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Abstract 

Background Characterizing cancer molecular subtypes is crucial for improving prognosis and individualized treat-
ment. Integrative analysis of multi-omics data has become an important approach for disease subtyping, yielding bet-
ter understanding of the complex biology. Current multi-omics integration tools and methods for cancer subtyping 
often suffer challenges of high computational efficiency as well as the problem of weight assignment on data types.

Results Here, we present an efficient multi-omics integration via weighted affinity and self-diffusion (MOSD) 
to dissect cancer heterogeneity. MOSD first construct local scaling affinity on each data type and then integrate all 
affinities by weighted linear combination, followed by the self-diffusion to further improve the patients’ similarities 
for the downstream clustering analysis. To demonstrate the effectiveness and usefulness for cancer subtyping, we 
apply MOSD across ten cancer types with three measurements (Gene expression, DNA methylation, miRNA).

Conclusions Our approach exhibits more significant differences in patient survival and computationally efficient 
benchmarking against several state-of-art integration methods and the identified molecular subtypes reveal strongly 
biological interpretability. The code as well as its implementation are available in GitHub: https:// github. com/ DXCOD 
EE/ MOSD.

Keywords Cancer heterogeneity, Muti-omics, Weighted affinity, Self-diffusion

Introduction
With the advent of high-throughput sequencing technol-
ogy, which can sequence thousands of genes in a short 
period of time, it is easier to obtain molecular data at 
different levels, such as transcriptome, genome, metabo-
lome, and epigenome. Analysis of multi-omics data can 
provide the complement information of molecular char-
acteristics in each data level and hence can derive more 
useful insights into the complex biological processes. 
Moreover, integrating approaches contribute to evalu-
ate the flow of information among omics levels and nar-
row the gap from genotype to phenotype. The merits 
of integrating multi-omics data over single omics have 
been proved in various studies [1, 2] and the availability 
of multi-omics data has attracted much more interest 
in the field of biology and bioinformatics, especially in 
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cancer treatment. Most cancer types are not single dis-
eases but rather contains different molecular subtypes. 
Those molecular subtypes underline diverse clinical char-
acterizations which are closely related to the treatment 
response [3]. The precise understanding of cancer heter-
ogeneity is a requirement for efficient targeted treatment 
and precision medicine. Many strategies for identifying 
cancer molecular subtypes often use gene expression pro-
filing to analyze the heterogeneity of tumors [4, 5]. How-
ever, tumor heterogeneity also exists at other molecular 
data types, such as microRNA and DNA methylation.

In cancer subtyping, applying multi-omics data along 
with clinical information to predict patient outcome has 
taken front seat in personalizing therapy and under-
standing cancer mechanism. In recent decades, various 
multi-omics integration methods for cancer subtyping 
have emerged, of which can be mainly grouped into two 
classes based on whether the method uses networks or 
Bayesian to model the integration. The network-based 
methods take either advantage of the connectivity from 
all data types or employ similarity networks constructed 
from samples correlation analysis. The popular network-
based approach is similarity network fusion (SNF) [6] 
which integrates multi-omics data via a nonlinear net-
work combination. SNF first create an individual simi-
larity graph for each data type and then fuse all graphs 
into one final network by message-passing theory. 
Neighborhood based multi-omics clustering (NEMO) 
[7] is another network -based integration method that is 
inspired and builds on SNF and rMKL-LPP [8]. NEMO 
captures the local neighborhoods of samples in each 
omic and then calculates the final graph by averaging the 
relative similarity matrices. The advantage of NEMO is 
that it is applicable on partial data set. Ramazzotti et al. 
[9] proposed a network-based cancer data integration 
method called CIMIR (Cancer Integration via multi-
kernel learning). CIMIR first construct Gaussian kernel 
functions with 55 different parameters for each data type 
and then optimizes all the Gaussian kernel functions into 
an similarity graph, followed by performing K-means on 
the integrated graph to identify cancer molecular sub-
types. PINSPlus [10] observes the small changes in quan-
titative assays to estimate how often each pair of samples 
is grouped together. Spectrum [11] is a fast and density-
aware spectral method for single and multi-omics data 
clustering.

