic environment, natural killer 
(NK) cell-based adoptive immunotherapy (NK-ATI) 
has shown promise in the treatment of several  cancers, 
including HCC [7]. Despite its considerable potential, 
NK-ATI treatments have demonstrated limited thera-
peutic efficacy. These therapies’ drawbacks include a lack 
of NK cytotoxicity function, insufficient NK cell homing 
to tumors, and a lack of early noninvasive techniques for 
predicting NK-ATI response [8, 9]. The combination of 
sorafenib and NK cells has been shown to prime proin-
flammatory responses of tumor-associated macrophages 
(TAMs) within the HCC microenvironment, perpetuat-
ing cytotoxic NK cell activity, and increasing populations 
of total NK and  CD56dim NK  cells in peripheral blood, 
demonstrating the potential of this combined therapy 
[10, 11].

Magnetic resonance imaging (MRI) plays an essential 
role in cancer treatment evaluations, offering a nonin-
vasive method to assess treatment efficacy. Historically, 
cancer treatment outcomes have relied on traditional 
metrics like tumor size changes. However, these met-
rics may not comprehensively capture intricate tumor 
alterations, particularly with immunotherapy [12]. Can-
cer immunotherapy can exhibit distinctive response 

patterns, such as transient tumor swelling (pseudopro-
gression), delayed regression, and new lesions [13]. Con-
sequently, conventional size-based criteria like RECIST 
1.1 might fall short in therapeutic response evaluations 
[14]. Hence, advanced methods leveraging tumor tis-
sue characteristics are essential for accurate therapeutic 
response determination.

Recent advancements in medical imaging have shown 
that texture analysis— an advanced method of extract-
ing tissue characteristics from conventional medical 
images— proves essential in diagnosing conditions, 
gauging disease severity, and predicting patient survival 
in clinical oncology settings [15–17]. However, studies 
exploring predictive models using MRI texture features 
for combined drug delivery and immunotherapy effects 
remain limited.

In oncology, discerning multi-class treatment out-
comes, rather than simple binary predictions, presents a 
complex challenge. This study uses magnetic resonance 
imaging (MRI) and texture analysis based on machine 
learning techniques to conduct a comprehensive and 
noninvasive assessment of therapeutic response. The 
primary objective of our study is to investigate the ini-
tial treatment response of a combined therapy using 
sorafenib and NK cells in a hepatocellular carcinoma 
(HCC) rat model.

This study aimed to predict therapeutic outcomes fol-
lowing combined sorafenib and intrahepatic arterial 
transcatheter engineered NK cells tumor-targeted deliv-
ery for HCC treatment using conventional MR images 
with radiomics analysis.

Materials and methods
Cell lines and cell culture
The N1-S1 hepatoma cell line (CRL-1604, American 
Type Culture Collection, Manassas, VA) was cultured 
in Iscove’s Modified Dulbecco’s Medium (IMDM) sup-
plemented with 10% fetal bovine serum (FBS), 1.25% 
GlutaMAX (Gibco, Waltham, MA), and 1% penicillin/
streptomycin (Gibco, Waltham, MA). Cells were main-
tained at 37 °C in 5%  CO2 and 95% air, subcultured every 
three days, and monitored for viability (> 90%) using a 
Countess II automated cell counter (Life Technologies, 
Carlsbad, CA) with 0.4% trypan blue dye. The RNK-16 

NK cell activity. Correlation analyses between MRI features and histological biomarkers indicated robust relationships 
(r = 0.94).

Conclusions Our study underscored the significant potential of texture‑based MRI imaging features in the early 
assessment of multiple HCC treatment outcomes.

Keywords Hepatocellular carcinoma (HCC), Sorafenib, Natural killer cell, Immunotherapy, Radiomics, Magnetic 
resonance imaging (MRI)
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rat NK cell line, provided by Thomas L. Olson (University 
of Virginia, Charlottesville, VA), was cultured in RPMI 
medium with the addition of 25 mM 2-Mercaptoethanol. 
Before experimental use, RNK-16 cells were treated with 
recombinant mouse IL-12 and IL-18 for 24 h, followed by 
PBS washing and resting in a fresh medium for an addi-
tional 24 h.