Bayesian approaches assume that the prior probability 
distribution fits a specific model relying on one or more 
parameters. Shen et  al. [12]. Developed a joint variable 
model named iCluster for integrative clustering which 
simultaneously infer multiple data types to generate a 
single cluster assignment for samples. LARcluster [13] 
incorporates an integrative probabilistic model with 

low-rank approximation to find the shared principal 
low-dimension subspace for classification of omics data. 
PARADIGM [14] infers the activities of patient-specific 
biological pathways by Bayesian factor graphs to combine 
multiple omics-scale measurements on a single sample.

A drawback common to the current integration 
approaches is that they have relatively poor computa-
tional efficiency due to the necessity to infer numerous 
petameters. Moreover, the weight coefficient in every 
data type is treated equally, which may be not biologically 
appropriate for the multi-omics datasets with large dif-
ferences in feature size.

To overcome these drawbacks, we proposed a fast 
multi-omics integration approach via weighted affin-
ity and self-diffusion (MOSD) for cancer subtyping 
(Fig. 1). MOSD first create an affinity for each data type 
using local scaling method which infers the self-tuning 
of patient-to-patient distances to eliminate scales dif-
ferences. Different weights are then assigned for each 
data type instead of using equal weight importance. We 
measure the weight of each data type by exponentiat-
ing the ratio of features size based on the assumption 
that larger features contribute more information to the 
final integrated network. The integrated network can be 
obtained via the summation of the affinities multiplying 
by weights coefficient. MOSD can thus offer us insight 
into which data types are most informative in the integra-
tion for cancer subtyping. Self-diffusion process is finally 
performed on the integrated network to enhance the 
network similarity. Self-diffusion belongs to diffusion-
based metric learning approaches and is related to diffu-
sion map [15, 16]. Self-diffusion assumes that long-range 
similarities can be estimated by accumulation of local 
similarities, therefore facilitating the with-cluster simi-
larity of samples. After obtaining the integrated network, 
we applied spectral clustering to assign labels to patients 
since spectral clustering is superior in capturing global 
structure of a graph. Moreover, we provide a method to 
estimate the optimal clustering number based on the dif-
fused network. The advantage of our MOSD approach is 
that it uses weighted local scaling affinities as a basis for 
the integration. We linearly combine the affinities to fully 
retain the data manifold structure and intrinsic informa-
tion, while largely reducing the computational complex-
ity. Furthermore, our approach implements self-diffusion 
process by iteratively propagating the integrated network 
to improve the patients’ similarities for the downstream 
clustering analysis. To demonstrate the effectiveness of 
our MOSD, we carried out integrative subtypes iden-
tification across ten cancer types with three data types 
(Gene expression, DNA methylation, miRNA). Experi-
ment results reveal that our MOSD approach outper-
forms the existing state-of-the-art integration methods 



Page 3 of 12Duan et al. Journal of Translational Medicine           (2024) 22:79  

in patients’ survival differences and running efficiency. 
Lastly, we comprehensively performed biological analysis 
of subtypes identified on colorectal and breast cancer.

Our key contributions in this work are summarized 
as follows: (1) MOSD uses local scaling method to con-
struct patient’s affinity, which requires less hyper-param-
eters settings and can eliminate the scale differences. 
(2) Weight assignments derived from the features size 
relatively reflect the contribution of each data type to the 
integrated network. (3) Self-diffusion applied in MOSD 
has nearly no parameters tuning and can greatly enhance 
the clustering of integrated network, making it faster 
than most prior methods.

Methods
Our MOSD approach includes three main steps: (1) Con-
structing local scaling affinity to measure patients’ simi-
larities on multi-omics data. (2) Calculating the weight 
on each omics and linear combine the affinities into one 
network. (2) Performing self-diffusion process to enhance 
the patient-to-patient similarities learning. (3) Identify-
ing cancer subtypes by clustering on the diffusion map 
and performing biological analysis.