Tumor cell implantation
Animal studies were conducted following protocols 
approved by our Institutional Animal Care and Use Com-
mittee. Twenty-four Sprague Dawley (SD) rats (Charles 
River Laboratories, Hollister, CA), weighing between 
250 and 300  g (6–8  weeks old), underwent subcapsular 
implantation of 1 ×  106 N1-S1 cells into the left lateral 
lobe of the liver under 2% isoflurane anesthesia. Post-
operative care included administration of buprenorphine 
and meloxicam for pain relief. Animals were observed 
daily for signs of distress, and tumors were allowed to 
grow before initiation of therapeutic intervention.

Therapeutic approaches: NK cell immunotherapy 
and sorafenib treatment
Once the tumors had reached a size of 5 mm under MRI 
guidance, the animals were randomly assigned into four 
distinct groups: NK cell immunotherapy, sorafenib treat-
ment, combined NK cell, sorafenib administration, and 
control group (n = 6 per group). Sorafenib administration 
involved daily gastric gavage of a 10 mg/kg dose for seven 
days. For the NK cell and combined therapy groups, 
1 ×  107 RNK-16 cells were delivered via the intrahepatic 
arterial (IHA) catheter following the procedure described 
by Sheu et  al. [18]. All procedures and animal observa-
tions in accordance with institutional ethical guidelines.

MRI acquisition
The animals were imaged with a 3T MRI scanner (Philips 
Achieva, Best, Netherlands) and commercial wrist coil. 
Anesthesia was delivered using 1–2% isoflurane inha-
lation at a rate of 2  L/min. MRI scans were conducted 
weekly for up to 2  weeks post-treatment to monitor 
tumor progression and assess treatment efficacy in vivo. 
The MRI sequences included (a) axial T2w MRI with set-
tings of repetition time (TR): 3500  ms, echo time (TE): 
63.177 ms, slice thickness (ST): 2 mm (no gap), flip angle 
(FA): 90º, field‐of‐view (FOV): 50 × 50   mm2, and num-
ber of signals averaged (NSA): 4; (b) T1w FFE with TR: 
200 ms, TE: 2.45 ms, ST: 2 mm (no gap), FA: 90º, FOV: 
50 × 50  mm2, and NSA: 4. The ITK-SNAP (v.4.0) software 
was used for the delineation of tumor regions in the T1w 
and T2w MRI images, which were then applied to all 
acquired images following an affine transformation [19].

Histology analysis
Upon study termination, animals were humanely eutha-
nized in accordance with IACUC regulations. Tumor-
bearing liver were excised, and 4 mm-thick tissue blocks 
centrally encompassing tumors were immediately fixed in 
10% formalin. The specimens were then paraffin-embed-
ded and sectioned (5  µm thick). Histological staining 
involved hematoxylin and eosin (H&E) to assess tumor 
viability and  CD56+ antibody labeling to assess NK cell 
viability. These procedures were facilitated by the Uni-
versity of California Irvine Experimental Tissue Shared 
Resource Facility (Orange, CA).

Histology slides were digitized using the Hamamatsu 
whole slide scanner and analyzed with QuPath (v0.4.3) 
and ImageJ (v.1.54c). We quantified the percentage of via-
ble tumor cells from five representative sections, chosen 
randomly and observed at 100 × magnification, stained 
with H&E dye. Blinded researchers then quantified via-
ble tumor cells and NK cells from five randomly selected 
regions at 100 × magnification. NK cell migration was 
assessed on  CD56+-stained slides by calculating the pro-
portion of positively stained cells relative to the total, 
taken from five random fields at 100 × magnification.