Local scaling affinity construction
Assuming we have n samples (e.g., patients) and m 
omics. Let Xm denote the measurement,Xm has dimen-
sions n× dm , where dm is the number of features in 

measurement. Given a graph model G= (�, A) , where 
�={xi}

n
i=1 represents data samples, a n× n local scaling 

affinity matrix A(i, j) ∈ [0, 1] is defined as follows [17]:

where d(xi, xj) is Euclidean distance between xi andxj.The 
distance between xi and  xj as “seen” by xi is d(xi, xj)/σi 
while the converse isd(xj , xi)/σj . Local scale σi can be 
obtained by calculating d(xi, xk),where xk is the k ′ neigh-
bours of sample xi . This affinity definition allows self-tun-
ing of sample-to-sample distance, automatically keeping 
balance among multiple scales in data structure.

Affinities integration
We define the weight coefficient w for each data type as 
follows:

Then, the integrated similarity matrix is calculated 
by: S =

m∑

i=1

wiAi.

(1)A(i, j) = exp

{

−d2(xi, xj)

σiσj

}

(2)pi = exp




di

�

m
dm





(3)wi =
pi

∑

m
pm

Fig. 1 Schematic workflow of MOSD. When integrating multi-omics datasets, MOSD first create the affinity using each data type where rows 
are patients and columns are gene features. MOSD then assign weights for the affinities and perform linear combination in integration step, 
followed by implementing self-diffusion to enhance the similarity of integrated network. Spectral clustering is used to obtain the patients labels 
with the optimal clustering number estimated by separation cost method. The identified subtypes are evaluated by survival analysis and biological 
analysis
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Performing self‑diffusion
To enhance the real connections in network and facili-
tate the downstream clustering performance, we imple-
ment a self-diffusion process using the following step:

where T is the row-normalized transition matrix of S 
according to SNF and defined as:

Self-diffusion process assigns similarities to non-
neighbors relying on the assumption that local similari-
ties in a network are more reliable than remotes ones.

Network clustering
To obtain the labels of patients in cancer subtyping, we 
used spectral clustering to perform network clustering. 
Spectral clustering solves the graph optimization by 
minimizing RatioCut [18].

where L is the Laplacian matrix denoted by 
L = I−D

−1/2
SD

−1/2. D represents the graph degree 
matrix. By finding the minimum k(clusters) eigenvalues 
of L , corresponding k eigenvectors can be obtained. H 
is a n× k dimensional matrix formed by the k eigenvec-
tors.  Compared to other clustering algorithms, spectral 
clustering which is based on graph cutting theory has 
more advantages in capturing graph structure.

Estimating the optimal clustering number
We provide a separation cost method to estimate the 
optimal clustering number according to [17]. Given a 
set of clustering numbers C , Separation cost method 
aims to find an index matrix Z(R) = XR , X ∈ R

n×C , 
R ∈ R

C×C to satisfy the following formula:

where X is the matrix composed by the eigenvectors of 
Laplacian matrix L . R is its rotation matrix. The separa-
tion cost function is defined as follows:

(4)S
t+1 = αStT+ (1− α)IN

(5)T(i, j) =
S(i, j)

∑

k∈knn(i) S(i, k)
δ{j ∈ knn(i)}

(6)
arg min tr

(

H
T
LH

)

︸ ︷︷ ︸

H

s.t.HT
H = I

(7)[M(R)]i = max
j

[Z(R)]i,j

(8)J (R) =
∑

i,j

[Z(R)]2i,j

[M(R)]2i

The optimal clustering number is the C that mini-
mizes the function J (R).

Statistical analyses
Statistical analyses are performed based on R (version 
4.1.3, www.r- proje ct. org). Kaplan–Meier method [19] is 
used to perform survival analyses and statistical signifi-
cance is evaluated by log-rank test from ‘survival’ package 
[20]. Differential gene expression analysis is calculated 
among subtypes using ‘limma’ R package [21]. Gene set 
enrichment analysis (GSEA) is performed using ‘HTSan-
alyzeR’ package [22]. P-value of less than 0.05 is consid-
ered significant for all tests.

Results
Simulation evaluation of MOSD
To select the appropriate numbers of neighbors in affin-
ity construction and the iterations in self-diffusion step, 
we conducted a simulation experiment to approximate 
the parameters. Since the truth labels of patients in can-
cer subtyping is unknown, we applied ‘Splatter’ R pack-
age [23] to simulate scRNA-seq read count data. 500 
cells were simulated with 1000, 2000, 5000 genes form-
ing ten groups, respectively. Three affinities were first 
created under the different gene features varying neigh-
bors k from 2 to 15. MOSD integrated the three affinities 
into one final network, followed by self-diffusion process 
implemented on the network with iterations from 2 to 
15. Spectral clustering was performed on the network 
to obtain the cell labels. We used normalized mutual 
information (NMI) [24] as a measurement of consist-
ency between the ground truth and the obtained labels. 
The range value of NMI from 0 to 1, where a higher value 
yields higher concordance. We calculated the average 
NMI values under the different settings of neighbors and 
iterations. The results show that the average NMI reaches 
the highest value when neighbors k = 5(NMI = 0.76) 
(Fig.  2A) and iterations t = 3(NMI = 0.84) (Fig.  2B). To 
further explore the effectiveness of network denoising 
with self-diffusion, we visualized the integrated similar-
ity matrix under iterations t = 1,3,7,15 with k = 5. Visual 
inspection of the diffused matrix reveals an enhancement 
within each cluster and clearer boundaries between clus-
ters. It can be easily observed that the connectivity within 
clusters shows the most tightness when the iterations 
t = 3, while too many iterations in diffusion process may 
generate redundant information in the network (Fig. 2C).

To further confirm the selected parameters, we addi-
tionally conduct an experiment to learn parameters 
on muti-omics dataset of breast cancer(n = 628). We 
used log-rank p-value derived from survival analysis to 
approximate the parameters. Patient-to-patient affini-
ties were constructed under three data levels (Gene 

http://www.r-project.org
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expression, DNA methylation, miRNA) varying neigh-
bors k from 2 to 15. The three affinities were integrated 
into one final network and self-diffusion process was 
then performed on the network with iterations from 
2 to 15. Boxplot shows that k = 5 and t = 3 are the opti-
mal parameters, indicating by the relatively significant 
log-rank p-value (Additional file  2: Fig S1). The optimal 
parameters are consistent with the result from single-cell 
simulation datasets.

Performance evaluation and comparison of MOSD
We applied MOSD on ten cancer types including 2410 
patients obtained from TCGA. The datasets are as fol-
lows: Adrenocortical carcinoma (ACC), Breast invasive 
carcinoma (BRCA), Colorectal adenocarcinoma (CRC), 
Glioblastoma multiforme (GBM), Glioma (GBMLGG), 
Head and Neck squamous cell carcinoma (HNSC), Kid-
ney Chromophobe (KICH), Acute Myeloid Leukemia 
(LAML), Mesothelioma (MESO), Uveal Melanoma 
(UVM). For each cancer type, three omics are analyzed: 
Gene expression, DNA methylation, miRNA expression. 
The Detail information of datasets sizes and features 
can be found in Additional file 1: Table S1. We assessed 
the clustering performance based on three evaluation 

criteria: i. Differences in patient survival indicated by log 
rank test p-value. ii. Silhouette width (measuring cohe-
sion and separation within clusters of data). iii. Computa-
tional efficiency (running time).