Feature extraction
MRI Texture features were extracted using PyRadiomics 
(version 3.1.0, PyRadiomics Community) [20]. Quantita-
tive features of tumor tissues were extracted from des-
ignated regions of interest (ROIs) using seven methods: 
first-order statistics (FoS), shape-based features (SP), gray 
level co-occurrence matrix (GLCM), gray level run length 
matrix (GLRLM), gray level size zone matrix (GLSZM), 
gray level dependence matrix (GLDM), and neighbor-
hood gray tone difference matrix (NGTDM). Addition-
ally, three filters, laplacian of gaussian (LoG), gradient 
and wavelet transform (WT), were applied to enhance 
feature extraction. To eliminate the effects caused by 
tumor size, features linked to this variable, including 
voxel number, axis length, maximum diameter, mesh sur-
face, and pixel surface, were excluded.

Subsequently, texture features were computed from the 
filtered images, resulting in a total of 743 texture features 
extracted from the T1w and T2w MRI data separately. 
These features were then standardized using z-score 
normalization to offset the relative intensity variations 
inherent in MRI data. To minimize multicollinearity, 
Pearson correlation was utilized to evaluate cross-cor-
relation coefficients. Features exhibiting a strong corre-
lation (|r|> 0.8) were removed from the set. Afterward, 
we employed the recursive feature elimination (RFECV) 
algorithm with cross-validation, leveraging the support 
vector machines (SVM) classification model, to further 
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reduce features number. To ensure a 10:1 sample size to 
feature ratio, we further refined our selection by choosing 
the top five features based on their importance rankings 
in a random forest model for our subsequent analyses.

MRI radiomics classifications
Based on the optimal feature subset, we constructed 
four classification models: support vector machine 
(SVM), XGBoost, random forest (RF) and linear regres-
sion model (LR). We employed fivefold cross-validation 
combined with grid search to identify the optimal hyper-
parameters for each model. The chosen hyperparam-
eters maximized the area under the curve (AUC) of the 
receiver operating characteristic (ROC)  curve. Leave 
one out cross-validation (LOOCV) was used to lever-
age all the data during model training. The performance 
of the classification models was measured with accuracy, 
area under the receiver operating characteristics curve 
(AUC), sensitivity, and specificity. For binary classifica-
tion models, considering the imbalance between groups, 
the synthetic minority oversampling (SMOTE) algorithm 
was used to balance the number of treatment and con-
trol group samples. For multi-class classification models, 
ROC curves using micro-averaged one-vs-the-rest (OvR) 
were used to assess the model’s performance.

Statistical analysis
To correlate MRI manifestations of HCC treatment 
outcomes with changes identified through histological 
tumor markers, we developed three multivariable linear 
regression models using quantitative features from T1w, 
T2w, and combined T1w + T2w MRI datasets. Model 
performance was evaluated using root-mean-squared-
error (RMSE) and Spearman correlation coefficient. The 

analysis was conducted using Scikit-learn in Python 
(Fig. 1).

Results
Feature selection
From T1w and T2W MRI data, 743 features were derived 
using seven distinct feature extraction methodologies 
and three filtering techniques. Following a collinear-
ity analysis, features exhibiting high correlation were 
removed, thus reducing the feature set to 80. This subset 
included 3 shape-based features (SP), 27 FoS, 23 GLCM 
features, 21 GLRLM features, 5 NGTDM features, and 1 
GLDM feature. The inter-feature correlation among these 
80 features was visualized using a heatmap, as presented 
in Fig.  2B, C. Subsequently, the feature set underwent 
a further feature selection process employing RFECV 
algorithm, combined with SVM classification model and 
evaluated based on AUROC score (Fig. 2D, E). The final 
features chosen for the modeling are shown in Table 1. 