First, to fully demonstrate the effectiveness of our 
MOSD, we explored the influence of combinations using 
different measurements on cancer subtyping. Three data 
measurements have four combination modes (Fig.  3A). 
We focused on the question that whether there are com-
binations of measurements that enable effective per-
formance on all datasets. Affinity matrix for each data 
measurement was first created. The affinities were then 
assigned different weights to perform the integration, 
followed by self-diffusion process and spectral cluster-
ing on the integrated network. The optimal clustering 
numbers for the ten cancer types are estimated by sepa-
ration cost method, indicated by the largest drop in the 
separation cost values (Additional file 2: Fig S2). Log-rank 
test p-value derived from survival analyses was used to 
evaluate the clinical relevance of clustering results. We 
find that different combinations of data measurements 
affect the subtypes identification for patients’ survival 
difference on the ten cancer types. An interesting obser-
vation is that the combination of three measurements 

Fig. 2 Simulation on evaluation study. Clustering performance, measured by averaged NMIs are shown for selecting the appropriate local scale 
neighbors(k = 5) (A) and self-diffusion iterations(t = 3) (B). C Cell-to-cell similarities matrices represented by different iterations (t = 1, 3, 7, 15). Clusters 
are arranged according to the ground-truth labels
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(GE + ME + MI) reveals all very significant survival differ-
ences on the used cancer datasets.

To benchmark against other methods for integrative 
subtyping, we then performed comparisons of MOSD 
with eight other integration methods using the combi-
nation of three measurements on the ten cancer types. 
The 8 integration methods include Spectrum [11], SNF 
[6], CIMLR [9], NEMO [7] PINSplus [10], MDICC [25], 
MRGCN [26], and Subtype. DCC [27].Boxplot demon-
strates that log rank p-value derived from MOSD reveals 
the significance across all the ten cancer types (Fig. 3B), 
outperforming other methods in survival analysis. The 
reason may be that the weight assignment for each data 
type is more biologically meaningful, resulting in more 
significant association between the identified subtypes 
and patient outcomes.

Extensively, to compare the weight assignment in 
MOSD, we also given equal weight on single-omic to 
examine the clustering effectiveness. Survival analysis 
indicates that the clinical association of the clustering 
results derived from the weight assignment in MOSD is 
more significant than that using equal weight on single-
omic across the ten cancer types (Additional file  2: Fig 
S3).

We further quantitatively benchmark the computa-
tional efficiency and clustering performance on the ten 

cancer types. Remarkably, MOSD generally outper-
forms other benchmarked methods on the running time 
(Fig.  3C). Though Spectrum method runs slightly faster 
than MOSD, the survival differences in Spectrum is 
worse. Subtype.DCC approach is proved to be the most 
time-consuming since it requires deep neural network 
to learn clustering-friendly representations. The clusters 
cohesion can be measured by the silhouette width. In 
our study, to make fair comparison, for both MOSD and 
the benchmarked methods, we take as input the concat-
enated measurements in the original space to calculate 
the silhouette width. We find SNF has the highest sil-
houette width value followed by our MOSD and NEMO, 
while MDICC performing the worst (Fig. 3D). Error bars 
indicate the 95% confidence interval. In summary, we 
demonstrate that MOSD’s survival analysis archives com-
parative performance as some existing integration meth-
ods, while being relatively fast and efficient with fewer 
parameters tuning.

Case study on colorectal cancer
Colorectal cancer (CRC) is the third leading cause of can-
cer-related mortality worldwide. CRC has been proved 
be a heterogeneous disease with distinct molecular prop-
erties and is well suited to study the genomic subtyping. 
Tremendous effort has been dedicated to CRC subtyping, 

Fig. 3 Survival analysis using combinations of different data types and benchmark experiment on ten cancer types. A Up: Survival differences 
comparison using different omics combination for can subtyping. Down: Weight values for each data type. B Boxplot shows the survival 
performance of the nine integration methods on ten cancer datasets. MOSD outperforms other eight methods indicated by the -log10(p-value). 
Meanwhile, our method exhibits impressive computational efficiency (C) and relatively better silhouette width (D) among the nine methods. Bars 
indicate the average performance over the ten cancer types. Error bars is the 95% confidence interval
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but only the gene expression is used [28, 29]. We vali-
date the performance of MOSD using the three meas-
urements of colorectal adenocarcinoma. Specifically, for 
better exhibiting the subtypes’ biological characteristics, 
we performed median absolute deviation (MAD > 0.5) 
to select the highly expressed features datasets. MOSD 
estimates 3 to be the optimal clustering number on the 
integrated matrix as it results in the largest drop in the 
value of separation cost (Additional file  2: Fig. S1). The 
patient-to-patient similarities for 297 patients were rep-
resented by similarity matrix (Fig. 4A). The relatively few 
edges between clusters illustrate the tightness of connec-
tivity within clusters. To examine the clinical significance 
of MOSD CRC subtypes, clinical outcomes and charac-
teristics are compared among the subtypes. The subtypes 

identified using MOSD show a significant association 
with disease free survival (Fig.  4B, P = 3.11E-3, log-rank 
test). Subtype CS3 is significant associated with mis-
match repair (MSI) (p < 0.001) and shows a much higher 
CpG island methylator phenotype (CIMP) (p < 0.001) 
as well as BRAF-mutant (p < 0.001), indicating that it 
demarcates the well-characterized MSI/CIMP + subset 
of CRC (Fig. 4C). Univariate and multivariate Cox regres-
sion analyses were performed for CRC cancer to compare 
the MOSD subtypes with some clinical factors includ-
ing Sex (Female vs. Male), TNM stage (III–IV vs. I–II), 
CIMP (High vs. Low), MSI (dMMR vs. pMMR), as well as 
MOSD subtypes (CS 2 vs CSs 1,3). MOSD subtypes are 
the most significant factors next to TNM stage in univar-
iate and multivariate analysis (Table 1).

Fig. 4 Case study on colorectal cancer. A Integrated similarity matrix for 297 patients with CRC. Clusters (CS1-CS3) are ordered by spectral 
clustering labels from integrated network and reveal relatively stronger inter-cluster similarity. B Kaplan–Meier curves of disease-free survival 
for the subtypes identified using MOSD (p = 3.11E-4, log-rank test). C The identified subtypes (CSs1-3) show significantly associated with some 
common mutations (*0.05; **0.01; ***0.001). D Gene set enrichment analysis using mRNA expression. The MOSD subtypes reflect different interests 
in some signatures or pathways

Table 1 Univariate and multivariate analyses for colorectal cancer

Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

Sex (Female vs. Male) 0.98(0.66 – 1.45) 0.93 0.9 (0.6 – 1.35) 0.6

TNM stage (III–IV vs. I–II) 1.49 (1.21 – 1.83) 0.00014 1.45(1.18 – 1.79) 0.00044

CIMP (High vs. Low) 0.86 (0.55 – 1.34) 0.49 0.89 (0.54 – 1.46) 0.64

MSI (dMMR vs.pMMR) 0.98(0.58 – 1.67) 0.95 1(0.54 – 1.84) 0.99

MOSD (CS 2 vs CSs 1,3) 2.13 (1.44 – 1.3.15) 0.00017 1.91(1.26 – 2.89) 0.002
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To further investigate the biological function character-
ized by each MOSD subtype, we performed differential 
gene expression analysis and identified subtypes-specific 
biological pathways based on gene set enrichment analy-
sis (Fig. 4D). Subtype CS1 is enriched in epithelial differ-
entiation and shows a significant upregulation of WNT 
and MYC, both of which are related to CRC carcinogene-
sis. Subtype CS2 is characterized by activated transform-
ing growth factor (TGF)-β signaling, matrix remodeling 
pathways and displays upregulated genes associated with 
epithelial-mesenchymal transformation (EMT). Moreo-
ver, gene expression of subtype CS2 is consistent with 
stromal infiltration. Subtype CS3 tumors are featured by 
gene expression associated with diffuse immune infiltra-
tion, mainly consisting of TH1 and cytotoxic T cells, and 
strong activation of immune evasion pathways, which are 
distinguishing features of MSI CRC [30].