Evaluation of the binary classification models
Given the relatively constrained dataset size, to coun-
teract potential model overfitting while maximizing 
the utility of our data, we performed LOOCV on each 
model. The evaluation of our model involved the calcu-
lation of (ROC) curves and the subsequent reporting of 
metrics such as AUROC, sensitivity, specificity, accuracy, 
and recall. For therapeutic prediction, four classification 
models, including SVM, XGBoost, LR and RF were devel-
oped, using the T1w, T2w, and combined T1w + T2w 
MRI data to differentiate between the control and treat-
ment groups (NK IHA, sorafenib administration and 
combination therapy). The features identified through 
RFECV are shown in Table 1. The ROC curves, indicative 

Fig. 1 Flowchart summarizes the tumor treatment evaluation process. The process begins with tumor implantation in a rat model, followed 
by the acquisition and processing of MRI images. Subsequently, radiomics features are extracted and fed into the MRI radiomics model. This model 
is designed to predict HCC treatment outcomes and establish correlations with histological biomarkers



Page 5 of 10Yu et al. Journal of Translational Medicine           (2024) 22:76  

Fig. 2 Feature selection process for T1w + T2w MRI data (A) Baseline MRI representative images of rat treatment groups, with a circle highlighting 
the tumor region (B) Feature correlation heatmap for binary classification model (C) Feature correlation heatmap for multi‑class classification 
model (D) RFECV feature selection process for binary classification model (E) RFECV feature selection process for multi‑class classification model (F) 
Features importance
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of the predictive capacities of the four distinct models 
and metrics of each model, are presented in Figs. 3A–C 
and 4A, with detailed performance metrics in Additional 
file  1: Table  S1, notably, SVM model utilizing the inte-
grated T1w + T2w data emerged as the premier model, 
achieved an AUC of the ROC at 1.00, an accuracy rate of 
96%, a sensitivity rate of 100%, a specificity rate of 83%, a 

precision rate of 97% and a recall rate of 96% in discern-
ing treated from untreated HCC cases. 

Evaluation of the multi‑class classification models
In clinical practice, binary classifications are often inad-
equate for diagnosing or forecasting treatment out-
comes, underscoring the importance of multi-class 

Table 1 The list of features used to generate classification models for HCC treatment efficacy

Task T1w T2w T1w + T2w

Binary treatment Energy (FoS) Contrast (NGTDM) T1w Kurtosis (FoS)

Kurtosis (FoS) Energy (FoS) T1w Energy (FoS)

Contrast (NGTDM) Kurtosis (FoS) T2w Contrast (NGTDM)

Elongation (Shape) Maximum (Original) T2w Cluster Shade (GLCM)

Contrast (GLCM) Kurtosis (FoS) T1w Cluster Shade (NGTDM)

Multi‑class treatment 10 Percentile (FOS) Contrast (NGTDM) T1w 10 Percentile (FoS)

Kurtosis (FoS) Perimeter Surface Ratio (Shape) T2w Contrast (NGTDM)

Minimum (FoS) Mean (Original) T1w Elongation (Shape)

Contrast (NGTDM) Elongation (Shape) T2w Busyness (NGTDM)

Minimum (LoG filtered FOS) Long Run Low Gray Level Emphasis (GLRLM) T2w Entropy (FoS)

Fig. 3 Receiver operating characteristic (ROC) curves for evaluating HCC treatment responses. A, C ROC curves illustrating the discriminative 
performance of four models—SVM, XGBoost, RF, and LR—in differentiating between the treatment and control groups. (A) uses T1w MRI data, 
(B) uses T2w MRI data, and (C) uses a combined T1w + T2w MRI dataset. D–F ROC curves showing the classification abilities of the same models 
across various treatment groups based on (D) T1w MRI, (E) T2w MRI, and (F) combined T1w + T2w MRI datasets. These groups include the control 
group (no treatment), sorafenib‑only treatment, NK cell infusion via hepatic artery (IHA), and a combination therapy of sorafenib and NK cell IHA
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models capable of discerning intricate treatment results. 
Our multi-class treatment outcomes classification mod-
els were based on five key features (Table 1). Among the 
evaluated models, RF model exhibited optimal results, 
obtained an AUC of the ROC at 0.93, an accuracy rate 
of 85%, a sensitivity rate of 85%, a specificity rate of 95%, 
a precision rate of 86% and a recall rate of 85% across 
four treatment groups: control, NK cells, sorafenib, and 
combination therapy. Comprehensive ROC curves and 
performance metrics for each model are illustrated in 
Figs.  3D–F and 4B, with detailed model performance 
provided in Additional file 1: Table S2. Notably, the com-
bined T1w + T2w MRI model outperformed individual 
T1w and T2w MRI models.