Case study on breast cancer
Breast cancer is the world’s most primary causes of can-
cer death in women. Like other cancers, breast cancer 
is a highly heterogeneous disease underling different 

pathological characteristics and clinical response. There-
fore, accurate understanding of subtypes’ biological func-
tion that are associated with clinical features has the 
vital significance on treatment decision. Based on gene 
expression profiling, breast cancer is identified into five 
molecular subtypes: Luminal A, Luminal B, HER-2 posi-
tive, basal-like and normal-like [31]. Here, we seek to 
investigate the MOSD’ ability to dissect the heterogeneity 
of breast cancer using the three measurements. MOSD 
classify 628 breast cancer patients into 6 clusters (CS1-
CS6) on the integrated graph. We first explore the separa-
tion of the 6 clusters by patient network (Fig. 5A), where 
nodes represent patients and node size reflects survival 
time. The patient’s network is effective in visual represen-
tation and can emphasize the detail similarity patterns 
in integrated map. Patient samples classified to different 
subtypes are tightly distributed in the integrated network. 
To evaluate the clinical relevance of the six clusters, we 
performed survival analyses. The identified six subtypes 
based on MOSD are significantly associated with overall 
survival (Fig. 5B, P = 2.03E-7, log-rank test) and subtype 
CS6 shows the worst overall than the rest of clusters. To 

Fig. 5 Case study on breast cancer. A Network similarity for 628 breast cancer patients, where nodes are patients and node size represent 
the length of survival time. B Kaplan–Meier plot for the six clusters identified by MOSD (p = 2.03E-7, log-rank test). C Frequency of some mutations 
in the six subtypes (*0.05; **0.01; ***0.001)
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further characterize the identified clusters, mutational 
frequency is then calculated among the six clusters. We 
determine the frequency of PIK3CA, TP53, TTN, CDH1, 
GATA3 mutations in all patients (Fig. 5C). Subtype CS3 
reveals a striking association with TP53 mutation which 
acts as a tumor suppressor and regulates cell division. 
PIK3CA mutation is reported highly represented in 
ER + /HER2- breast cancer [32]. The results shows that 
PIK3CA mutation is enriched in subtypes CS2 and CS4, 
of which is significantly associated with Luminal A and 
Luminal B subtypes, respectively. To quantitively reveal 
the association between MOSD subtypes and PAM50 
breast subtypes, we performed the hypergeometric test 
(Fig.  6A). Based on the calculation, subtype CS1, CS2, 
CS3, CS4 recapitulated the ‘Her2’, ‘LumA’, ‘Basal’ and 

‘LumB’ subtypes previously reported. Univariate and 
multivariate analyses show that MOSD subtypes are the 
significant factors of survival as well as other clinical 
characteristics like age, TNM stage and chemotherapy 
(Table 2). To examine biological characterizations of the 
six clusters, we analyzed differentially expressed genes in 
each cluster as compared to the others (Fig. 6B). Mean-
while, we performed gene set enrichment analysis to 
identify the top statistically significant pathways in each 
cluster (Fig. 6C). GSEA results show that subtype CS1 is 
related to some immune pathways. Subtype CS2 which 
has good prognosis is featured by activated insulin-like 
growth factor and extracellular matrix (ECM). This sub-
type is the most common subtype in breast cancer. Sub-
type CS3 compatible with Basal-like subtype has high 

Fig. 6 Biological analysis of MOSD breast subtypes. A Hypergeometric test of the MOSD subtypes between the known five breast subtypes. 
B Heatmap of top differentially expresses genes in the in the six subtypes. C Biological pathways reflected in the six subtypes using gene set 
enrichment analysis
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histological grade and is implicated in facilitating cellular 
proliferation and cell migration.