Correlation assessment of MRI features with histological 
tumor biomarkers
We established regression models to validate the rela-
tionship between histological tumor biomarkers and MRI 
radiomics features, evaluating them through RMSE and 
the Spearman correlation coefficient during leave-one-
out cross-validation. Each biomarker was assessed using 
three distinct linear regression models corresponding to 
T1w, T2w, and combined T1w + T2w MRI datasets.

H&E-stained histological images showed a significant 
difference in tumor cell viability between four treat-
ment groups (Fig.  5A–D). All treatment groups—NK 
cell infusion, sorafenib, and their combination—substan-
tially reduced tumor cell counts compared to the control 
(p < 0.05), with the combination therapy proving more 
effective than either treatment alone (p < 0.05). Notably, 
there was no significant difference in tumor cell reduc-
tion between the NK cell infusion and sorafenib groups, 
suggesting comparable efficacy. A multivariable analysis 

of these H&E-stained sections identified five key features, 
which informed the construction of regression models 
associated with tumor cell count. The T1w MRI model 
showcased an RMSE of 0.09 and a correlation coefficient 
of 0.92. The T2w MRI model achieved an RMSE of 0.04 
and a correlation coefficient of 0.91, while the T1w + T2w 
MRI model yielded an RMSE of 0.05 with a correlation 
coefficient of 0.90 (Fig. 5I).

Inspection of  CD56+-stained histological images 
discerned a significant variation in NK cell activity 
across the same four treatment groups (Fig.  5E–H). An 
increased presence of NK cells was significantly observed 
in the combination therapy group compared to the sin-
gle-treatment and control groups (p < 0.05). Furthermore, 
NK cell immunotherapy induced a more pronounced NK 
cell migration compared to sorafenib treatment (p < 0.05), 
with both groups exhibiting a significant increase in 
NK cells relative to the control group (p < 0.05). For the 
 CD56+ multivariable analysis, the models based on five 
chosen features, reported RMSE values of 0.05, 0.04, and 
0.03 for T1w, T2w, and T1w + T2w MRI datasets, respec-
tively, with corresponding correlation coefficients of 0.89, 
0.92, and 0.94 (Fig. 5J).

Discussion
In our study, we investigated the latent potential of radi-
omics features derived from MRI texture data to develop 
both binary and multi-class classification models for 
assessing treatment outcomes of HCC. The generated 
classification model demonstrated that the combina-
tion of T1w and T2w MRI texture features may serve as 
noninvasive biomarkers to predict treatment outcomes 
for NK cells, Sorafenib and their combination in SD rats 
model of HCC.

Fig. 4 Performance of binary and multi‑class classification models in HCC treatment response. A illustrates the performance of binary classification 
models, with each point representing a different machine learning model applied to T1wT1w, T2wT2w, or combined T1w + T2w MRI datasets. The 
x‑axis indicates the AUROC and the y‑axis shows the accuracy of each model. The symbols correspond to different models: squares for SVM, circles 
for LR, triangles for RF, and diamonds for XGBoost. B displays the performance of multi‑class classification models, using the same symbol
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In recent years, the potential of MRI-based assess-
ments for HCC has been explored in several studies 
[16, 21–23]. In an early study, Zhenyu developed and 
validated a radiomics model that leveraged MRI radi-
omic features to evaluate pathologic complete response 
(pCR) in LARC patients [22]. These findings suggest 
that MRI radiomic features might serve as noninva-
sive biomarkers for post-treatment predictors. Another 
study demonstrated MRI texture features can serve 
as imaging biomarkers for early therapeutic response 
detection post-DC vaccination in the KPC mouse 
model of PDAC and characterize the tumor microen-
vironment consistent with histological analysis [16]. 
Recently, a study highlighted that a quantitative analy-
sis of MRI textures could distinguish the ablation zone 
following IRE ablation in animal models [21]. How-
ever, research regarding the prediction of multiple 
HCC treatment outcomes with high accuracy remains 
limited. Furthermore, conventional imaging biomark-
ers such as iRECIST [12], imRECIST, and irRC, which 
rely on changes in tumor size, are not always reliable 
in detecting novel immunotherapy responses [14, 24, 
25]. Their limitations stem from not accounting for 