Discussion
Cancer is one of the most heterogeneous diseases, under-
lying multiple subtypes with distinct molecular proper-
ties and diverse morphological profiles.

Accurately identifying cancer subtypes is essential 
to unfold molecular features and correlate them with 
patients’ outcome. Most studies for cancer molecular 
subtyping are mainly based on unsupervised clustering 
of single-omic data [33, 34], particularly gene expres-
sion profiling. But cancer is a phenotype that accumu-
lates at multiple levels of the biological system, from 
the genome to the proteome. Integrating multi-omics 
data can facilitate the understanding of potential bio-
logical mechanisms and improve clinical outcomes [35, 
36]. In the paper, an efficient multi-omics integration 
framework, namely MOSD is proposed for cancer sub-
types identification. Different from many existing multi-
omics integration methods, MOSD aims at constructing 
patient-to-patient network to preserve omics expres-
sion and similarity relationships by creating local scaling 
affinity which infers the self-tuning of samples distances. 
Also, MOSD try to deal with the tackle of weight assign-
ment in each data type. The fractionation of data features 
size is utilized to assign a weight in each omic with the 
assumption that larger features contain more hetero-
geneous information and contribute more to the final 
integrated graph. Based on the integrated network, 
self-diffusion process is applied to enhance the similar-
ity learning. Self-diffusion implements a dynamic diffu-
sion process that uses local graph structures to denoise 
the networks, while need few parameters tuning. The 
important advantage of the self-diffusion is that the weak 
similarities disappear to reduce feature redundancy and 
strong similarities are preserved along the graph diffu-
sion, largely facilitating the downstream clustering effi-
ciency with biological analysis.

We extensively evaluate the effectiveness of MOSD 
across ten cancer types. MOSD successfully strat-
ify patients into clinically relevant subtypes with 

significantly different survival rates on the used data-
sets. The reason relies on that MOSD can learn appro-
priate patient-to-patient distances that reveal the 
similarity structure to reduce noise and reductant 
information and the weight assignment is biologically 
suitable to uncover the patient outcome associated with 
clusters. Benchmark experiment shows that MOSD 
outperforms eight other state-of-art integration meth-
ods in survival differences of discovered subtypes and 
shows better computational complexity. Finally, we 
perform comprehensive biological analysis of subtypes 
identified on colorectal and breast cancer. MOSD is 
an open data integration framework not only in can-
cer subtyping but also can be easily utilized in more 
omics scenarios. However, our MOSD has some limi-
tations. MOSD cannot handle the partial data since 
the integrated step need the same size of dimension in 
affinities.

Conclusion
Stratifying cancer patients into molecular subtypes is 
important to understand intratumor heterogeneity with 
malignant progression. Integrated analysis of multi-
omics datasets provides opportunity to discover such 
tumor subclones. MOSD’ simplicity, robustness, effi-
ciency make it an ideal approach to identify subtypes that 
reflect intratumor heterogeneity and can be extended to 
further use in clinical practice. We believe that machine 
leaning based cancer subtyping strategies will continually 
contribute more to patients’ personalized treatment and 
understand the caner biology.
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Table 2 Univariate and multivariate analyses for breast cancer

Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

Age (> = 65 vs. < 65) 2.72 (1.72 – 4.29)  < 0.0001 1.97 (1.17 – 3.32) 0.01

Chemotherapy (0 vs. 1) 1.77 (1.34 – 2.34)  < 0.0001 1.61 (1.21 – 2.26) 0.0017

TNM stage (III–IV vs. I–II) 2.02 (1.25 – 3.26) 0.004 2.67 (1.61 – 4.42) 0.0002

Tumor location(R vs. L) 0.75 (0.47 – 1.19) 0.22 0.61 (0.37 – 0.99) 0.048

MOSD (CS 6 vs CSs 1–5) 1.26 (1.14 – 1.40)  < 0.0001 1.32 (1.16 – 1.5) 0.0023
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