tumor heterogeneity and the potential inaccuracies 
introduced by pseudoprogression and mixed response 
patterns.

To overcome these challenges, we initially excluded 
features related to tumor size during the feature selec-
tion process. Subsequently, we developed statistical 
learning models utilizing texture MRI data and com-
pared the performance of binary (treatment vs. con-
trol) and multi-class classifications across various HCC 
treatment methods, including NK cell IHA delivery, 
Sorafenib administration, and combination therapy. Our 
findings underscore that classification models based on 
T1w + T2w MRI texture features can effectively discern 
different HCC treatment outcomes. Notably, the classi-
fier attained an AUC of 1.00 in binary classification and 
an AUC of 0.93 when distinguishing among the four 
treatment effects.

There are several limitations to our study. First, while 
our subject cohort is relatively limited in size, it aligns 
with the sample sizes of other preclinical studies. More-
over, techniques like SVM are especially effective for 
smaller datasets. To counterbalance this limitation, we 
employed leave-one-out cross-validation, fully utilizing 

Fig. 5 Histological Analysis of HCC Treatments with H&E and CD56 Staining. Arrow shows the tumor cell (dark pink) and NK cell (dark brown). 
A–D H&E‑stained histological sections revealing the tumor cell viability for the (A) control group, (B) sorafenib treatment, (C) NK cell IHA treatment 
and (D) combination therapy. E–H CD56‑stained sections highlighting NK cell activity for the (E) control group, (F) sorafenib treatment, (G) NK cell 
IHA treatment, and (H) combination therapy. I, J Correlation curves between MRI features and both (I) H&E and (J) CD56 histological biomarkers
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the available data. Consequently, our study serves as an 
initial in vivo investigation, laying a foundation for sub-
sequent evaluations on clinical datasets. Secondly, the 
manual segmentation of the tumor’s region of interest 
(ROI) introduces potential biases and is labor-intensive. 
Subsequent research might prioritize automated tumor 
segmentation or delve into multi-task approaches that 
both segment the tumor region and perform classifica-
tion in tandem.

Future advancements in multi-class classification 
models, as evidenced by our research, may pave the way 
for improved decision-making processes in HCC ther-
apy. Whereas traditional binary classification models 
are confined to distinguishing between the mere pres-
ence or absence of a treatment response, multi-class 
classifiers can detect subtle differences in treatment 
outcomes. This capability could assist clinicians in 
determining the most efficacious treatment regimens. 
In the future, these models could be refined through 
the integration of larger and more diverse datasets, 
improving their predictive accuracy and robustness. 
Additionally, the implementation of deep learning algo-
rithms could further enhance the model’s capability to 
analyze complex patterns within MRI data. Ultimately, 
these improvements will aim to provide a more per-
sonalized treatment strategy for patients to individual 
response profiles. As we continue to refine these mod-
els, we envision their application extending beyond 
HCC to other malignancies, leveraging MRI radiomics 
as a cornerstone for precision oncology.

Conclusions
Our study has emphasized the considerable potential of 
texture-based MRI features in evaluating various treat-
ment outcomes for HCC. By excluding tumor size fea-
tures, we were able to address associated challenges, 
enhancing the accuracy of our results. The MRI-based 
radiomics model introduced herein holds promise as a 
noninvasive predictor, offering insights that could guide 
clinicians in making informed treatment decisions for 
HCC patients.
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